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Concepts and methods Dynamic graphs

Why dynamic graphs ?
Time can be an important variable
Static graphs not sufficient

Various application fields
Transportation networks

Roads temporarily unavailable
Communication networks

Sensor networks
Social networks

Evolving relationships

Various terminology
temporal networks
dynamic networks
time varying graphs
evolving graphs
temporal graphs
dynamic graphs
link streams

Various models
TIME

discrete

continuous

VERTEX
PRESENCE

constant

time-dependant

ARCS/EDGES
PRESENCE

constant

time-dependent

ARCS/EDGES
WEIGHT

constant

time-dependent

none

VERTEX
WEIGHT

constant

time-dependent

none

STUDY
INTERVAL

finite

infinite
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Concepts and methods Dynamic graphs

Dynamic graph

Succession of static graphs: G = (Gi )i∈T , where:
T = {1, . . . ,T} is the study interval
T is the time horizon
Gi = (V ,Ei ) is a t-graph

Example
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Concepts and methods Our methodology

Start : Static problem

Does the problem
make sense ?

Can it be solved
directly using static
graphs methods ?Yes

Define dynamic
problem

No

Is it efficient ?

Yes

Yes

Good

Design new methods

No

Theoretical analysis

Experimental analysis

End : A solution

No
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Concepts and methods Problems classification

Different solving methods
1 Solve T independent problems, one on each t-graph
2 The problem is equivalent to a problem on a static graph
3 A method specific to dynamic graphs is necessary
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Concepts and methods Problems classification

Different solving methods
1 Solve T independent problems, one on each t-graph
2 The problem is equivalent to a problem on a static graph
3 A method specific to dynamic graphs is necessary

Category 1
Example: maximum flow on dynamic graph without travel time or storage
Solution: Get maximum flow on each t-graph, sum them

Example
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Concepts and methods Problems classification

Different solving methods
1 Solve T independent problems, one on each t-graph
2 The problem is equivalent to a problem on a static graph
3 A method specific to dynamic graphs is necessary

Category 2
Example: Maximum independent set
Solution: Equivalent to maximum independent set on a static graph which
is the union of the t-graphs

Example

→
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Concepts and methods Problems classification

Different solving methods
1 Solve T independent problems, one on each t-graph
2 The problem is equivalent to a problem on a static graph
3 A method specific to dynamic graphs is necessary

Category 1
Example: maximum flow on dynamic graph without travel time or storage
Solution: Get maximum flow on each t-graph, sum them

Category 2
Example: Maximum independent set
Solution: Equivalent to maximum independent set on a static graph which
is the intersection of the t-graphs

Category 3
Example: Persistent connected components
Solution: Design new algorithm
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Concepts and methods Our work

Minimum cost flow:
Dynamic graph: no storage, no
travel time
Minimum cost flow problem
Look for efficient algorithm
Avoid time-expanded graph

Maximum flow:
Dynamic graph: infinite
storage, no travel time
Maximum flow problem
Look for efficient algorithm
Avoid time-expanded graph

Persistent Connected Components
Connected component in a
dynamic graph?
How can it be identified ?

Steiner problem
Steiner problem in a dynamic
graph?
How can it be identified ?
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Persistent connected components Literature

How to define connectivity in dynamic graphs?

Journey-based definitions
There is a journey both ways between each pair of vertices in the
component (Bhadra and Ferreira 2003)
The journey has bounded length (Gómez-Calzado et al. 2015)
Connected on any time window of given length (Huyghues-Despointes,
Bui-Xuan, and Magnien 2016)

Without journeys

Connection on intersection of graphs (Casteigts et al. 2015)
Period of time on which the graph remains connected (Akrida and
Spirakis 2019)
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Persistent connected components Definitions

Persistent Connected Component (PCC)

Set K of vertices of size k that remain
connected for l consecutive time steps

p = (K , k , l)

K : set of vertices
k : size of set K
l : length (# time steps)

A PCC p = (K , k , l) is considered maximal

@ p′ = (K ∪ {u}, k + 1, l), vertex u /∈ K , on the same time interval
@ p′ = (K , k , l + 1) on the same time interval

Differences to literature

Literature =/ Us
Mostly based on journeys =/ Instantaneous and lasting connexion

OR AND

Connexion through same path =/ Connexion through different paths
OR AND

Continuous time =/ Discrete time
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Persistent connected components Definitions

p1=({1, 5}, 2, 3)
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Persistent connected components Definitions

p2=({4, 5}, 2, 3)
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Persistent connected components Definitions

p3=({1, 2, 3}, 3, 3)
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Persistent connected components Definitions

p4=({2, 3, 4}, 3, 3)

1 2

4

35

Figure: G1

1 2

4

35

Figure: G3

1 2

4

35

Figure: G2

1 2

4

35

Figure: G4

Mathilde Vernet Models, Algorithms for Dynamic Graphs October 22, 2020 9 / 32



Persistent connected components Definitions

p5=({1, 2, 3, 4, 5}, 5, 2)
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Persistent connected components Definitions

p6=({2, 3}, 2, 4)
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Persistent connected components Definitions

Dominant PCC
p = (K , k , l) is dominant ⇔ ∀ p′ = (K ′, k ′, l ′) 6= p:

k > k ′; l ≥ l ′

OR
l > l ′; k ≥ k ′

Goal
Retrieve dominant PCCs
Keep one PCC for a given size k and length l
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Persistent connected components Definitions
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Persistent connected components Definitions

1 2

4

35

Figure: G1

1 2

4

35

Figure: G3

1 2

4

35

Figure: G2

1 2

4

35

Figure: G4
Mathilde Vernet Models, Algorithms for Dynamic Graphs October 22, 2020 12 / 32



Persistent connected components Algorithm

PersIstent Connected CompoNent InCremental Algorithm (PICCNIC)

At each time step t ∈ T :
1 Compute classical connected components in Gt

2 Compare with PCC alive at t − 1
3 Extract finished PCC and still alive ones
4 Remove dominated PCCs

Remarks on PICCNIC
Incremental Algorithm
Exact at each time step
Polynomial complexity
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Persistent connected components Algorithm

Complexity

One iteration: O(n2) (number of PCCs kept from t − 1 to t is
bounded by n)
T iterations
Total complexity: O(n2 · T )

Why bounded number of PCCs kept?

p = (K , k , l) and p′ = (K ′, k ′, l ′) two PCCs
K ∩ K ′ 6= ∅ and K * K ′ at time step t
⇒ K ∪ K ′ is a connected component in Gt

⇒ The union is considered and kept
⇒ PCCs kept are disjoint or included
⇒ No more than n PCCs are kept
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Persistent connected components Experiments

Parameters
4 underlying graph types:

Random
Regular
Scale-free
Random Geometric

Average degree 4, 8, 12
Varying n from 100 to 4500
Fixed T to 1000
10 instances

Dynamicity
Markov chain for each edge
presence

✓ Xp

1-p

q

1-q

Complexity

Algorithm complexity: O(n2 · T )

With fixed T : O(n2)
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Persistent connected components Experiments

Figure: Random Graphs

Figure: Scale-free Graphs

Figure: Regular Graphs

Figure: Random Geometric Graphs
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Persistent connected components Experiments
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Figure: Computation Time (Average presence probability 90%, average degree 4)
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Persistent connected components Experiments
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Figure: Representation of non-dominated PCCs size and length (Average presence
probability 90%, average degree 4)
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Persistent connected components Experiments
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Figure: Pareto front of non-dominated PCCs for one instance (Average presence
probability 90%, average degree 4)
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Steiner problem Reminder

Context
(Static) graph G = (V ,E )

Edge weight w(i ,j) > 0 ∀(i , j) ∈ E

Terminal set S ⊂ V

Goal
Find a tree with minimum weight
containing all vertices from S

S1

S2

n1

n2

n3

S3

1

1

2

1

2 2 2

2

Decision problem
Is there a subgraph of G containing all vertices from S with total
weight lower to K?

Complexity proof
NP-complete
Polynomial transformation from exact cover by 3-sets
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Steiner problem Possible extensions to dynamic graphs

Context
Dynamic graph: G = (V ,E )

Study interval of G: T = {1, . . . ,T}
Edges have time-dependent weight: w(i ,j),t > 0 ∀(i , j) ∈ E , t ∈ T
Terminal set S ⊂ V

Questions
What is a Steiner Tree in a dynamic graph ?

A “dynamic tree” containing all vertices of S with minimum total
weight on T

How is that tree ?
Can special cases be identified ?
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Steiner problem Possible extensions to dynamic graphs

Possibility 1 : Fully Connected Set

Find V ′ ⊂ V such that S ⊂ V ′

Find spanning tree of V ′ of minimum weight

S1

S2

n1

n2

n3

S3

3

3

1

1

0 3 3

3 S1

S2

n1

n2

n3

S3

0

0

3

1

3 3 0

0 S1

S2

n1

n2

n3

S3

1

1

3

0

1 3 0

0

0 0 1 3 3 3

Problem
As long as the terminals are connected, what is the point of
connecting V ′?
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Steiner problem Possible extensions to dynamic graphs

Possibility 2: Partially connected Set

Find V ′ ⊂ V such that S ⊂ V ′

Minimize the weight of edges connecting S

S1

S2

n1

n2

n3

S3

3

3

1

1

0 3 3

3 S1

S2

n1
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n3

S3
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1

1
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1 3 0

0

0 0 1 3 3 3

Problem
Take V ′ = V and look for Steiner tree at each time step ignoring
vertices from V ′ \ S
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Steiner problem Partially connected Minimum Steiner Set

Goal
Find V ′ with S ⊂ V ′ ⊂ V and E ′

t ⊂ Et ∀t 6 T such that
All vertices of S in same connected component in G ′

t = (V ′,E ′
t)

Cardinality of V ′ is minimum∑
e

∑
t we′t

with e ′t ∈ E ′
t
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n1

n2

n3
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Steiner problem Special case: Two terminals, no weight

Definition
No weight on edges
|S | = 2: Connect optimally two vertices
Minimize number of vertices keeping the terminals connected

Remarks
Polynomial in static graphs
NP-complete on dynamic graphs
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Steiner problem Special case: Two terminals, no weight

Example 1

No extra vertex is necessary

S1 S2

n1

n2

S1 S2

n1

n2

S1 S2

n1

n2

S1 S2

n1

n2
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Steiner problem Special case: Two terminals, no weight

Example 2

All vertices of the graph are necessary
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Steiner problem Special case: Two terminals, no weight

Example 3

The shortest path is not a good idea

S1

S2n1
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n4
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n3
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Steiner problem Special case: Two terminals, no weight

NP-completeness proof
Polynomial transformation from the Vertex Cover Problem

Reminder: Vertex Cover
Graph G = (V ,E )

Vertex Cover Set Vc ⊂ V such that ∀(u, v) ∈ E , u ∈ Vc or v ∈ Vc

For a given integer k ≥ 0, is there a set Vc of size k ?

Transformation

∀u ∈ V , there is a vertex u in the dynamic graph GDYN

GDYN has two extra vertices a and b

∀e = (u, v) ∈ E , there is a time step ie in GDYN and GDYN
ie

has 4
edges; (a, u), (u, b), (a, v), (v , b)
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Steiner problem Special case: Two terminals, no weight

Example of transformation
Vertex Cover instance:

v1

v5

v3v2

v4

Corresponding instance on dynamic graph:

v1

v3

v5

v2

a b

v4

v1

v3

v5

v2

a b

v4

v1

v3

v5

v2

a b

v4

v1

v3

v5

v2

a b

v4

v1

v3

v5

v2

a b

v4
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Conclusion Summary

Minimum cost flow:
Time expanded graph not used
Polynomial optimal algorithm
Theoretically and practically efficient
Vernet et al. 2020 in DAM

Maximum flow:
Look for new method
without time expanded
graph
Bound on maximum flow
value

Persistent Connected Components
Extension of connected components
to dynamic graphs
Polynomial online and optimal
algorithm to obtain dominant PCCs
Definition of PCC extended to:

Directed graphs, eternal PCC,
interrupted components

Under review (Vernet, Pigné, and
Sanlaville 2020)

Steiner problem
Extension of Steiner
Problem to dynamic
graphs
Special case proven to be
NP-complete
Working paper (Balev
et al. 2020)
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Conclusion Future work

General questions
Formal problem classification

from problem definition point of view
from the algorithmic point of view

Steiner problem
Exact algorithms efficient in specific cases
Approximation algorithms

Connected components
Persistent connected components

Enumerative algorithm for maximal PCCs
Eternal connected components

Experimental analysis of the algorithm

Maximum flow
How tight is our bound ?
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