Mathilde Vernet

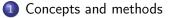
Supervised by: Yoann Pigné, Eric Sanlaville Collaboration: Stefan Balev, Maciej Drozdowski, Frédéric Guinand mathilde.vernet@univ-lehavre.fr

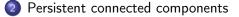
> LITIS, team RI2C Université Le Havre Normandie

> > LIP6 Seminar Paris October 22, 2020

<ロト (四) (三) (三)

500





3 Steiner problem

3

Concepts and methods

- Dynamic graphs
- Our methodology
- Problems classification
- Our work

Persistent connected components

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

3 Steiner problem

4 Conclusion

Why dynamic graphs ?

- Time can be an important variable
- Static graphs not sufficient

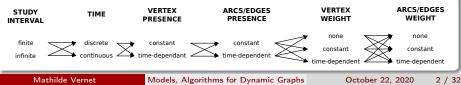
Various application fields

- Transportation networks
 - Roads temporarily unavailable
- Communication networks
 - Sensor networks
- Social networks
 - Evolving relationships

Various terminology

- temporal networks
- dynamic networks
- time varying graphs
- evolving graphs
- temporal graphs
- dynamic graphs
- Iink streams

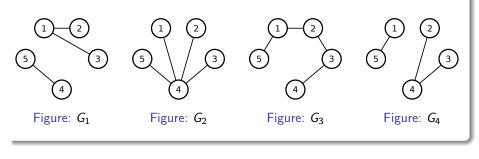
Various models



Dynamic graph

- Succession of static graphs: $G = (G_i)_{i \in T}$, where:
 - $\mathcal{T} = \{1, \dots, T\}$ is the study interval
 - T is the time horizon
 - $G_i = (V, E_i)$ is a t-graph

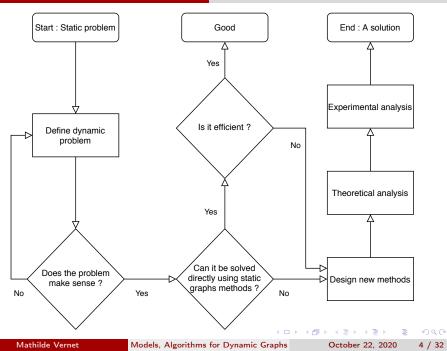
Example



- 20

3 / 32

< □ > < □ > < □ > < □ > < □ > < □ >



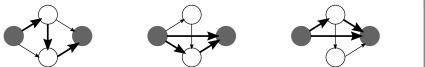
- **(**) Solve T independent problems, one on each t-graph
- 2 The problem is equivalent to a problem on a static graph
- A method specific to dynamic graphs is necessary

- **(**) Solve T independent problems, one on each t-graph
- 2 The problem is equivalent to a problem on a static graph
- A method specific to dynamic graphs is necessary

Category 1

Example: maximum flow on dynamic graph without travel time or storage **Solution:** Get maximum flow on each t-graph, sum them

Example

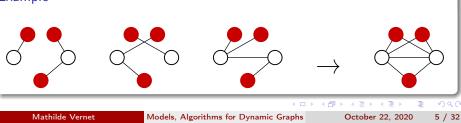


- $\textbf{ Solve } \mathcal{T} \text{ independent problems, one on each t-graph}$
- On the problem is equivalent to a problem on a static graph
- A method specific to dynamic graphs is necessary

Category 2

Example: Maximum independent set **Solution:** Equivalent to maximum independent set on a static graph which is the union of the t-graphs

Example



- **(**) Solve T independent problems, one on each t-graph
- 2 The problem is equivalent to a problem on a static graph
- **③** A method specific to dynamic graphs is necessary

Category 1

Example: maximum flow on dynamic graph without travel time or storage **Solution:** Get maximum flow on each t-graph, sum them

Category 2

Example: Maximum independent set **Solution:** Equivalent to maximum independent set on a static graph which is the intersection of the t-graphs

Category 3

Example: Persistent connected components **Solution:** Design new algorithm

Minimum cost flow:

- Dynamic graph: no storage, no travel time
- Minimum cost flow problem
- Look for efficient algorithm
- Avoid time-expanded graph

Persistent Connected Components

- Connected component in a dynamic graph?
- How can it be identified ?

Maximum flow:

- Dynamic graph: infinite storage, no travel time
- Maximum flow problem
- Look for efficient algorithm
- Avoid time-expanded graph

Steiner problem

- Steiner problem in a dynamic graph?
- How can it be identified ?

∃ → (∃ →

Concepts and methods

2 Persistent connected components

《曰》 《聞》 《臣》 《臣》 三臣

- Literature
- Definitions
- Algorithm
- Experiments

3 Steiner problem

4) Conclusion

How to define connectivity in dynamic graphs?

Journey-based definitions

- There is a journey both ways between each pair of vertices in the component (*Bhadra and Ferreira 2003*)
- The journey has bounded length (Gómez-Calzado et al. 2015)
- Connected on any time window of given length (Huyghues-Despointes, Bui-Xuan, and Magnien 2016)

Without journeys

- Connection on intersection of graphs (Casteigts et al. 2015)
- Period of time on which the graph remains connected (Akrida and Spirakis 2019)

イロト イ理ト イヨト イヨト

Persistent Connected Component (PCC) Set K of vertices of size k that remain connected for I consecutive time steps

$$p = (K, k, l)$$

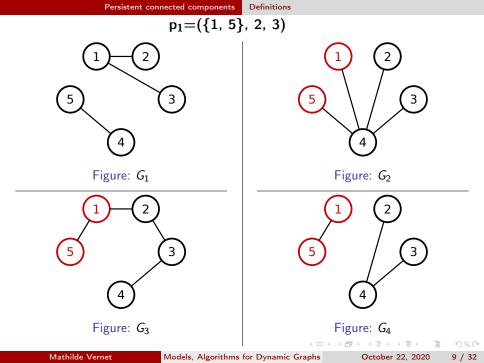
- K: set of vertices
- k: size of set K
- *I*: length (# time steps)

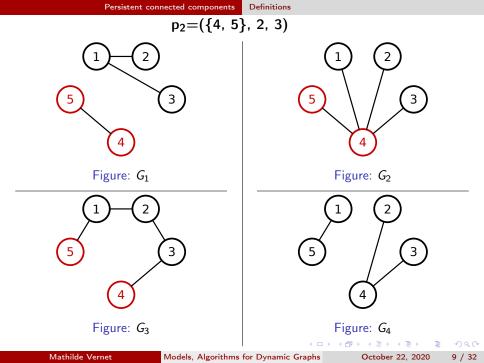
A PCC p = (K, k, l) is considered maximal

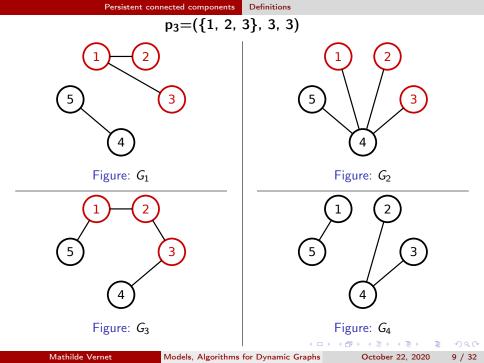
- $\nexists p' = (K \cup \{u\}, k+1, I)$, vertex $u \notin K$, on the same time interval
- $\nexists p' = (K, k, l + 1)$ on the same time interval

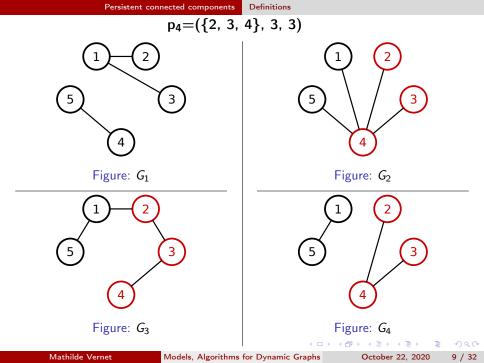
Differences to literature

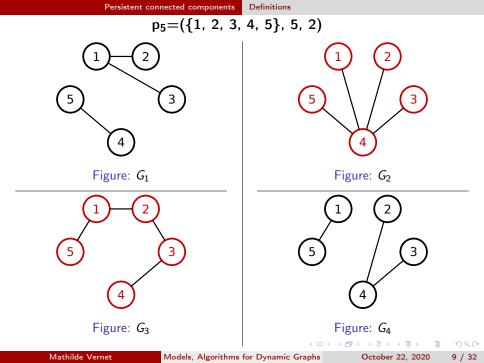
Literature	¥	Us					
Mostly based on journeys	¥	Instantaneous and lasting connexion					
OR		AND					
Connexion through same path	• ≠	Connexion through different paths					
OR		AND					
Continuous time	¥	Discrete time					
Mathilde Vernet Models, Algorithms for Dynamic Graphs October 22, 2020							

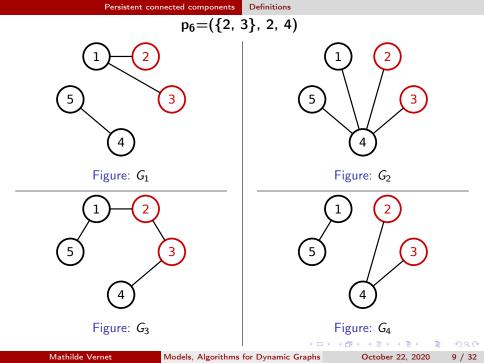












Dominant PCC

- p = (K, k, l) is dominant $\Leftrightarrow \forall p' = (K', k', l') \neq p$:
 - $k > k'; l \ge l'$

OR

• $l > l'; k \ge k'$

Goal

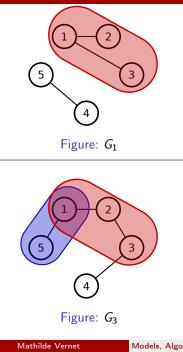
- Retrieve dominant PCCs
- Keep one PCC for a given size k and length l

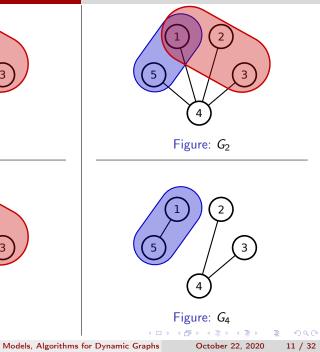
э

10 / 32

Persistent connected components

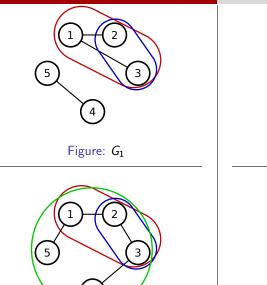
Definitions





Persistent connected components

Definitions



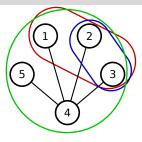
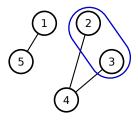


Figure: G₂



Mathilde Vernet	Ν	M	at	:h	đ	d	le	\	I	e	r	n	e	t
-----------------	---	---	----	----	---	---	----	---	---	---	---	---	---	---

Figure: G₃

Models, Algorithms for Dynamic Graphs

October 22, 2020 12 / 32

 $= Figure: G_4 = F = Oace$

PersIstent Connected CompoNent InCremental Algorithm (PICCNIC)

- At each time step $t \in \mathcal{T}$:
 - **(**) Compute classical connected components in G_t
 - 2 Compare with PCC alive at t-1
 - 3 Extract finished PCC and still alive ones
 - Remove dominated PCCs

Remarks on PICCNIC

- Incremental Algorithm
- Exact at each time step
- Polynomial complexity

Complexity

- One iteration: $O(n^2)$ (number of PCCs kept from t 1 to t is bounded by n)
- T iterations
- Total complexity: $O(n^2 \cdot T)$

Why bounded number of PCCs kept?

•
$$p = (K, k, l)$$
 and $p' = (K', k', l')$ two PCCs

•
$$K \cap K' \neq \emptyset$$
 and $K \nsubseteq K'$ at time step t

 $\Rightarrow K \cup K'$ is a connected component in G_t

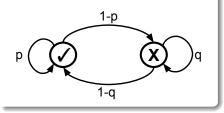
- \Rightarrow The union is considered and kept
- \Rightarrow PCCs kept are disjoint or included
- \Rightarrow No more than *n* PCCs are kept

Parameters

- 4 underlying graph types:
 - Random
 - Regular
 - Scale-free
 - Random Geometric
- Average degree 4, 8, 12
- Varying *n* from 100 to 4500
- Fixed *T* to 1000
- 10 instances

Dynamicity

• Markov chain for each edge presence



Complexity

- Algorithm complexity: $O(n^2 \cdot T)$
- With fixed T: $O(n^2)$

Persistent connected components

Experiments

Figure: Random Graphs

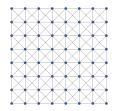


Figure: Regular Graphs

Figure: Scale-free Graphs

Figure: Random Geometric Graphs

Mathilde Vernet

Models, Algorithms for Dynamic Graphs

October 22, 2020 16 / 32

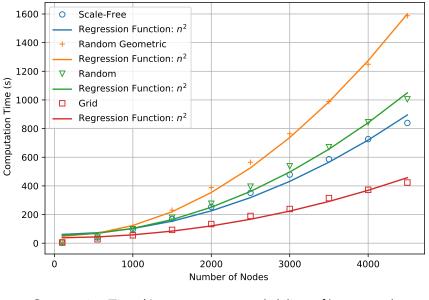


Figure: Computation Time (Average presence probability 90%, average degree 4)

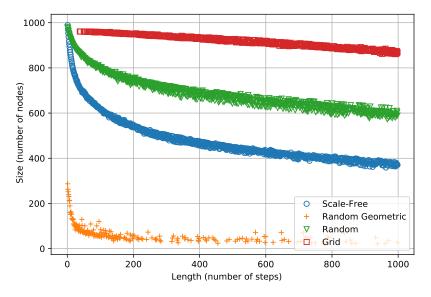


Figure: Representation of non-dominated PCCs size and length (Average presence probability 90%, average degree 4)

Mathilde Vernet

Models, Algorithms for Dynamic Graphs

October 22, 2020

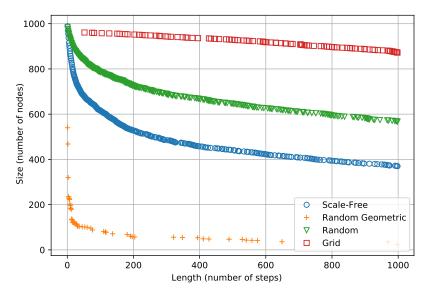


Figure: Pareto front of non-dominated PCCs for one instance (Average presence probability 90%, average degree 4)

Mathilde Vernet

October 22, 2020

Persistent connected components

Steiner problem

- Reminder
- Possible extensions to dynamic graphs
- Partially connected Minimum Steiner Set

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

• Special case: Two terminals, no weight

Conclusion

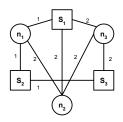
Reminder

Context

- (Static) graph G = (V, E)
- Edge weight $w_{(i,j)} \ge 0 \ \forall (i,j) \in E$
- Terminal set $S \subset V$

Goal

• Find a tree with minimum weight containing all vertices from *S*



< 行い

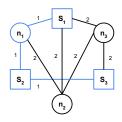
B> B

Context

- (Static) graph G = (V, E)
- Edge weight $w_{(i,j)} \ge 0 \ \forall (i,j) \in E$
- Terminal set $S \subset V$

Goal

• Find a tree with minimum weight containing all vertices from *S*



< 行い

B> B

Context

- (Static) graph G = (V, E)
- Edge weight $w_{(i,j)} \ge 0 \ \forall (i,j) \in E$
- Terminal set $S \subset V$

Goal

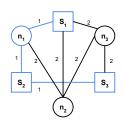
• Find a tree with minimum weight containing all vertices from *S*

Decision problem

• Is there a subgraph of G containing all vertices from S with total weight lower to K?

Complexity proof

- NP-complete
- Polynomial transformation from *exact cover by 3-sets*



Context

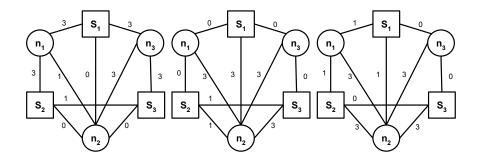
- Dynamic graph: G = (V, E)
- Study interval of G: $\mathcal{T} = \{1, \dots, T\}$
- Edges have time-dependent weight: $w_{(i,j),t} \ge 0 \ \forall (i,j) \in E, t \in T$
- Terminal set $S \subset V$

Questions

- What is a Steiner Tree in a dynamic graph ?
 - A "dynamic tree" containing all vertices of S with minimum total weight on $\ensuremath{\mathcal{T}}$
- How is that tree ?
- Can special cases be identified ?

Possibility 1 : Fully Connected Set

- Find $V' \subset V$ such that $S \subset V'$
- Find spanning tree of V' of minimum weight

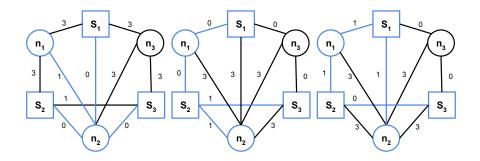


< (T) >

э

Possibility 1 : Fully Connected Set

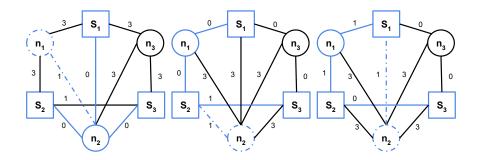
- Find $V' \subset V$ such that $S \subset V'$
- Find spanning tree of V' of minimum weight



< A

Possibility 1 : Fully Connected Set

- Find $V' \subset V$ such that $S \subset V'$
- Find spanning tree of V' of minimum weight

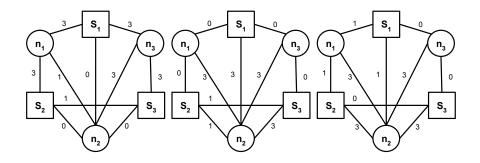


Problem

• As long as the terminals are connected, what is the point of connecting V'?

Possibility 2: Partially connected Set

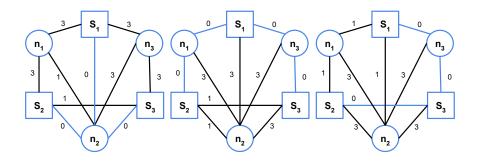
- Find $V' \subset V$ such that $S \subset V'$
- Minimize the weight of edges connecting S



< 行い

Possibility 2: Partially connected Set

- Find $V' \subset V$ such that $S \subset V'$
- Minimize the weight of edges connecting S



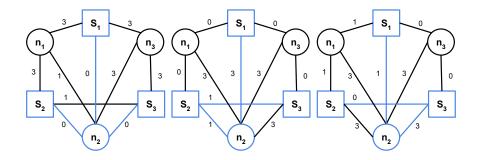
Problem

• Take V' = V and look for Steiner tree at each time step ignoring vertices from $V' \setminus S$

Goal

Find V' with $S \subset V' \subset V$ and $E'_t \subset E_t \ \forall t \leqslant T$ such that

- All vertices of S in same connected component in $G'_t = (V', E'_t)$
- Cardinality of V' is minimum
- $\sum_{e} \sum_{t} w_{e'_t}$ with $e'_t \in E'_t$



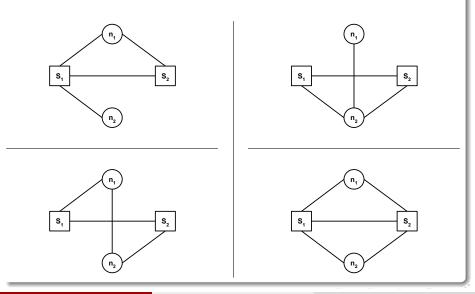
A (1) > A (1) > A

Definition

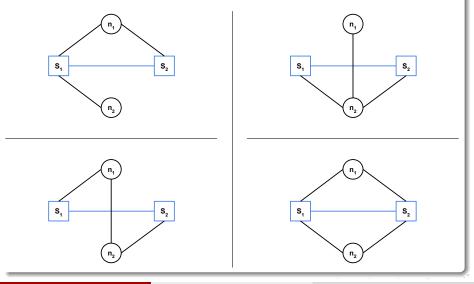
- No weight on edges
- |S| = 2: Connect optimally two vertices
- Minimize number of vertices keeping the terminals connected

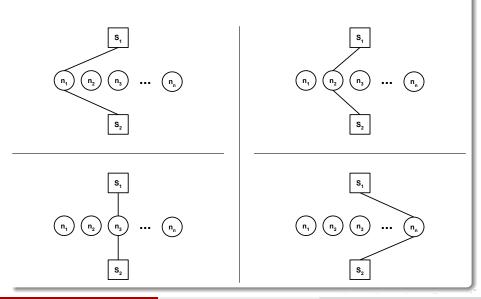
Remarks

- Polynomial in static graphs
- NP-complete on dynamic graphs

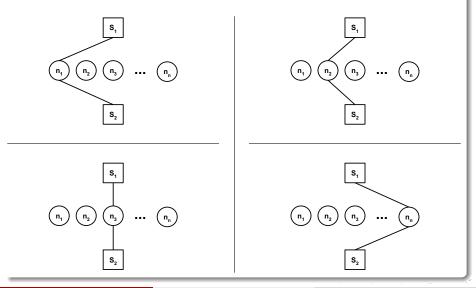


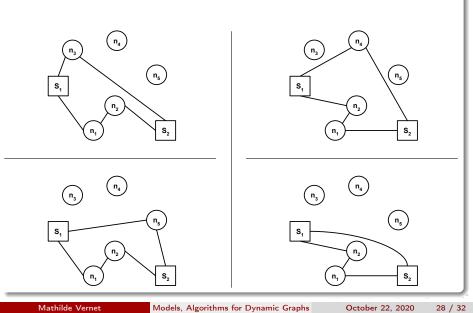
No extra vertex is necessary

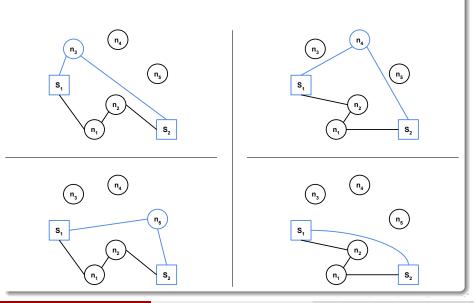




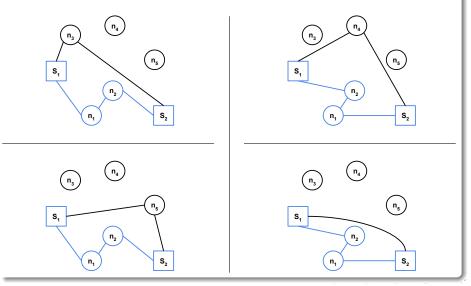
All vertices of the graph are necessary







The shortest path is not a good idea



NP-completeness proof

• Polynomial transformation from the Vertex Cover Problem

Reminder: Vertex Cover

• Graph
$$G = (V, E)$$

• Vertex Cover Set $V_c \subset V$ such that $\forall (u,v) \in E$, $u \in V_c$ or $v \in V_c$

For a given integer $k \ge 0$, is there a set V_c of size k?

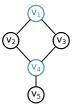
Transformation

- $\forall u \in V$, there is a vertex u in the dynamic graph G^{DYN}
- G^{DYN} has two extra vertices a and b
- $\forall e = (u, v) \in E$, there is a time step i_e in G^{DYN} and $G_{i_e}^{DYN}$ has 4 edges; (a, u), (u, b), (a, v), (v, b)

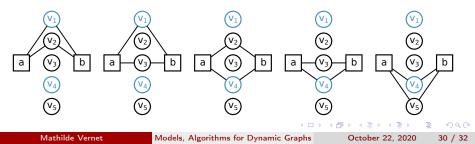
・ 伺 ト ・ ヨ ト ・ ヨ ト

Example of transformation

Vertex Cover instance:



Corresponding instance on dynamic graph:



2) Persistent connected components

《曰》 《聞》 《臣》 《臣》 三臣

3 Steiner problem

- Summary
- Future work

Minimum cost flow:

- Time expanded graph not used
- Polynomial optimal algorithm
- Theoretically and practically efficient
- Vernet et al. 2020 in DAM

Persistent Connected Components

- Extension of connected components to dynamic graphs
- Polynomial online and optimal algorithm to obtain dominant PCCs
- Definition of PCC extended to:
 - Directed graphs, eternal PCC, interrupted components
- Under review (Vernet, Pigné, and Sanlaville 2020)

Maximum flow:

- Look for new method without time expanded graph
- Bound on maximum flow value

Steiner problem

- Extension of Steiner Problem to dynamic graphs
- Special case proven to be NP-complete
- Working paper (Balev et al. 2020)

October 22, 2020

- ∢ ≣ →

Future work

General questions

- Formal problem classification
 - from problem definition point of view
 - from the algorithmic point of view

Steiner problem

- Exact algorithms efficient in specific cases
- Approximation algorithms

Connected components

- Persistent connected components
 - Enumerative algorithm for maximal PCCs
- Eternal connected components
 - Experimental analysis of the algorithm

Maximum flow

• How tight is our bound ?

Thank you for your attention

Mathilde Vernet

Supervised by: Yoann Pigné, Eric Sanlaville Collaboration: Stefan Balev, Maciej Drozdowski, Frédéric Guinand mathilde.vernet@univ-lehavre.fr

> LITIS, team RI2C Université Le Havre Normandie

> > LIP6 Seminar Paris October 22, 2020

- Akrida, Eleni C and Paul G Spirakis (2019). "On Verifying and Maintaining Connectivity of Interval Temporal Networks". In: *Parallel Processing Letters* 29.02, p. 1950009.
- Balev, Stefan et al. (2020). "On the complexity of the Dynamic Steiner Tree Problem". Rapport interne.
- Bhadra, Sandeep and Afonso Ferreira (2003). "Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks". In: *International Conference on Ad-Hoc Networks and Wireless*. Springer, pp. 259–270.
- Casteigts, Arnaud et al. (2015). "Efficiently Testing *T*-Interval Connectivity in Dynamic Graphs". In: *International Conference on Algorithms and Complexity*. Springer, pp. 89–100.
- Gómez-Calzado, Carlos et al. (2015). "A connectivity model for agreement in dynamic systems". In: *European Conference on Parallel Processing*. Springer, pp. 333–345.

Huyghues-Despointes, Charles, Binh-Minh Bui-Xuan, and
Clémence Magnien (2016). "Forte Δ-connexité dans les flots de liens".
In: ALGOTEL 2016-18èmes Rencontres Francophones sur les Aspects
Algorithmiques des Télécommunications.

Vernet, Mathilde, Yoann Pigné, and Eric Sanlaville (2020). "A Study of Connectivity on Dynamic Graphs: Computing Persistent Connected Components". Article soumis. URL:

https://hal.archives-ouvertes.fr/hal-02473325.

Vernet, Mathilde et al. (2020). "A theoretical and experimental study of a new algorithm for minimum cost flow in dynamic graphs". In: *Discrete Applied Mathematics*.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで