Link weights recovery in heterogeneous information networks

Hông-Lan Botterman, Robin Lamarche-Perrin

In Computational Social Network, 8 (15), 2021

Socio-technical systems usually consists of many intertwined networks, each connecting different types of objects (or actors) through a variety of means. As these networks are co-dependent, one can take advantage of this entangled structure to study interaction patterns in a particular network from the information provided by other related networks. A method is hence proposed and tested to recover the weights of missing or unobserved links in heterogeneous information networks (HIN) – abstract representations of systems composed of multiple types of entities and their relations. Given a pair of nodes in a HIN, this work aims at recovering the exact weight of the incident link to these two nodes, knowing some other links present in the HIN. To do so, probability distributions resulting from path-constrained random walks i.e., random walks where the walker is forced to follow only a specific sequence of node types and edge types, capable to capture specific semantics and commonly called a meta-path, are combined in a linearly fashion in order to approximate the desired result. This method is general enough to compute the link weight between any types of nodes. Experiments on Twitter and bibliographic data show the applicability of the method.

Download

[Re] Speedup Graph Processing by Graph Ordering

Fabrice Lécuyer, Maximilien Danisch, Lionel Tabourier

In ReScience C 7, 1 (3), 2021

Cache systems keep data close to the processor to access it faster than main memory would. Graph algorithms benefit from this when a cache line contains highly related nodes. Hao Wei extitet al. propose to reorder the nodes of a graph to optimise the proximity of nodes on a cache line. Their contribution, Gorder, creates such an ordering with a greedy procedure. In this replication, we implement ten different orderings and measure the execution time of nine standard graph algorithms on nine real-world datasets. We monitor cache performances to show that runtime variations are caused by cache management. We confirm that Gorder leads to the fastest execution in most cases due to cache-miss reductions. Our results show that simpler procedures are yet almost as efficient and much quicker to compute. This replication validates the initial results but highlights that generating a complex ordering like Gorder is time-consuming.

Download

Ranking Online Social Users by their Influence

Anastasios Giovanidis, Bruno Baynat, Clémence Magnien, and Antoine Vendeville

IEEE Transactions on Networking, 2021

We introduce an original mathematical model to analyse the diffusion of posts within a generic online social platform. The main novelty is that each user is not simply considered as a node on the social graph, but is further equipped with his/her own Wall and Newsfeed, and has his/her own individual self-posting and re-posting activity. As a main result using our developed model, we derive in closed form the probabilities that posts originating from a given user are found on the Wall and Newsfeed of any other. These are the solution of a linear system of equations, which can be resolved iteratively. In fact, our model is very flexible with respect to the modelling assumptions. Using the probabilities derived from the solution, we define a new measure of per-user influence over the entire network, the Ψ-score, which combines the user position on the graph with user (re-)posting activity. In the homogeneous case where all users (re-)post with the same rate, it is shown that a variant of the Ψ-score is equal to PageRank. Furthermore, we compare the new model and its Ψ-score against the empirical influence measured from very large data traces (Twitter, Weibo). The results illustrate that these new tools can accurately rank influencers with asymmetric (re-)posting activity for such real world applications.

Temporal Connectivity and Path Computation for Stream Graph

Léo Rannou

EDITE de Paris, LIP6, Thalès SIX – ThereSIS

Keywords:stream graphs, temporal networks, time-varying graphs, dynamic graphs,dynamic networks, interactions, graphs, networks, connected components, temporalpaths, algorithms, link streamsFor a long time, structured data and temporal data have been analysed separately. Many real world complex networks have a temporal dimension, such as contacts between individuals or financial transactions. Graph theory provides a wide set of tools to model and analyze static connections between entities. Unfortunately, this approach does not take into account the temporal nature of interactions.  Stream graph theory is a formalism to model highly dynamic networks in which nodes and/or links arrive and/or leave over time.  The number of applications of stream graph theory has risen rapidly, along with the number of theoretical concepts and algorithms to compute them. Several theoretical concepts such as connected components and temporal paths in stream graphs were defined recently, but no algorithm was provided to compute them.  Moreover, the algorithmic complexities of these problems are unknown, as well as the insight they may shed on real-world stream graphs of interest. In this thesis, we present several solutions to compute notions of connectivity and path concepts in stream graphs. We also present alternative representations – data structures designed to facilitate specific computations – of stream graphs. We provide implementations and experimentally compare our methods in a wide range of practical cases. We show that these concepts indeed give much insight on features of large-scale datasets. Straph, a python library, was developed in order to have a reliable library for manipulating, analysing and visualising stream graphs, to design algorithms and models, and to rapidly evaluate them.

Download

Measuring Diversity in Heterogeneous Information Networks

Pedro Ramaciotti Morales , Robin Lamarche-Perrin, Raphaël Fournier-S’Niehotta, Rémy Poulain, Lionel Tabourier,  Fabien Tarissan

In Theoretical Computer Science, 859, pp 80-115, 2021 

Diversity is a concept relevant to numerous domains of research varying from ecology, to information theory, andto economics, to cite a few. It is a notion that is steadily gaining attention in the information retrieval, networkanalysis, and artificial neural networks communities. While the use of diversity measures in network-structured datacounts a growing number of applications, no clear and comprehensive description is available for the different waysin which diversities can be measured. In this article, we develop a formal framework for the application of a largefamily of diversity measures to heterogeneous information networks (HINs), a flexible, widely-used network dataformalism. This extends the application of diversity measures, from systems of classifications and apportionments,to more complex relations that can be better modeled by networks. In doing so, we not only provide an effectiveorganization of multiple practices from different domains, but also unearth new observables in systems modeled byheterogeneous information networks. We illustrate the pertinence of our approach by developing different applicationsrelated to various domains concerned by both diversity and networks. In particular, we illustrate the usefulness of thesenew proposed observables in the domains of recommender systems and social media studies, among other fields.

Download

How to Teach the Undecidability of Malware Detection Problem and Halting Problem

Matthieu Journault, Pascal Lafourcade, Malika More, Rémy Poulain, Léo Robert

WISE13: The 13th World Conference on Information Security Education, 2020

Malware detection is a term that is often associated to Computer Science Security. The underlying main problem is called Virus detection and consists in answering the following question: Is there a program that can always decide if a program is a virus or not? On the other hand, the undecidability of some problems is an important notion in Computer Science : an undecidable problem is a problem for which no algorithm exists to solve it. We propose an activity that demonstrates that virus detection is an undecidable problem. Hence we prove that the answer to the above question is no. We follow the proof given by Cohen in his PhD in 1983. The proof is close to the proof given by Turing in 1936 of the undecidability of the Halting problem. We also give an activity to prove the undecidability of the Halting problem. These proofs allow us to introduce two important ways of proving theorems in Computer Science : proof by contradiction and proof by case disjunction. We propose a simple way to present these notions to students using a maze. Our activity is unplugged, i.e. we use only a paper based model of computer, and is designed for high-school students. This is the reason why we use Scratch to write our « programs ».

Download

GraKeL: A Graph Kernel Library in Python

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis, Michalis Vazirgiannis

Journal of Machine Learning Research 21, 2020

The problem of accurately measuring the similarity between graphs is at the core of many applications in a variety of disciplines. Graph kernels have recently emerged as a promising approach to this problem. There are now many kernels, each focusing on different structural aspects of graphs. Here, we present GraKeL, a library that unifies several graph kernels into a common framework. The library is written in Python and adheres to the scikit-learn interface. It is simple to use and can be naturally combined with scikit-learn’s modules to build a complete machine learning pipeline for tasks such as graph classification and clustering. The code is BSD licensed and is available at: https://github.com/ysig/GraKeL

Download

LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding

Ayan Kumar Bhowmick, Koushik Meneni, Maximilien Danisch, Jean-Loup Guillaume and Bivas Mitra

In Proceedings of the 13th ACM International WSDM conference, 2020

Network embedding, that aims to learn low-dimensional vector representation of nodes such that the network structure is preserved, has gained significant research attention in recent years. However, most state-of-the-art network embedding methods are computationally expensive and hence unsuitable for representing nodes in billion-scale networks. In this paper, we present LouvainNE, a hierarchical clustering approach to network embedding. Precisely, we employ Louvain, an extremely fast and accurate community detection method, to build a hierarchy of successively smaller subgraphs. We obtain representations of individual nodes in the original graph at different levels of the hierarchy, then we aggregate these representations to learn the final embedding vectors. Our theoretical analysis shows that our proposed algorithm has quasi-linear run-time and memory complexity. Our extensive experimental evaluation, carried out on multiple real-world networks of different scales, demonstrates both (i) the scalability of our proposed approach that can handle graphs containing tens of billions of edges, as well as (ii) its effectiveness in performing downstream network mining tasks such as network reconstruction and node classification.

Download

KClist++: A Simple Algorithm for Finding k-Clique Densest Subgraphs in Large Graphs

Bintao Sun, Maximilien Danisch, T-H. Hubert Chan and Mauro Sozio

In Proceedings of the VLDB Endowment, 2020

The problem of finding densest subgraphs has received increasing attention in recent years finding applications in biology, finance, as well as social network analysis. The k-clique densest subgraph problem is a generalization of the densest subgraph problem, where the objective is to find a subgraph maximizing the ratio between the number of k-cliques in the subgraph and its number of nodes. It includes as a special case the problem of finding subgraphs with largest average number of triangles (k=3), which plays an important role in social network analysis. Moreover, algorithms that deal with larger values of k can effectively find quasi-cliques. The densest subgraph problem can be solved in polynomial time with algorithms based on maximum flow, linear programming or a recent approach based on convex optimization. In particular, the latter approach can scale to graphs containing tens of billions of edges. While finding a densest subgraph in large graphs is no longer a bottleneck, the k-clique densest subgraph remains challenging even when k=3. Our work aims at developing near-optimal and exact algorithms for the k-clique densest subgraph problem on large real-world graphs. We give a surprisingly simple procedure that can be employed to find the maximal k-clique densest subgraph in large-real world graphs. By leveraging appealing properties of existing results, we combine it with a recent approach for listing all k-cliques in a graph and a sampling scheme, obtaining the state-of-the-art approaches for the aforementioned problem. Our theoretical results are complemented with an extensive experimental evaluation showing the effectiveness of our approach in large real-world graphs.

Download

Strongly Connected Components in StreamGraphs: Computation and Experimentations

Léo Rannou, Clémence Magnien, and Matthieu Latapy

In Proceedings of the 9th International Conference on Complex Networks and their Applications, 2020

Stream graphs model highly dynamic networks in which nodes and/or links arrive and/or leave over time. Strongly connected components in stream graphs were defined recently, but no algorithm was provided to compute them. We present here several solutions with polynomial time and space complexities, each with its own strengths and weaknesses. We provide an implementation and experimentally compare the algorithms in a wide variety of practical cases. In addition, we propose an approximation scheme that significantly reduces computation costs, and gives even more insight on the dataset.

Download

Testing the Impact of Semantics and Structure on Recommendation Accuracy and Diversity

Pedro Ramaciotti Morales, Lionel Tabourier, Raphaël Fournier-S’niehotta

In Proceedings of the IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM), 2020 (virtual)

The Heterogeneous Information Network (HIN) formalism is very flexible and enables complex recommendations models. We evaluate the effect of different parts of a HIN on the accuracy and the diversity of recommendations, then investigate if these effects are only due to the semantic content encoded in the network. We use recently-proposed diversity measures which are based on the network structure and better suited to the HIN formalism. Finally, we randomly shuffle the edges of some parts of the HIN, to empty the network from its semantic content, while leaving its structure relatively unaffected. We show that the semantic content encoded in the network data has a limited importance for the performance of a recommender system and that structure is crucial.

Download

Finding Top-k Nodes for Temporal Closeness in Large Temporal Graphs

Pierluigi Crescenzi, Clémence Magnien and Andrea Marino

In Algorithms, 13 (9), 211, 2020

The harmonic closeness centrality measure associates, to each node of a graph, the average of the inverse of its distances from all the other nodes (by assuming that unreachable nodes are at infinite distance). This notion has been adapted to temporal graphs (that is, graphs in which edges can appear and disappear during time) and in this paper we address the question of finding the top-k nodes for this metric. Computing the temporal closeness for one node can be done in O(m) time, where m is the number of temporal edges. Therefore computing exactly the closeness for all nodes, in order to find the ones with top closeness, would require O(nm) time, where n is the number of nodes. This time complexity is intractable for large temporal graphs. Instead, we show how this measure can be efficiently approximated by using a “backward” temporal breadth-first search algorithm and a classical sampling technique. Our experimental results show that the approximation is excellent for nodes with high closeness, allowing us to detect them in practice in a fraction of the time needed for computing the exact closeness of all nodes. We validate our approach with an extensive set of experiments.

Download

Do you trade with your friends or become friends with your trading partners? A case study in the G1 cryptocurrency

Nicolas Gensollen, Matthieu Latapy

In Applied Network Science, 5 (25), 2020

We study the interplay between social ties and financial transactions made through a recent cryptocurrency called G1. It has the particularity of combining the usual transaction record with a reliable network of identified users. This gives the opportunity to observe exactly who sent money to whom over a social network. This social network is a key piece of this cryptocurrency, which therefore puts much effort in ensuring that nodes correspond to unique, well identified, real living human users, linked together only if they met at least once in real world. Using this data, we study how social ties impact the structure of transactions and conversely. We show that users make transactions almost exclusively with people they are connected with in the social network. Instead, they tend to build social connections with people they will never make transactions with.

Download

Investigating the Lack of Diversity in User Behavior: the Case of Musical Content on Online Platforms.

Rémy Poulain, Fabien Tarissan

In Information Processing & Management, 57(2), Elsevier, 2020

Whether to deal with issues related to information ranking (e.g. search engines) or content recommendation (on social networks, for instance), algorithms are at the core of processes that select which information is made visible. Such algorithmic choices have a strong impact on users’ activity de facto, and therefore on their access to information. This raises the question of how to measure the quality of the choices algorithms make and their impact on users. As a first step in that direction, this paper presents a framework with which to analyze the diversity of information accessed by users in the context of musical content. The approach adopted centers on the representation of user activity through a tripartite graph that maps users to products and products to categories. In turn, conducting random walks in this structure makes it possible to analyze how categories catch users’ attention and how this attention is distributed. Building upon this distribution, we propose a new index referred to as the (calibrated) herfindahl diversity, which is aimed at quantifying the extent to which this distribution is diverse and representative of existing categories. To the best of our knowledge, this paper is the first to connect the output of random walks on graphs with diversity indexes. We demonstrate the benefit of such an approach by applying our index to two datasets that record user activity on online platforms involving musical content. The results are threefold. First, we show that our index can discriminate between different user behaviors. Second, we shed some light on a saturation phenomenon in the diversity of users’ attention. Finally, we show that the lack of diversity observed in the datasets derives from exogenous factors related to the heterogeneous popularity of music styles, as opposed to internal factors such as recurrent user behaviors.

Predicting interactions between individuals with structural and dynamical information

Thibaud Arnoux, Lionel Tabourier, Matthieu Latapy

In Journal of Interdisciplinary Methodologies and Issues in Sciences, 2019

Capturing both structural and temporal features of interactions is crucial in many real-world situations like studies of contact between individuals. Using the link stream formalism to model data, we address here the activity prediction problem: we predict the number of links that will occur during a given time period between each pair of nodes. To do this, we take benefit from the temporal and structural information captured by link streams. We design and implement a modular supervised learning method to make prediction, and we study the key elements influencing its performances. We then introduce classes of node pairs, which improves prediction quality and increases diversity

Weighted, Bipartite, or Directed Stream Graphs for the Modeling of Temporal Networks

Matthieu Latapy, Clémence Magnien, Tiphaine Viard

In Temporal Network Theory, Holme P., Saramäki J. (eds), Computational Social Sciences, Springer, 2019

We recently introduced a formalism for the modeling of temporal networks, that we call stream graphs. It emphasizes the streaming nature of data and allows rigorous definitions of many important concepts generalizing classical graphs. This includes in particular size, density, clique, neighborhood, degree, clustering coefficient, and transitivity. In this contribution, we show that, like graphs, stream graphs may be extended to cope with bipartite structures, with node and link weights, or with link directions. We review the main bipartite, weighted or directed graph concepts proposed in the literature, we generalize them to the cases of bipartite, weighted, or directed stream graphs, and we show that obtained concepts are consistent with graph and stream graph ones. This provides a formal ground for an accurate modeling of the many temporal networks that have one or several of these features.

Role of the Website Structure in the Diversity of Browsing Behaviors

Pedro Ramaciotti Morales, Lionel Tabourier, Sylvain Ung, and Christophe Prieur.

In Proceedings of the 30th ACM Conference on Hypertext and Social Media, pp. 133-142. ACM, 2019.

The quantitative measurement of the diversity of information consumption has emerged as a prominent tool in the examination of relevant phenomena such as filter bubbles. This paper proposes an analysis of the diversity of the navigation of users inside a website through the analysis of server log files. The methodology, guided and illustrated by a case study, but easily applicable to other cases, establishes relations between types of users’ behavior, site structure, and diversity of web browsing. Using the navigation paths of sessions reconstructed from the log file, the proposed methodology offers three main insights: 1) it reveals diversification patterns associated with the page network structure, 2) it relates human browsing characteristics (such as multi-tabbing or click frequency) with the degree of diversity, and 3) it helps identifying diversification patterns specific to subsets of users. These results are in turn useful in the analysis of recommender systems and in the design of websites when there are diversity-related goals or constrains.

Download

Approximating the Temporal Neighbourhood Function of Large Temporal Graphs

Pierluigi Crescenzi, Clémence Magnien and Andrea Marino

Algorithms 2019, 12(10), 211 (Special Issue Algorithm Engineering: Towards Practically Efficient Solutions to Combinatorial Problems)

Temporal networks are graphs in which edges have temporal labels, specifying their starting times and their traversal times. Several notions of distances between two nodes in a temporal network can be analyzed, by referring, for example, to the earliest arrival time or to the latest starting time of a temporal path connecting the two nodes. In this paper we mostly refer to the notion of temporal reachability by using the earliest arrival time. In particular, we first show how the sketch approach, which has been already used in the case of classical graphs, can be applied to the case of temporal networks in order to approximately compute the sizes of the temporal cones of a temporal network. By making use of this approach, we subsequently show how we can approximate the temporal neighborhood function (that is, the number of pairs of nodes reachable from one another in a given time interval) of large temporal networks in a few seconds. Finally, we apply our algorithm in order to analyze and compare the behavior of 25 public transportation temporal networks. Our results can be easily adapted to the case in which we want to refer to the notion of distance based on the latest starting time.

Download

Qualified personalities: Sociology of the French Media Government from Cinema to the Digital Era

Olivier Alexandre

Chapter in Reconceptualising Film Policies, 2017

The nature of French audiovisual sector is determined by a layering of policies, created at various periods of time. A public policy system has been continuously developed and adapted since the 1950s, mostly focusing on the support to and defence of the artistic and moral quality of film and television programmes. This institutional system has relied on ‘qualified personalities’ emanating from diverse sectors such as cinema, television, arts, culture, education, administration and the political world. The chapter presents a sociological analysis of the French model matrix. It focuses on the revolving-door system and the policy-making personnel that have enforced a stable regulatory frame for audiovisual industries. The rise of digital operators and executives – more internationalised and engineering-solution oriented – is currently destabilising this ecosystem. There is an important generational, cultural, ideological and linguistic gap between the French ‘Media government’ and the management teams of the new players.

Download