Main author and presenter: Leo Cazenille
Other authors: Nicolas Lobato-Dauzier, Alessia Loi, Mika Ito, Olivier Marchal, Nathanael Aubert-Kato, Nicolas Bredeche, Anthony J. Genot
April 18th, 2023, 11am
Room: 24-25/405
Biological swarms have showcased their extraordinary capabilities in tackling geometric challenges by employing limited perception and mobility. They achieve this feat by internally diffusing information to bridge the gap between local and global scales, ultimately facilitating collective consensus and decision-making, even when individual agents only have access to local information. In this study, we strive to adapt this paradigm to robotic swarms, which consist of small robots with constrained sensing and computational abilities.
Our bio-inspired approach leverages spectral shape analysis, enabling the robotic swarms to identify the shape of a given arena. By estimating the second eigenvalue of the Laplacian collectively through information exchange, the robots can effectively obtain a fingerprint of the arena’s geometry. This metric, known as algebraic connectivity, proves invaluable in the context of swarm-based problem-solving and coordination.
To evaluate the performance of our proposed method, we conducted experiments involving 25 real robots as well as simulations using Kilombo, a state-of-the-art simulator for kilobots. Our objective was to assess the efficacy of our approach by attempting to classify a set of 8 shapes with varying geometric properties. The results of these experiments and simulations indicate that the diffusion-based spectral analysis can indeed empower robotic swarms to accurately sense and classify the geometry of their environment.
In conclusion, our innovative approach offers a promising avenue for advancing swarm-based problem-solving and coordination by drawing inspiration from the remarkable capabilities of biological swarms in addressing geometric challenges with limited perception and mobility.
(Presentation in French with slides in English).