Culture et (in)dépendance – Les enjeux de lindépendance dans les industries culturelles

Olivier Alexandre, Sophie Noël and Aurélie Pinto

ICCA – Industries culturelles, création, numérique, 2017

« Indépendant », « alternatif », « indie », « underground », « avant-garde », « de création »… Depuis les années 1970, la revendication d’indépendance a pris une importance grandissante dans les univers de production culturelle. Qu’elle se rapporte à des contenus, des méthodes de travail ou des dispositifs de médiation, cette revendication propose une alternative à la domination des groupes et des productions mainstream. Son succès conduit cependant à s’interroger sur la cohérence même d’une notion progressivement transformée en label de qualité. À travers douze contributions traitant de l’édition, du cinéma, de la musique, des médias et de la vulgarisation scientifique, cet ouvrage montre en quoi l’indépendance relève d’une construction sociale tributaire de son environnement institutionnel et marchand. Des ondes aux écrans, de l’Europe aux États-Unis, des managers aux artistes, il met en évidence le balancement entre artisanat de création et recherche d’une structuration économique pérenne. En mettant à distance la dénonciation ritualisée de l’hégémonie des majors et autres « grands groupes » et en s’appuyant sur des terrains ancrés dans différents contextes nationaux, ce livre fait le pari d’une approche transversale pour mieux saisir la manière dont l’indépendance irrigue et structure des filières trop souvent envisagées de manière cloisonnée. Il éclaire ainsi une catégorie de référence des industries culturelles paradoxalement peu étudiée par les sciences sociales, et permet de saisir l’évolution des rapports de force dans des secteurs confrontés à une rationalisation économique et à des mutations technologiques de grande ampleur.

Using network analysis to identify generic legal trends in European Human Rights Law

Henrik Palmer Olsen

Jeudi 16 Novembre 2017, 14h, salle 26-00/332, Campus Jussieu

This presentation explores how the complete collected set of judgments from the European Court of Human Rights can be presented as a network of case to references, and how this network can be analysed via the use of already known network analysis approaches. The presentation will first show how network analysis can be used to calculate the main legal content of a case (i.e. which legal right the case is mostly concerned with and for which the case is therefore a precedent). It will then move on to showing how, Page-rank of a case in the total network of cases can be compared to the Page-rank of the same case in its local network and how this comparison can be used to further calculate generic centrality in the overall network. In using this novel approach, it is possible to identify cases that have strong precedent, not for a specific right, but for more generic legal content that the Court uses in dealing with applications from citizens.

Tracking bitcoin users activity using community detection on a network of weak signals.

Rémy Cazabet, Rym Baccour and Matthieu Latapy

The 6th International Conference on Complex Networks and Their Applications, Nov 2017, Lyon, France.

Abstract Bitcoin is a cryptocurrency attracting a lot of interest both from the gen- eral public and researchers. There is an ongoing debate on the question of users? anonymity: while the Bitcoin protocol has been designed to ensure that the activ- ity of individual users could not be tracked, some methods have been proposed to partially bypass this limitation. In this article, we show how the Bitcoin transac- tion network can be studied using complex networks analysis techniques, and in particular how community detection can be efficiently used to re-identify multiple addresses belonging to a same user.

Download

Dynamic Community Detection

Cazabet, Rémy, Giulio Rossetti, and Fredéric Amblard. 

Encyclopedia of Social Network Analysis and Mining, 2017

Impact of temporal features of cattle exchanges on the size and speed of epidemic outbreaks

Aurore Payen, Lionel Tabourier and Matthieu Latapy

ICCSA 2017, Part II, LNCS 10405 proceedings

Databases recording cattle exchanges offer unique opportunities for a better understanding and fighting of disease spreading. Most studies model contacts with (sequences of) networks, but this approach neglects important dynamical features of exchanges, that are known to play a key role in spreading. We use here a fully dynamic modeling of contacts and empirically compare the spreading outbreaks obtained with it to the ones obtained with network approaches. We show that neglecting time information leads to significant over-estimates of actual sizes of spreading cascades, and that these sizes are much more heterogeneous than generally assumed. Our approach also makes it possible to study the speed of spreading, and we show that the observed speeds vary greatly, even for a same cascade size.

Download

Combining structural and dynamic information to predict activity in link streams

Thibaud Arnoux, Lionel Tabourier and Matthieu Latapy

In proceedings of the International Symposium on Foundations and Applications of Big Data Analytics (FAB), in conjunction with ASONAM, 2017.

A link stream is a sequence of triplets (t, u, v) meaning that nodes u and v have interacted at time t. Capturing both the structural and temporal aspects of interactions is crucial for many real world datasets like contact between individuals. We tackle the issue of activity prediction in link streams, that is to say predicting the number of links occurring during a given period of time and we present a protocol that takes advantage of the temporal and structural information contained in the link stream. We introduce a way to represent the information captured using different features and combine them in a prediction function which is used to evaluate the future activity of links.

Download

Ego-betweenness centrality in link streams

Marwan Ghanem, Florent Coriat and Lionel Tabourier

6th Workshop on Social Network Analysis in Applications (SNAA 2017), in conjunction with ASONAM, 2017.

The ability of a node to relay information in a network is often measured using betweenness centrality. In order to take into account the fact that the role of the nodes vary through time, several adaptations of this concept have been proposed to time- evolving networks. However, these definitions are demanding in terms of computational cost, as they call for the computation of time-ordered paths. We propose a definition of centrality in link streams which is node-centric, in the sense that we only take into account the direct neighbors of a node to compute its centrality. This restriction allows to carry out the computation in a shorter time compared to a case where any couple of nodes in the network should be considered. Tests on empirical data show that this measure is relatively highly correlated to the number of times a node would relay information in a flooding process. We suggest that this is a good indication that this measurement can be of use in practical contexts where a node has a limited knowledge of its environment, such as routing protocols in delay tolerant networks.

Download

Tracking the evolution of temporal patterns of usage in bicycle-Sharing systems using nonnegative matrix factorization on multiple sliding windows

Remy Cazabet, Pablo Jensen, Pierre Borgnat

International Journal of Urban Sciences, 2017, p. 1-15

Bicycle-Sharing Systems (BSS) are growing quickly in popularity all over the world. In this article, we propose a method based on Nonnegative Matrix Factorization to study the typical temporal patterns of usage of the BSS of Lyon, France, by studying logs of rentals. First, we show how this approach allows us to understand the spatial and temporal usage of the system. Second, we show how we can track the evolution of these temporal patterns over several years, and how this information can be used to better understand the BSS, but also changes in the city itself, by considering the stations as social sensors.

Download

Gendarmes, Voleurs et Topologie algébrique

David Ellison

Jeudi 15 Juin 2017 à 11h, Salle 24-25/405, Campus Jussieu

Le jeu du gendarme et du voleur, introduit par Alain Quilliot dans sa thèse en 1978, est un jeu à deux joueurs sur un graphe. Le gendarme commence en choisissant son point de départ sur un sommet du graphe ; puis le voleur choisit le sien. Ensuite, ils se déplacent chacun leur tour le long des arêtes du graphe. La question est de savoir si le gendarme a une stratégie qui lui permet d’attraper le voleur. Dans le cas contraire, la question devient : combien faut-il de gendarmes pour attraper le voleur ? Quilliot a démontré dans sa thèse qu’un seul gendarme suffit à attraper le voleur si et seulement si le graphe est démontable, c’est-à-dire si et seulement si on peut le réduire à un seul sommet en retirant successivement des sommets où le voleur peut être coincé. Il s’ensuit que les graphes démontables correspondent à la classe d’homotopie du point, et que certains invariants homotopiques, comme les groupes d’homologie, permettent de découvrir des propriétés structurelles des graphes où le gendarme peut attraper le voleur.

Community detection in attributed graphs

Christine Largeron

Mardi 25 Avril 2017 à 11h, Salle 24-25/405, Campus Jussieu

A wide variety of applications require data modeled by a graph of interconnected nodes, known as social networks or information networks. When nodes are described by attributes, this is an attributed network.Examples of such networks are citation or collaboration networks or social media. One fundamental property of these networks is that they tend to naturally form communities and, many mining methods have been proposed to identify these communities but these methods are typically basedsolely on relationships between nodes in the graph. This is notably the case of Louvain, a greedy agglomerative clustering method which optimizes the modularity measure. Introduced by Newman, the modularity allows to estimate the quality of a partition butwithout taking into account the attributes associated with the nodes. For this reason, we have designed a complementary measure, based on inertia and specially conceived to evaluate the quality of a partition basedon real attributes describing the vertices. We have also proposed I-Louvain, a method for community detection in attributed graphs where real attributes are associated with the vertices. Our experiments showedthat combining the relational information with the attributes allows to detect the communities more efficiently with poor data.

Structure and dynamics of multiplex networks

Federico Battiston

11 Avril 2017, 11h, Salle 24-25/405

Many real-world complex systems consist of a set of elementary units connected by relationships of different kinds. All such systems are better described in terms of multiplex networks, where the links at each layer represent a different type of interaction between the same set of nodes, rather than in terms of (single-layer) networks. In this talk I will introduce multiplex networks and several metrics to measure multiplexity at different scales. Measures are validated and applied to real-world systems with examples from collaboration networks, terrorist networks and the brain. I will also show how multiplexity can produce the emergence of qualitatively novel dynamical behavior, focusing on the case of social dynamics. Resume I am currently a PostDoc in the Aramis Lab at the Brain & Spine Institute working with Mario Chavez and Fabrizio De Vico Fallani. I am also the Chair of the Young Researchers Network on Complex Systems, the younger branch of the Complex Systems Society. I earned my PhD in applied mathematics from Queen Mary University of London working in the complex systems and networks group of Vito Latora and as a part of the European Project LASAGNE on multilayer networks. Before that, I got an undergraduate and a master degree in theoretical physics from Sapienza University of Rome. You can find more information about me at: http://www.maths.qmul.ac.uk/~battiston/

Contribution à la qualité des informations dans les réseaux sociaux: Identifier et analyser les motifs récurrents pour détecter les phénomènes sociaux

Mezghani Manel

16 Mars 2017 – Salle 24-25/405

Lanalyse des données issues des réseaux sociaux pose des questions au niveau de la qualité des informations (cest à dire des informations identifiées, fiables et exactes) car on y trouve par exemple du spam social et des rumeurs, ce qui accroît la difficulté dobtenir des informations précises et pertinentes. Mon projet de recherche est axé sur la qualité des données dans les réseaux sociaux. Cette direction de recherche est très intéressante car elle touche différents domaines et peut être utile dans beaucoup dapplications. En effet, pouvoir évaluer la qualité de linformation peut être utilisé par exemple pour éliminer des spams/spammeurs, pour éviter danalyser des rumeurs, etc. Ceci permet par exemple davoir un meilleur résultat de recherche, déviter de mauvaises recommandations de produits ou de diffuser une bonne information aux utilisateurs. Une voie pertinente pour contribuer à lamélioration de la qualité de linformation et que je compte explorer est la détection et lanalyse de motifs récurrents des phénomènes sociaux (par exemple: spam, rumeur) au cours du temps dans les graphes de données issus des réseaux sociaux. Ceci permet de filtrer des données erronées et ainsi elles contribuent à fournir des données nettoyées qui peuvent être utilisées dans dautres applications. Ce séminaire sera loccasion de présenter mes travaux de recherche associé à lanalyse des réseaux sociaux; et de discuter de mon projet de recherche.

Time Weight Content-Based Extensions of Temporal Graphs for Personalized Recommendation

Armel Jacques Nzekon Nzeko’o, Maurice Tchuente, Matthieu Latapy

In WEBIST 2017

Recommender systems are an answer to information overload on the web. They filter and present to customer, a small subset of items that he is most likely to be interested in. Since user’s interests may change over time, accurately capturing these dynamics is important, though challenging. The Session-based Temporal Graph (STG) has been proposed by Xiang et al. to provide temporal recommendations by combining long- and short-term preferences. Later, Yu et al. have introduced an extension called Topic-STG, which takes into account topics extracted from tweets’ textual information. Recently, we pushed the idea further and proposed Content-based STG. However, in all these frameworks, the importance of links does not depend on their arrival time, which is a strong limitation: at any given time, purchases made last week should have a greater influence than purchases made a year ago. In this paper, we address this problem by proposing Time Weight Content-based STG, in which we assign a time-decreasing weight to edges. Using Time-Averaged Hit Ratio, we show that this approach outperforms all previous ones in real-world situations.

Download

Using Degree Constrained Gravity Null-Models to understand the structure of journeys networks in Bicycle Sharing Systems

Remy Cazabet, Pierre Borgnat, Pablo jensen

In ESANN 2017

Bicycle Sharing Systems are now ubiquitous in large cities around the world. In most of these systems, journeys’ data can be ex- tracted, providing rich information to better understand it. Recent works have used network based-machine learning, and in particular space-corrected node clustering, to analyse such datasets. In this paper, we show that spatial-null models used in previous methods have a systematic bias, and we propose a degree-contrained null-model to improve the results. We finally apply the proposed method on the BSS of a city.

Download

Enhancing Space-Aware Community Detection Using Degree Constrained Spatial Null Model

Remy Cazabet, Pierre Borgnat, Pablo Jensen

In Complenet 2017

Null models have many applications on networks, from testing the significance of observations to the conception of algorithms such as community detection. They usually preserve some network properties , such as degree distribution. Recently, some null-models have been proposed for spatial networks, and applied to the community detection problem. In this article, we propose a new null-model adapted to spatial networks, that, unlike previous ones, preserves both the spatial structure and the degrees of nodes. We show the efficacy of this null-model in the community detection case both on synthetic and collected networks.

Download

Characterising inter and intra-community interactions in link streams using temporal motifs

Jean Creusefond, Remy Cazabet

In Complenet 2017

The analysis of dynamic networks has received a lot of attention in recent years, thanks to the greater availability of suitable datasets. One way to analyze such dataset is to study temporal motifs in link streams , i.e. sequences of links for which we can assume causality. In this article, we study the relationship between temporal motifs and communities , another important topic of complex networks. Through experiments on several real-world networks, with synthetic and ground truth community partitions, we identify motifs that are overrepresented at the frontier –or inside of– communities.

Download

Rigorous Measurement of the Internet Degree Distribution

Matthieu Latapy, Elie Rotenberg, Christophe Crespelle, Fabien Tarissan

In Complex Systems, volume 26, number 1 (2017)

The degree distribution of the internet, i.e. the fraction of routers with k links for any k, is its most studied property. It has a crucial influence on network robustness, spreading phenomena, and protocol design. In practice, however, this distribution is observed on partial, biased and erroneous maps. This raises serious concerns about the true knowledge we actually have of this key property. Here, we design and run a drastically new measurement approach for the reliable estimation of the degree distribution of the internet, without resorting to any map. It consists in sampling random core routers and precisely estimating their degree with probes sent from many monitors scattered over the internet. Our measurement shows that the true degree distribution significantly differs from classical assumptions: it is heterogeneous but it decreases sharply, in a way incompatible with a heavy-tailed power law.

Download

Un nouvel algorithme de clustering pour la détection danomalies

Damien Nogues

salle 24-25/405 à 11h00

La détection dintrusion est une problématique importante en cyber-sécurité. Cependant, de nombreuses approches classiques utilisent une approche à base de règles. Pour chaque attaque, unesignature de détection est créée. Ces approches ne permettent donc pas de détecter de nouvelles attaques, ou des attaques connues mais modifiées. Pour cette raison, nous nous sommesintéressés aux approches de détection danomalies. Ces méthodes utilisent des techniques dapprentissage non supervisé pour détecter des déviations à la norme. Ainsi, les techniques declustering sont fréquemment utilisées. Mais les algorithmes classiques de clustering, tel que k-means, ne sont pas très adaptés à ce problème. En effet, ces derniers nécessitent souvent de fixera priori le nombre de classes désiré. De plus, ces algorithmes sont en général conçus pour traiter des données quantitatives, ou parfois qualitatives. En détection dintrusions, les données sontsouvent hétérogènes. Nous détaillerons donc un nouveau critère de clustering adapté aux données hétérogènes, ainsi quun algorithme doptimisation de ce critère. Enfin, nous verronscomment il est possible dutiliser la partition obtenue pour effectuer une détection danomalies efficace sur des flux réseaux.

Towards understanding and leveraging the structure of real-world graphs

Maximilien Danisch

Campus Jussieu, Salle 26-00/124 à 11h00

Real-world graphs (a.k.a. complex networks) are ubiquitous: the web, Facebook, Twitter, brain networks, protein interaction networks, etc. Studying these graphs and solving computational problems on them (say maximum clique, partitioning or dense subgraph) has applications in many fields.I will first show that the structure of some real-world graphs is special. In particular, they are not adversarial and some difficult problems (say NP-complete or NP-hard problems) can be solved on some huge real-world graphs (say 2G edges or more).I will then present two works along the lines of « understanding and leveraging the structure of real-world graphs in order to build better algorithms »: (i) Enumerating all k-cliques and (ii) Computing the density-friendly graph decomposition.

Coalition games on interaction graphs

Nicolas Bousquet

15 Novembre 2016, salle 26-00/124

We consider cooperative games where the viability of a coalition is determined by whether or not its members have the ability to communicate amongst themselves. This necessary condition for viability was proposed by Myerson and is modeled via an interaction graph; a coalition S of vertices is then viable if and only if the graph induced graph S is connected. The non-emptiness of the core of a coalition game can be tested by a well-known covering LP. Moreover, the integrality gap of its dual packing LP defines exactly the multiplicative least-core and the relative cost of stability of the coalition game. This gap is upper bounded by the packing-covering ratio which is known to be at most the treewidth of the interaction graph plus one. We examine the packing-covering ratio and integrality gaps of graphical coalition games in more detail. First we introduce a new graph parameter, called the vinewidth (a parameter derived from the treewidth), which characterizes the worst packing-covering ratio. Then we will show that this new parameter correctly evaluates both primal and dual integrality gaps. Joint work with Zhentao Li and Adrian Vetta.