Unsupervised host behavior classification from connection patterns

Pierre Borgnat

04 mars 2010

Slides

Dans un but de classification du trafic émis par des ordinateurs via internet mais aussi de détection des anomalies de trafic, une méthode de caractérisation des communications d’ordinateurs est étudiée. Un espace de représentation des motifs de connexions de chaque ordinateur est étudié en ce qu’il représente le trafic échangé, la dispersion de ce trafic, la connectivité de l’ordinateur. On montrera que cette représentation permet par exemple de quantifier plus finement les graphlets empiriques utilisés par la méthode BLINC (Karagiannis et al. 2005). Cette représentation du trafic échangé permet alors de mettre en place une classification non supervisée du trafic internet par une approches de classification par MST (Minimum Spanning Tree), sur des liens backbones et sans disposer du contenu des paquets ni du trafic bidirectionnel (ici validé sur le trafic backbone d’un lien transpacifique opéré par WIDE, Japon).