

Graph analysis of functional brain networks: theory, applications and issues

Fabrizio DE VICO FALLANI

INRIA Paris-Rocquencourt – ARAMISteam Institut du Cerveau et de la Moelle épinière (ICM) Paris, France

Emergence in connected systems

A graph theoretical approach

Paul Erdos (1913-1996)

Quantifying network properties

Node degree

$$k(i) = \sum_{j=1}^{N} a_{i,j}$$

Global efficiency (1/distance)

$$E_{\text{glo}} = \frac{1}{N(N-1)} \sum_{i,j=1}^{N} \frac{1}{d_{i,j}}$$

Clustering (Local efficiency)

$$E_{loc} = \frac{1}{N} \sum_{i=1}^{N} E_{glob}(i)$$

Universal properties of complex networks

Watts & Strogatz, Science, 1998

Small-world brain networks

Graph analysis of functional brain networks

Inferring connectivity from signals

Functional connectivity

Normalized cross-covariance

Granger-causality (AR modeling)

$$C(x, y) = \frac{\sum_{t=1}^{T} (x(t) - \mu_x)(y(t) - \mu_y)}{\sigma_x \sigma_y}$$

Synchronization (undirected)

Propagation (directed)

Cortical reorganization after stroke

Disability

Motor Imagery

(Pfurtsheller and Neuper, Neurosci Lett, 1997)

Reduced network efficiency and outcome prediction (Macroscale)

De Vico Fallani et al, Neuroimage, 2013

Functional organization of motoneurons (Microscale)

5x

Hierarchical node centrality

Centrality

$$C(i) = k_{out}(i) - k_{in}(i)$$

 $C(i) > 0 \rightarrow$ transmitter $C(i) < 0 \rightarrow$ receiver

De Vico Fallani et al, IEEE TNSRE, 2014

Some open issues

Statistical methods for network clustering

$$\left\{T_{i,1}^{*},\ldots,T_{i,N}^{*}\right\} \approx \text{Multinomial}(k_{i};T_{i,1},\ldots,T_{i,N})$$

R bootstrap replicates (MC sampling)

$$\left\{\mathbf{T}^{*}_{1},...,\mathbf{T}^{*}_{R}\right\} \rightarrow \left\{\mathbf{D}^{*}_{1},...,\mathbf{D}^{*}_{R}\right\} \rightarrow \overline{\mathbf{D}^{*}} = \sum_{r=1}^{R} \mathbf{D}^{*}_{r}$$

Transition matrix T

 $T_{i,j} = C_{i,j} \, / \, k_i \quad \longleftarrow \text{ Node degree}$

Distance matrix D

$$D_{i,j} \cong \sqrt{\sum_{l=1}^{o} \lambda_l^2 [v_l(i) - v_l(j)]^2}$$

Synthetic networks (N=500, 100 iter)

Ongoing work

Multilayer brain networks

Temporal brain networks

Jeremy Guillon, UPMC Phd student

Catalina Obando, INRIA Phd student

https://sites.google.com/site/fr2eborn/

Search this

Home Teams Gallery Events Contact Links Download	Home	Teams	Gallery	Events	Contact	Links	Download
--	------	-------	---------	--------	---------	-------	----------

Articles, Routines, Data, Events, Job offers, ...

@FreebornGroup

Acknowledgement

ARAMIS team (www.aramislab.fr)

- Mario Chavez (PI, CNRS)
- Marie Chupin (PI, CNRS IR)
- Olivier Colliot (PI, CNRS)
- Stanley Durrleman (PI, INRIA)

- Xavier Navarro (Postdoc)
- Soledad Garcia (Postdoc)
- Fanny Grosselin (Ing.)
- Catalina Obando (PhD)
- Jeremy Guillon (PhD)
- Francois Deloche (M1)

- Nathalie George (PI, Centre M/EEG)
- Denis Schwartz (INSERM, Centre M/EEG)
- Laurent Hugheville (IR Centre EEG-MEG)

•

