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Inhomogeneous graphs

“The evolution of graphs may be considered as a rather simplified
model of the evolution of certain communication nets [...]. Of
course, if one aims at describing such a real situation, one should
replace the hypothesis of equiprobability of all connections by some
more realistic hypothesis.”

— Erdés, Rényi (1959)

Probabilistic model introduced by Séderberg, extended by Bollobas, Janson,
Riordan. Enumerative model analyzed by E.d.P. and Ravelomanana.

* The model inputs a parameter R € Sym,(R>o),

® each vertex v receives a color t(v) in {1,...,q},

* each edge (v, w) has a weight Ry(,) ¢(w)-
Inhomogeneous graphs are counted with a weight

weight(G) = H Rt(v),t(w)~
(v,w)€edges(G)
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Probabilistic model introduced by Séderberg, extended by Bollobas, Janson,
Riordan. Enumerative model analyzed by E.d.P. and Ravelomanana.

* The model inputs a parameter R € Sym,(R>o),

® each vertex v receives a color t(v) in {1,...,q},

* each edge (v, w) has a weight Ry(,) ¢(w)-
Inhomogeneous graphs are counted with a weight

Weight(G) = H Rt(v),t(w)~
(v,w)€edges(G)



Example: properly g-colored graphs

A graph is properly g-colored if each vertex has a color
in {1,..., g}, and no edge links two vertices having the same color.

Bijection between inh. graphs and properly g-colored graphs
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Asymptotics for n vertices and m edges
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when m/n has a positive limit. A result already obtained by Wright (1972).
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2-colorable graphs

A 2-colorable graph with ¢ components has 2¢ proper colorations.

Structure of inh. graph — enumeration of 2-colorable graphs.

result already obtained by Pittel and Yeum (2004).



Example: friendship graphs

Each vertex has r hobbies among a set of size s, two vertices can
be linked only if they share at least t hobby.

(r,s,t) =(3,10,1).

R is the adjacency matrix of the complement of the Kneser graph.



Example: systems of 2-equations
Consider a finite set E of triplets from F4, and a system

atXe(11) T bixenzy = c,
dx, ..., xn € Fy, .
dmXe(m,1) + mee(m,Z) = Cm-

The probability of satisfiability is expressed using the enumeration
of inhomogeneous graphs

N

For 2QXorSAT, R is a Hamming-like matrix.



Constraint Satisfaction Problems
A CSP is a set of Boolean functions taking value in a finite set.
An instance is a formula
dx, ..., x0, G2 (Xr(1,1)7 .. 7Xr(1,a1)) A ACp (X,,(,m:]_)7 ... 7Xr(m,am))

A satisfied instance is a pair instance-solution.

Bijection between satisfied instances of CSP with clauses of arity 2,
and inhomogeneous graphs

variable vertex,
constraint edge,
values colors,

number of clauses satisfied R; ;.
by (i,J) or (j, i)



Inhomogeneous hypergraphs

» Each vertex v receives a color t(v) in {1,...,q},
® edges can contain more than 2 vertices,

e the weight of an edge depends of the colors it contains.
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orderings(G) = [{((5,2,3), (4,1),(2,3),(1,5,3),(1,6)),...}],

weight=w2, w2 w

orderings(G
h
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Analytic combinatorics of inhomogeneous hypergraphs

Many parameters: for all t € IN9, weight wz for the edges that
contain t; vertices of type i.

t1 tq
X- X,
E 1 q
Q(X]_, .. 7Xq) = th,‘..,tq 7' 000 7| .
t1! ty

t1,...,tq>0
Miracle: statistics of the model reduced to analytic properties of .

Example: tree with root of type i = root and set of edges with 1
vertex of type / removed and the other replaced by rooted trees.
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Tile) = Y e )5
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Analytic combinatorics of inhomogeneous hypergraphs

Many parameters: for all t € IN9, weight wz for the edges that
contain t; vertices of type i.

o) = 3 wf%.

teNg
Miracle: statistics of the model reduced to analytic properties of .
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vertex of type i/ removed and the other replaced by rooted trees.
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Trees and unicycles

Unrooted trees: Uz) =, Ti+Q(T)— ToQ(T)

Unicycles: V(z) = —3 log (det (Id — diag(T)Ha(T)))
Trees and unicycles: excess k =3 cqpes(le] —1) — n
iy —k
n![zn] U(Z) eV(z) _ n_l U(Z) eV(z) dz
(—k)! 2im | (—k)! it

(plot from Flajolet, Sedgewick 2009)



Asymptotics of all inhomogeneous hypergraphs
Sum of the weights of inhygraphs with n vertices and excess k

D> <§>H (1 + gy tia1) (2) ()

ni+--+ng=n teNg

Approximations: coefficient extraction, Stirling, integral for the sum

~ =\ NP (X) 4z
Ch k b tons e A(x)e dx
x€[0,1]9
where W(x) = 200, W(CR) =14k
i=17 _
and (%) = % (log(7) — log(x)) + &2 — (1 + £) log(().
trees and unicycles bounded excess components giant component
|
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Forthcoming research

Applications will provide new inhygraphs properties to investigate

e structure of graphs with a giant component

generating function of connected graphs with the same density of edges,

e graphs with forbidden subgraphs
satisfiability threshold of 2-SAT,

e data base modelling using inhomogeneous hypergraphs
analysis of data mining algorithms (Peps HYDrATA).



