

Trust-Based Service Discovery in Multi-Relation Social Networks

Joyce El Haddad

PSL, Université Paris-Dauphine, CNRS LAMSADE UMR 7243

Complex Networks Seminar LIP6, UPMC

April 25, 2013

Outline

1 Composition in Web Service Context

2 Trust-Based Service Discovery in MRSN

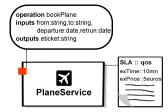
Outline

1 Composition in Web Service Context

2 Trust-Based Service Discovery in MRSN

Web Service Context

- Service-Oriented Architecture (SOA) and Service Computing (SOC) promote the construction of added-value composite systems out of reusable, loosely coupled, distributed entities called services
- Web services possibly described using three level interfaces:
 - Signature (operations)
 - 2 Semantic (capabilities)
 - Son-fuctional (quality of service)



Web Service Composition Goals

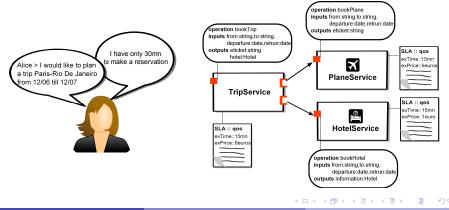
- Composing automatically services from requirements:
 - Satisfy non-functional and semantic user requirements
 - Support different service and user need description levels

Web Service Composition Goals

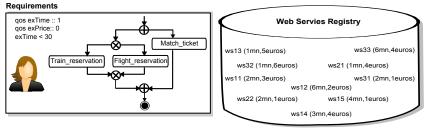
- Composing automatically services from requirements:
 - Satisfy non-functional and semantic user requirements
 - Support different service and user need description levels

Web Service Composition Goals

- Composing automatically services from requirements:
 - Satisfy non-functional and semantic user requirements
 - Support different service and user need description levels



Web Service Composition Process



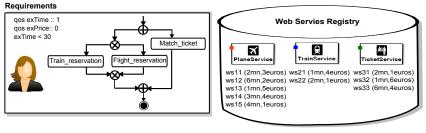
- Discovery: search for sets of semantically similar Web services for tasks of the requirement
 - > Why? semantic of services correspond to the tasks of the requirement
 - How? semantically annotated registry

Example

Reservation of a flight ticket for 2014 FIFA World Cup in Brasil, from 12/06 till 12/07:

- Task (activity): reservation of a ticket on a flight
- Web services? Air France, TAP Portugal, British Airways, ...

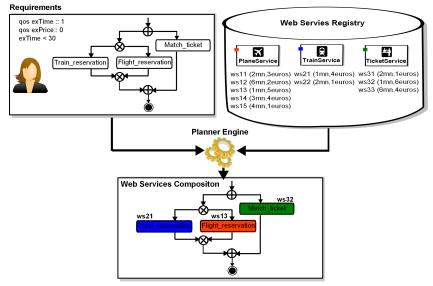
Web Service Composition Process



- Selection: obtain one candidate for each task of the requirement and under precise constraints
 - Why? Because discovered Web services have the same functionality. In our example, several Web services (companies) do the connection Paris-Rio De Janeiro (Air France, TAP, ...)
 - How? Non-functional properties such as Quality of Service (execution duration, availability, ...)

イロト 人間ト イヨト イヨト

Selection Step



Selection Step

- User requirements: workflow (abstract) of capacities + weights over QoS criteria
- Services: functionality (capabilities) + QoS values
- Instantiation of workflow: selection of the best QoS component Web services that satisfies the user's QoS preferences
 - The set of possible execution plans is combinatorial
 - QoS-aware Web service selection problem for workflow realization is a combinatorial optimization problem (MCKP)
 - ► Local optimization [El Haddad et al., ICWS 2008, IEEE TSC 2010]
 - ► Global planning [El Haddad et Spanjaard, ROADEF 2009]
 - ANR JCJC PERSO (2007-2010) (http://pagesperso-systeme.lip6.fr/Pascal.Poizat/ANR_PERSO)

- **1** Registry-based SOA deals only with automatic (Web) services
 - What about human services?

► < ∃ ►</p>

- Registry-based SOA deals only with automatic (Web) services
 What about human services?
- Emergence of Web 2.0 and especially social networks
 - How to take into account the social dimension?

- Registry-based SOA deals only with automatic (Web) services
 What about human services?
- Emergence of Web 2.0 and especially social networks
 - How to take into account the social dimension?
- The quality of Web services is known
 - What about quality of providers?

- Registry-based SOA deals only with automatic (Web) services
 What about human services?
- Emergence of Web 2.0 and especially social networks
 - How to take into account the social dimension?
- The quality of Web services is known
 - What about quality of providers?
- Web services ignore past interactions
 - How to keep track of past interactions?

Goal

Melt social aspect into service discovery and selection

PhD of Amine Louati, co-advised with Suzanne Pinson

Outline

Composition in Web Service Context

2 Trust-Based Service Discovery in MRSN

3 Conclusion

Trust-based Service Discovery Problem

- How to determine trustworthy providers before using their services ?
- What information needs to be captured from service requester's multi relation social network ?

Bansal et al. 2010]

- A trust-based dynamic Web service composition in single-relation social networks
- Trust rating based on centrality measure to select Web services provided by trustworthy providers
- © Trust representation is limited to one measure
- © The multi-relation aspect of social networks is ignored

Trust-based Service Discovery Problem

- How to determine trustworthy providers before using their services ?
- What information needs to be captured from service requester's multi relation social network ?

[Maaradji et al., 2010]

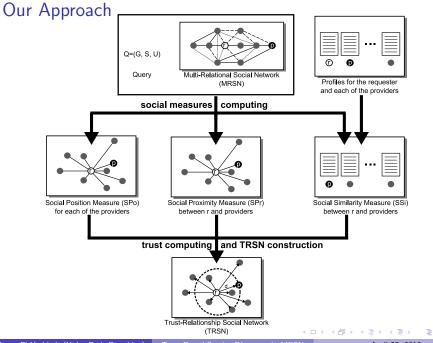
- Composition based on a recommendation confidence in single-relation social networks
- The recommendation confidence is the combination of 3 ratings: number of times a service is used, social proximity between requester and recommender and, expertise of the recommender
- © The approach is limited to automatic services
- © The multi-relation aspect of social networks is ignored

Trust-based Service Discovery Problem

Our contribution

A service provider discovery approach based on social trust measure between service's requester and providers

- Human service as well as automatic service
- Social trust measure computed over the service's requester multi-relation social network
- Social trust measure handles a multi-dimensional rating established from structural as well as semantic information



Joyce El Haddad (Univ. Paris Dauphine) Trust-Based Service Discovery in MRSN

April 25, 2013 15 / 28

Our Model

Multi-Relation Social Network (MRSN)

An undirected graph G = (V, E), where V is the set of nodes (users) and $E = \{E_1, \ldots, E_r\}$ is the set of edges where E_i is the set of edges with respect to the *i*th relationship

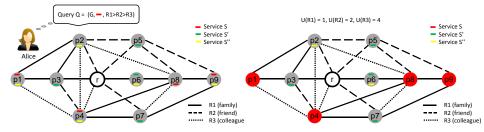
Neighborhood

Given a MRSN graph G, the neighborhood of a node u regarding a type of relationship R_i is defined as $N_{R_i}(u) = \{v \in V \mid (u, v) \in E_i\}$

User query

Q = (G, S, U), where G is a MRSN graph, S a requested service, and U a utility function expressing the service requester preferences over types of relationships

Example



 $Q_{Alice} = (G, babysitting, family \succeq friend \succeq colleague)$

イロン イヨン イヨン イヨン

Step1: Social Measures Computing

Three measures are computed:

- Social Position Measure (SPo)
- Social Proximity Measure (SPr)
- Social Similarity Measure (SSi)
 - Profile Similarity (PS)
 - Neighborhood Similarity (DS)

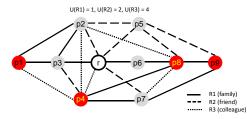
Definition

 $SPo(p) = \sum_{i=1, \forall p' \in V}^{|R|} w_i \cdot a^i(p, p')$ where $a^i(p, p') = 1$ iff p and p' are directly connected with an edge of a relation type R_i , 0 otherwise; $w_i = \frac{1}{U(R_i)}$

Definition

 $SPo(p) = \sum_{i=1, \forall p' \in V}^{|R|} w_i \cdot a^i(p, p')$ where $a^i(p, p') = 1$ iff p and p' are directly connected with an edge of a relation type R_i , 0 otherwise; $w_i = \frac{1}{U(R_i)}$

Example



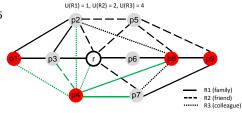
・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

 $SPo(p) = \sum_{i=1,\forall p' \in V}^{|R|} w_i \cdot a^i(p, p')$ where $a^i(p, p') = 1$ iff p and p' are directly connected with an edge of a relation type R_i , 0 otherwise; $w_i = \frac{1}{U(R_i)}$

Example

- $SPo(p_4) = 1 \times 2 + \frac{1}{2} \times 1 + \frac{1}{4} \times 3 = 3.25$



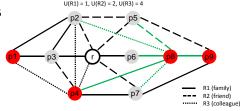
・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

 $SPo(p) = \sum_{i=1,\forall p' \in V}^{|R|} w_i \cdot a^i(p, p')$ where $a^i(p, p') = 1$ iff p and p' are directly connected with an edge of a relation type R_i , 0 otherwise; $w_i = \frac{1}{U(R_i)}$

Example

- $SPo(p_4) = 1 \times 2 + \frac{1}{2} \times 1 + \frac{1}{4} \times 3 = 3.25$
- $SPo(p_8) = 1 \times 3 + \frac{1}{2} \times 1 + \frac{1}{4} \times 2 = 4$



通 ト イヨ ト イヨト

Definition

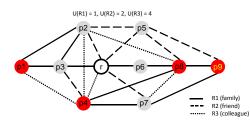
 $SPr(r, p) = \frac{\sum_{i=1}^{k} U((x_i, x_{i+1}))}{k-1}$

3

→

Definition $SPr(r, p) = \frac{\sum_{i=1}^{k} U((x_i, x_{i+1}))}{k-1}$

Example



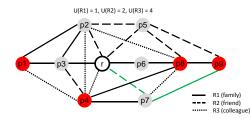
3

• • = • • = •

Definition $SPr(r, p) = \frac{\sum_{i=1}^{k} U((x_i, x_{i+1}))}{k-1}$

Example

-
$$path_1 = (r, p_7, p_9)$$
 and $cost = \frac{3}{2} = 1.5$



April 25, 2013 20 / 28

3

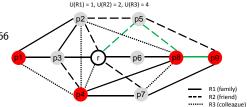
通 ト イヨ ト イヨト

Definition $SPr(r, p) = \frac{\sum_{i=1}^{k} U((x_i, x_{i+1}))}{k-1}$

Example

-
$$path_1 = (r, p_7, p_9)$$
 and $cost = \frac{3}{2} = 1.5$

-
$$path_2 = (r, p_5, p_8, p_9)$$
 and $cost = \frac{5}{3} = 1.66$



• • = • • = •

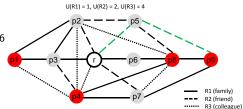
Definition $SPr(r, p) = \frac{\sum_{i=1}^{k} U((x_i, x_{i+1}))}{k-1}$

Example

-
$$path_1 = (r, p_7, p_9)$$
 and $cost = \frac{3}{2} = 1.5$

-
$$path_2 = (r, p_5, p_8, p_9)$$
 and $cost = \frac{5}{3} = 1.66$

-
$$path_3 = (r, p_5, p_9)$$
 and $cost = \frac{4}{2} = 2$

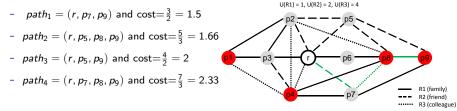


3

• • = • • = •

Definition $SPr(r, p) = \frac{\sum_{i=1}^{k} U((x_i, x_{i+1}))}{k-1}$

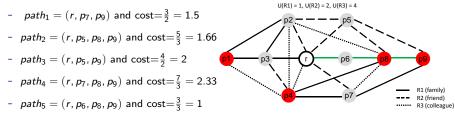
Example



A B F A B F

Definition $SPr(r, p) = \frac{\sum_{i=1}^{k} U((x_i, x_{i+1}))}{k-1}$

Example



A B F A B F

Step1: Social Similarity Measure (SSi)

Definition

 $SSi = DS \times PS$

- 4 ⊒ →

Step1: Social Similarity Measure (SSi)

Definition

 $SSi = DS \times PS$

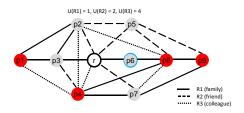
Degree Similarity (DS)

$$DS(r, p) = \sum_{i=1}^{|R|} w_i \cdot \delta^i(r, p) \quad \text{with} \quad \delta^i(r, p) = \frac{1}{1 + dist^i} \text{, } w_i = \frac{1}{U(R_i)}; \text{ and}$$

$$dist^i = \frac{b_i + c_i}{a_i + b_i + c_i} \text{ is the Jaccard distance between } r \text{ and } p \text{ according to the relationship } R_i$$

Example

		family		friend		colleague	
(r,p8	3)	a=1					



Definition

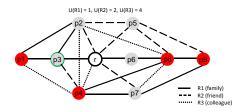
 $SSi = DS \times PS$

Degree Similarity (DS)

$$DS(r, p) = \sum_{i=1}^{|R|} w_i \cdot \delta^i(r, p)$$
 with $\delta^i(r, p) = \frac{1}{1+dist^i}$, $w_i = \frac{1}{U(R_i)}$; and $dist^i = \frac{b_i + c_i}{a_i + b_i + c_i}$ is the Jaccard distance between r and p according to the relationship R_i

Example

Γ		fan	nily	friend		colleague	
	(r,p8)	a=1 b=1					



Definition

 $SSi = DS \times PS$

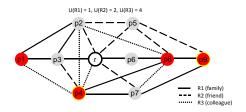
Degree Similarity (DS)

$$DS(r, p) = \sum_{i=1}^{|R|} w_i \cdot \delta^i(r, p) \quad \text{with} \quad \delta^i(r, p) = \frac{1}{1 + dist^i}, w_i = \frac{1}{U(R_i)}; \text{ and}$$

$$dist^i = \frac{b_i + c_i}{a_i + b_i + c_i} \text{ is the Jaccard distance between } r \text{ and } p \text{ according to the relationship } R_i$$

Example

	fan	friend		colleague		
(r,p8)	a=1	b=1				
(r,po)	c=2					



Definition

 $SSi = DS \times PS$

Degree Similarity (DS)

 $DS(r, p) = \sum_{i=1}^{|R|} w_i \cdot \delta^i(r, p) \quad \text{with} \quad \delta^i(r, p) = \frac{1}{1 + dist^i} \text{, } w_i = \frac{1}{U(R_i)}; \text{ and}$ $dist^i = \frac{b_i + c_i}{a_i + b_i + c_i} \text{ is the Jaccard distance between } r \text{ and } p \text{ according to the relationship } R_i$

Example

	family friend colleague				coll	eague	U(R1) = 1, U(R2) = 2, U(R3) = 4
(r,p8)	a=1	b=1	1	2	0	1	p2 p5
(.,,,,,,)	c=2		0		2		
$DS(r, p_8)$	= 1 ×	$\frac{1}{1} + \frac{1}{2}$		$+\frac{1}{4}$	× <u>1</u>	= 0.9	
20(1, 20)	1-1-	$+\frac{3}{4}$ + 2 '	$1+\frac{2}{3}$	' 4 '	$1+\frac{3}{3}$	0.5	p1 p3 f () p6 p8 p9
							R1 (family) R2 (friend)

······ R3 (colleague)

Definition

 $SSi = DS \times PS$

Degree Similarity (DS)

 $DS(r, p) = \sum_{i=1}^{|R|} w_i \cdot \delta^i(r, p) \quad \text{with} \quad \delta^i(r, p) = \frac{1}{1 + dist^i} \text{, } w_i = \frac{1}{U(R_i)}; \text{ and}$ $dist^i = \frac{b_i + c_i}{a_i + b_i + c_i} \text{ is the Jaccard distance between } r \text{ and } p \text{ according to the relationship } R_i$

Example

(r,p8)	family a=1 b=1 c=2	friend 1 2 0	colleague02	U(R1) = 1, U(R2) = 2, U(R3) = 4
DS(r, p ₈)	$= 1 \times \frac{1}{1 + \frac{3}{4}} + \frac{1}{2}$	5	5	
(r,p1	1 1 0	friend 0) 3 1) 0 0	colleague L 0)	P7 — R1 (family) — R2 (friend) — R3 (colleague)
$DS(r, p_1)$	$= 1 \times \frac{1}{1 + \frac{2}{3}} + \frac{1}{2} >$	$<\frac{1}{1+\frac{3}{3}}+\frac{1}{4}$	$ imes rac{1}{1+rac{0}{1}}=1.1$	

Profile Structure (P)

- $P = Item^+$
- Item = $Field^+$
- Field = value*

Profile Similarity (PS)

 $PS(r, p) = \frac{1}{|I|} \times \sum_{i \in I} \beta_i$. $S_i(r, p)$ where I is the set of items, $S_i(r, p)$ is the similarity between the *i*th items of r and p; and β_i is a weight attributed to the item i

Item Similarity (IS)

$$S_i(r, p) = rac{1}{|Fd|} imes \sum_{k=1}^{|Fd|} rac{1}{|\mathcal{V}(Fd_k^r)|} \sum_{l=1}^{|MaxB_k|} bur_l$$

where *FD* is the set of fields, $\mathcal{V}(Fd_k)$ is the set of values taken by a multi-valued field Fd_k , $MaxB_k$ is the set of the $|\mathcal{V}(Fd_k^r)|$ biggest similarity values computed between all possible pairs of $\mathcal{V}(Fd_k^r)$ and $\mathcal{V}(Fd_k^r)$ and, *bur* is the Burnaby similarity

Single-valued Field Similarity

$$Burnaby(X_k, Y_k) = \begin{cases} 1 & \text{if } X_k = Y_k \\ \frac{\sum_{q \in \mathcal{A}_k} 2\log(1-\hat{p}_k(q))}{\log \frac{\hat{p}_k(X_k)\hat{p}_k(Y_k)}{(1-\hat{p}_k(X_k))(1-\hat{p}_k(Y_k))} + \sum_{q \in \mathcal{A}_k} 2\log(1-\hat{p}_k(q))} & \text{otherwise} \end{cases}$$

Example

$$|\mathit{Fd}| =$$
 3, $|\mathcal{V}(\mathit{Fd}_k^r)| = 1$ and $|\mathit{MaxB}_k| = 1$ (for all k)

work	Alice	Bob
employer	society1 (s1)	society1 (s1)
type	consulting (c)	development (d)
post	manager (m)	engineer (en)

 $\Rightarrow \textit{S}_{\textit{work}}(\textit{Alice},\textit{Bob}) = \tfrac{1}{3} \times [\tfrac{1}{1} \times \textit{Burnaby}(\textit{s1},\textit{s1}) + \tfrac{1}{1} \times \textit{Burnaby}(\textit{d},\textit{c}) + \tfrac{1}{1} \times \textit{Burnaby}(\textit{en},\textit{m})]$

work	10 profiles						
employer	society1 (s1)	society2 (s2)	society3 (s3)				
employer	5	3	2				
tuno	development (d)	consulting (c)	audit (a)				
type	3	4	3				
nort	engineer (en)	manager (m)	expert (ex)				
post	3	5	2				

- Burnaby(s1, s1) = 1

$$- Burnaby(d, c) = \frac{2(\log(1-\frac{3}{10})+\log(1-\frac{4}{10})+\log(1-\frac{3}{10}))}{\log(\frac{3}{10}+\frac{1}{10}}) + 2(\log(1-\frac{3}{10})+\log(1-\frac{4}{10})+\log(1-\frac{3}{10}))} = 0.66$$

$$- Burnaby(en, m) = \frac{2(\log(1-\frac{3}{10})+\log(1-\frac{5}{10})+\log(1-\frac{2}{10}))}{\log(\frac{3}{10}+\frac{5}{10})} + 2(\log(1-\frac{3}{10})+\log(1-\frac{2}{10}))} = 0.75$$

Thus, $S_{work}(Alice, Bob) = \frac{1}{3} \times [\frac{1}{1} \times 1 + \frac{1}{1} \times 0, 66 + \frac{1}{1} \times 0, 75] = 0.8$

3

work	10 profiles						
employer	society1 (s1)	society2 (s2)	society3 (s3)				
employer	5	3	2				
tuno	development (d)	consulting (c)	audit (a)				
type	3	4	3				
nort	engineer (en)	manager (m)	expert (ex)				
post	3	5	2				

- Burnaby(s1, s1) = 1

$$- Burnaby(d, c) = \frac{2(\log(1-\frac{3}{10})+\log(1-\frac{4}{10})+\log(1-\frac{3}{10}))}{\log(\frac{3}{10}+\frac{4}{10}}) + 2(\log(1-\frac{3}{10})+\log(1-\frac{4}{10})+\log(1-\frac{3}{10}))} = 0.66$$

$$- Burnaby(en, m) = \frac{2(\log(1-\frac{3}{10})+\log(1-\frac{5}{10})+\log(1-\frac{2}{10}))}{\log(\frac{3}{10}+\frac{5}{10})+2(\log(1-\frac{3}{10})+\log(1-\frac{2}{10}))} = 0.75$$

Thus, $S_{work}(Alice, Bob) = \frac{1}{3} \times [\frac{1}{1} \times 1 + \frac{1}{1} \times 0, 66 + \frac{1}{1} \times 0, 75] = 0.8$ Using the same method:

$$\begin{array}{l} - & S_{gi}(Alice, Bob) = 0.81 \\ - & S_{interest}(Alice, Bob) = 0.17 \\ \Rightarrow PS(Alice, Bob) = & \frac{S_{work}(Alice, Bob) + S_{gi}(Alice, Bob) + S_{interest}(Alice, Bob)}{3} = 0.59 \end{array}$$

→ < ∃ >

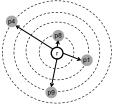
3

Step2: Trust Computing and TRSN Construction

Social Trust (ST)

 $ST(r,p) = \sum_{j=1}^{3} \lambda_j$. $M_{pj}(r,p)$ where $M_p = (SPo(p), SPr(r,p), SSi(r,p))$ and $\lambda_j \in [0,1]$ and $\sum_{j=1}^{3} \lambda_j = 1$.

id	SPo	SPr	PS	DS	SSi	ST
				1.1		
4				0.875		
8				0.966		
9	0.25	1	0.512	0.925	0.513	0.587



Trust-Relationship Social Network (TRSN)

The outcome of the proposed approach is a weighted directed graph modeling a new social network that is service requester centered and based on a single relation, the social trust relation

Outline

Composition in Web Service Context

2 Trust-Based Service Discovery in MRSN

Summing up

Conclusion

- A service provider discovery approach based on social trust measure
- Social trust measure is the aggregation of three measures: social position, social proximity, and social similarity
- Social trust measure take into account both semantic and structural knowledge extracted from the multi-relation social network

Perspectives

- Scalability in big graphs and pertinence on real data sets
- Exploiting feedback and history of service requester's experiences
- Extension of our trust model to perform a trustworthy composition

References

Louati, El Haddad, Pinson

Trust-Based Service Discovery in Multi-relation Social Networks Int. Conf. on Service oriented Computing, 664-671, 2012

Bansal et al.

Trust-based dynamic web service composition using social network analysis IEEE Int. Workshop on Business Applications of Social Network Analysis, 1-8, 2010

Maaradji *et al.*

Towards a social network based approach for services composition IEEE Int. Conference on Communications, 1-5, 2010

Golbeck

Generating predictive movie recommendations from trust in social networks Proceedings of the 4th Int. Conf. on Trust Management, 93-104, 2006

Ziegler, Golbeck

Investigating correlations of trust and interest similarity-do birds of a feather really flock together? Decision Support Systems, 43:460-475, 2007

Ziegler, Lausen

Analyzing correlation between trust and user similarity in online communities Proceedings of Second International Conference on Trust Management, 251-265, 2004

イロト イヨト イヨト