Graph spanners

Laurent Viennot

June 3rd, 2010

From a graph G

Compute a subgraph H spanning G

1/1 3/32

Graph spanner

Definition

A spanner H of a graph G is a subgraph of G with :

- few edges,
- short distances.

Trade-off number of edges vs stretch of distances.

Graph spanner

Definition

A spanner H of a graph G is a subgraph of G with :

- few edges,
- short distances.

Trade-off number of edges vs stretch of distances.

What for?

- Synchronizer [Awerbuch 1985, Peleg & Ullman 1989].
- Implicit pre-processing step of approximate distance oracle computation [Thorup & Zwick 2005].
- By-product of compact routing schemes [Peleg & Upfal 1989].

Definition

A compact routing scheme for a graph G consists in designing routing tables with :

- small size,
- short routes.

Trade-off table size vs stretch of routes.

- Classical routing : one entry per destination (size O(n) per node).
- Grid : use coordinates (size O(1) per node).

Definition

A compact routing scheme for a graph G consists in designing routing tables with :

- small size,
- short routes.

Trade-off table size vs stretch of routes.

- Classical routing : one entry per destination (size O(n) per node).
- Grid : use coordinates (size O(1) per node).

Definition

A compact routing scheme for a graph G consists in designing routing tables with :

- small size,
- short routes.

Trade-off table size vs stretch of routes.

- Classical routing : one entry per destination (size O(n) per node).
- Grid : use coordinates (size O(1) per node).

Definition

A compact routing scheme for a graph G consists in designing routing tables with :

- small size,
- short routes.

Trade-off table size vs stretch of routes.

- Classical routing : one entry per destination (size O(n) per node).
- Grid : use coordinates (size O(1) per node).

BGP entries in the Internet

Internet : use prefix of addresses.

Compact routing theory

- Explicit trade-off between table size and route length [Peleg89], [Gavoille96], [Thorup01],...
- Static centralized solutions : [Thorup01], [Brady06], [Abraham04], [Abraham08],...
- Challenge : dynamic distributed compact routing.

Compact routing theory

- Explicit trade-off between table size and route length [Peleg89], [Gavoille96], [Thorup01],...
- Static centralized solutions : [Thorup01], [Brady06], [Abraham04], [Abraham08],...
- Challenge : dynamic distributed compact routing.

From compact routing to spanner construction

- Take a compact routing scheme for G.
- For each node add to *H* the link to each neighbor listed in its routing table.
- H is a spanner of G.
- Challenge for today : distributed spanner construction.

From compact routing to spanner construction

- Take a compact routing scheme for G.
- For each node add to *H* the link to each neighbor listed in its routing table.
- H is a spanner of G.
- Challenge for today : distributed spanner construction.

From compact routing to spanner construction

- Take a compact routing scheme for G.
- For each node add to *H* the link to each neighbor listed in its routing table.
- H is a spanner of G.
- Challenge for today : distributed spanner construction.

Graph spanner

Definition (Peleg & al. 1987-89)

Given an undirected graph G, a subgraph $H \subseteq G$ is an (a,β) -spanner of G iff for all u, v,

$d_H(u,v) \leq \mathbf{a} \cdot d_G(u,v) + \beta$

- a : multiplicative stretch
- β : additive stretch
- m(H) : size (number of edges)

Graph spanner

Definition (Peleg & al. 1987-89)

Given an undirected graph G, a subgraph $H \subseteq G$ is an (a,β) -spanner of G iff for all u, v,

 $d_{\mathcal{H}}(u,v) \leq \alpha \cdot d_{\mathcal{G}}(u,v) + \beta$

- a : multiplicative stretch
- β : additive stretch
- m(H) : size (number of edges)

Example

A Greedy Algorithm [Althöfer & al. 1993]

- H is a (2k 1,0)-spanner of G.
- H has girth g(H) > 2k implying m(H) < n^{1+1/k}.
- This is optimal assuming the girth conjecture.

Large Girth, Few Edges

Theorem (Folklore, see Bollobás or Matoušek) A graph H with girth g(H) > 2k has $m(H) \le n + n^{1+1/k}$ edges.

Case 2k : H contains an induced subgraph with minimal degree δ ≥ ½d. The graph induced by nodes at distance ≤ k from some u is a tree implying (δ – 1)^k ≤ n.

Erdös-Simonovits Girth Conjecture

- The previous bound seems tight :
- For k = 1 (or girth 3, 4) : consider $K_{n/2,n/2}$.
- For k = 2 (or girth 5, 6): consider the finite projective plane of order $\approx n^{1/2}$ and the bipartite graph of point-line incidences.

Conjecture (Erdös 1964, see Erdös & Simonovits 1982) For any $k \ge 1$, there exist graphs with $\Omega(n^{1+1/k})$ edges and girth greater than 2k.

- Proved for k = 1, 2, 3, 5 [see Wenger 1991].
- There exist graphs with $\Omega(n^{1+2/3k})$ edges and girth greater than 2k [Lazebnik & al. 1995].

Erdös-Simonovits Girth Conjecture

- The previous bound seems tight :
- For k = 1 (or girth 3, 4) : consider $K_{n/2,n/2}$.
- For k = 2 (or girth 5, 6): consider the finite projective plane of order ≈ n^{1/2} and the bipartite graph of point-line incidences.

Conjecture (Erdös 1964, see Erdös & Simonovits 1982) For any $k \ge 1$, there exist graphs with $\Omega(n^{1+1/k})$ edges and girth greater than 2k.

- Proved for k = 1, 2, 3, 5 [see Wenger 1991].
- There exist graphs with $\Omega(n^{1+2/3k})$ edges and girth greater than 2k [Lazebnik & al. 1995].

Erdös-Simonovits Girth Conjecture

- The previous bound seems tight :
- For k = 1 (or girth 3, 4) : consider $K_{n/2,n/2}$.
- For k = 2 (or girth 5, 6): consider the finite projective plane of order ≈ n^{1/2} and the bipartite graph of point-line incidences.

Conjecture (Erdös 1964, see Erdös & Simonovits 1982)

For any $k \ge 1$, there exist graphs with $\Omega(n^{1+1/k})$ edges and girth greater than 2k.

- Proved for k = 1, 2, 3, 5 [see Wenger 1991].
- There exist graphs with $\Omega(n^{1+2/3k})$ edges and girth greater than 2k [Lazebnik & al. 1995].

Beyond the Girth Conjecture

- With stretch (2k 1,0), can we get O(f(n, m, k)) edges?
- E.g., $O(n\overline{d}^{1/k})$?

Distributed Spanner Computation

The problem

- G is the communication network of a distributed system.
- Compute an (a, β)-spanner of G in the LOCAL model : synchronous rounds, unbounded message size.

Lower Bound

Theorem (Elkin 2006, DGPV'08)

Assuming the girth conjecture, an algorithm that computes a connected subgraph with $o(n^{1+1/k})$ edges has expected time at least k.

 A graph with girth greater than 2k looks like a tree after t ≤ k rounds.

Upper Bound

Theorem (DGPV'08)

It is possible to compute a (2k - 1, 0)-spanner with $O(kn^{1+1/k})$ edges in k rounds (in 3k - 1 rounds if n is unknown).

Per Node Cluster Growth [DGPV'08]

Without Knowing n [DGPV'08]

```
Set \sigma(u) to any value in [\max_{v \in B(u,k-1)} |B(v,k)|^{1/k}, n^{1/k}].
C(u) := \{u\} /* cluster around u */
H(u) := (\{u\}, \emptyset) /* spanner edges selected by u */
For i := 1 to k do
    Node u sends C(u) to all nodes in N(u),
    and receives C(v) from all v \in N(u).
    W(u) := N(u) \setminus \{v \mid C(u) \cap C(v) \neq \emptyset\} / * nodes to
    cover */
   i := 0
    While \exists w \in W(u) and j < \sigma(u) do
        Pick w \in W(u).
        Add edge uw to H(u).
        Add C(w) to C(u).
        W(u) \coloneqq W(u) \setminus \{v \in W(u) \mid \mathcal{C}(v) \cap \mathcal{C}(w) \neq \emptyset\}
       j := j + 1
```

Without Knowing n (Performances)

- Time : 3k 1 rounds (k if n is known).
- Edges : $m(H) \leq \sum_{u} k\sigma(u) \leq kn\Delta_{k}^{1/k} \leq kn^{1+1/k}$ where $\Delta_{k} = \max_{u} |B(u, k)|$.
- After iteration i, radius(C(u)) ≤ i.
- After iteration i, $|C(u)| \ge \max_{v \in B(u,k-i)} |B(v,k)|^{i/k}$ or $W(u) = \emptyset$.
- Stretch : at the end, $W(u) = \emptyset$ and for $v \in N(u)$, $d_H(u, v) \le 1 + (k 1) + (k 1)$.

Without Knowing n (Performances)

- Time : 3k 1 rounds (k if n is known).
- Edges: $m(H) \leq \sum_{u} k\sigma(u) \leq kn\Delta_{k}^{1/k} \leq kn^{1+1/k}$ where $\Delta_{k} = \max_{u} |B(u, k)|$.
- After iteration i, radius(C(u)) $\leq i$.
- After iteration i, $|C(u)| \ge \max_{v \in B(u,k-i)} |B(v,k)|^{i/k}$ or $W(u) = \emptyset$.
- Stretch : at the end, $W(u) = \emptyset$ and for $v \in N(u)$, $d_H(u, v) \leq 1 + (k 1) + (k 1)$.

Related Upper Bounds

- [Baswana et al. 2007] provide an algorithm for computing a (k, k - 1)-spanner (unweighted) with O(kn^{1+1/k}) expected size in O(k) rounds using randomized sampling :
- at round *i*, a cluster is considered for growing with probability $n^{-1/k}$.
- It is randomized and requires knowledge of n.
- [Baswana et al. 2007] provide an algorithm for computing a (2k - 1,0)-spanner (weighted) with O(kn^{1+1/k}) expected size in O(k²) rounds using also randomized sampling and knowledge of n.

Toward Additive Spanners

The Open Problem

- Do (1, 2k 2)-spanners with O(n^{1+1/k}) edges exist?
- k = 2 : yes [Aingworth & al. 1999].
- k = 3 : ok with stretch (1,6) [Baswana & al. 2005].
- k > 3 :??
- Do (1, O(1))-spanners with o(n^{4/3}) edges exist?
- Do (1, 2k 2)-spanners with O(n^{1+1/k}) edges exist?
- k = 2 : yes [Aingworth & al. 1999].
- k = 3 : ok with stretch (1,6) [Baswana & al. 2005].
- k > 3 :??
- Do (1, O(1))-spanners with o(n^{4/3}) edges exist?

- Do (1, 2k 2)-spanners with O(n^{1+1/k}) edges exist?
- k = 2 : yes [Aingworth & al. 1999].
- k = 3 : ok with stretch (1, 6) [Baswana & al. 2005].
- k > 3 :??
- Do (1, O(1))-spanners with o(n^{4/3}) edges exist?

- Do (1, 2k 2)-spanners with O(n^{1+1/k}) edges exist?
- k = 2 : yes [Aingworth & al. 1999].
- k = 3 : ok with stretch (1,6) [Baswana & al. 2005].
- k > 3 :??
- Do (1, O(1))-spanners with o(n^{4/3}) edges exist?

- Do (1, 2k 2)-spanners with O(n^{1+1/k}) edges exist?
- k = 2 : yes [Aingworth & al. 1999].
- k = 3 : ok with stretch (1, 6) [Baswana & al. 2005].
- k > 3 :??
- Do (1, O(1))-spanners with o(n^{4/3}) edges exist?

(1, 2)-spanners of size $O(n^{3/2})$ [Aingworth & al. 1999]

$$\begin{array}{l} G' := G \\ H := \emptyset \\ \\ \textbf{While } \exists u \in V(G') \mid \deg_{G'}(u) > n^{1/2} \textbf{ do} \\ & \begin{array}{c} C(u) := B_{G'}(u, 1) \\ G' := G' - C(u) \\ & \begin{array}{c} H := H \cup BFS_G(u) \\ \end{array} \\ \\ H := H \cup E(G') \end{array} \\ \end{array}$$

• H is a (1, 2)-spanner of G.

• $m(H) \le 2n^{3/2}$ (at most $n^{1/2}$ clusters).

Proof of stretch

(1,6)-spanners of size $O(n^{4/3})$ [Baswana & al. 2005]

- Greedily compute clusters of size greater than $n^{1/3}$.
- At most $n^{2/3}$ clusters.
- Add shortest paths for reducing distances between all cluster pairs.

• This works because
$$\left(n^{2/3}\right)^2$$
 = $n^{4/3}$.

• For
$$k = 4 : (n^{3/4})^2 \gg n^{5/4} \dots$$

Nearly Additive Spanners

- (1 + ε, β)-spanners with O(βn^{1+1/k}) edges with
 β = k^{log log k-log ε} [Elkin & Peleg 2004].
- $(1 + \varepsilon, O(1/\varepsilon)^{k-2})$ -spanners with $O(kn^{1+1/k})$ edges [Thorup & Zwick 2006], indeed f-spanners with $f(d) = d + O\left(kd^{1-\frac{1}{k-1}}\right)$.

Distributed Nearly Additive Spanners [DGPV'09]

```
Set \sigma(u) to a value in
[\max_{v \in B(u,\rho[2,k])} |B(v,\rho[1,k])|^{1/k}, n^{1/k}]
C(u) := \{u\} /* cluster around u */
F(u) := FALSE /* termination flag */
H(u) := (\{u\}, \emptyset) /* spanner edges selected by u */
For i := 1 to k do
    Node u sends C(u), F(u) to all nodes in B(u, \rho_i),
    and receives C(v), F(v) from all v \in B(u, \rho_i).
    W(u) :=
     B(u,\rho_i) \setminus \{v \mid F(v) = \text{TRUE or } C(u) \cap C(v) \neq \emptyset\}
    i := 0
    While \exists w \in W(u) and j < \sigma(u) do
        Pick w \in W(u) such that d_{G}(u, w) is minimal.
        Add a shortest path in G from u to w to H(u).
        Add C(w) to C(u).
        W(u) \coloneqq W(u) \setminus \{v \in W(u) \mid \mathcal{C}(v) \cap \mathcal{C}(w) \neq \emptyset\}
      _j := j + 1
    If W(u) = \emptyset then F(u) := \text{TRUE} else F(u) := \text{FALSE}
```

Performances

- Time : $O(\rho_1 + \cdots + \rho_k)$.
- Edges : $m(H) \leq (\rho_1 + \cdots + \rho_k) n^{1+1/k}$.
- After iteration *i*, radius(C(u)) $\leq \rho_1 + \cdots + \rho_i$.

stretch	size	time	parameters
(2 <i>k</i> – 1,0)	$k \cdot n^{1+1/k}$	<i>O</i> (<i>k</i>)	$\rho_1 = \cdots = \rho_k = 1$
(1 + ε, 2 - ε)	$(1+\left\lceil \frac{2}{\varepsilon} \right\rceil) \cdot n^{3/2}$	$O(\epsilon^{-1})$	$\rho_1 = 1, \rho_2 = \begin{bmatrix} \frac{2}{\epsilon} \\ \epsilon \end{bmatrix}, \\ \epsilon \in (0, 2]$
$(1 + \varepsilon, $ $4(1 + \left\lceil \frac{4}{\varepsilon} \right\rceil)^{k-2} - \varepsilon)$	$\frac{(1+\left\lceil\frac{4}{\varepsilon}\right\rceil)^{k-1}}{n^{1+1/k}}$	$O((1 + \left\lceil \frac{4}{\epsilon} \right\rceil)^{k-1})$	$\rho_{1} = 1,$ $\rho_{i} = \left\lceil \frac{4}{\varepsilon} \right\rceil (1 + \left\lceil \frac{4}{\varepsilon} \right\rceil)^{i-2}$ $\varepsilon \in (0, 4]$
(5,2 ^k – 4)	$2^{k-1} \cdot n^{1+1/k}$	$O(2^k)$	\hookrightarrow with ϵ = 4
(3,4·3 ^{k-2} -2)	$3^{k-1} \cdot n^{1+1/k}$	<i>O</i> (3 ^k)	\hookrightarrow with ϵ = 2
(2,4·5 ^{k-2} -2)	$5^{k-1} \cdot n^{1+1/k}$	<i>O</i> (5 ^k)	\hookrightarrow with ϵ = 1

Performances

• Time :
$$O(\rho_1 + \cdots + \rho_k)$$
.

- Edges : $m(H) \leq (\rho_1 + \cdots + \rho_k) n^{1+1/k}$.
- After iteration *i*, radius(C(u)) $\leq \rho_1 + \cdots + \rho_i$.

stretch	size	time	parameters
(2 <i>k</i> - 1,0)	$k \cdot n^{1+1/k}$	<i>O</i> (k)	$ \rho_1 = \cdots = \rho_k = 1 $
(1 + ε, 2 - ε)	$(1+\left\lceil \frac{2}{\varepsilon} \right\rceil) \cdot n^{3/2}$	<i>Ο</i> (ε ⁻¹)	$\rho_1 = 1, \rho_2 = \left\lceil \frac{2}{\epsilon} \right\rceil, \\ \epsilon \in (0, 2]$
$(1 + \varepsilon, 4(1 + \left\lceil \frac{4}{\varepsilon} \right\rceil)^{k-2} - \varepsilon)$	$\frac{(1+\left\lceil\frac{4}{\varepsilon}\right\rceil)^{k-1}}{n^{1+1/k}}$	$O((1 + \left\lceil \frac{4}{\epsilon} \right\rceil)^{k-1})$	$\rho_{1} = 1,$ $\rho_{i} = \left\lceil \frac{4}{\varepsilon} \right\rceil (1 + \left\lceil \frac{4}{\varepsilon} \right\rceil)^{i-2},$ $\varepsilon \in (0, 4]$
(5,2 ^k - 4)	$2^{k-1} \cdot n^{1+1/k}$	<i>O</i> (2 ^{<i>k</i>})	\hookrightarrow with ϵ = 4
(3,4·3 ^{k-2} -2)	$3^{k-1} \cdot n^{1+1/k}$	<i>O</i> (3 ^{<i>k</i>})	⇔ with ε = 2
(2,4·5 ^{k-2} -2)	$5^{k-1} \cdot n^{1+1/k}$	0(5 ^k)	\hookrightarrow with ε = 1

Conclusion

• A challenge : dynamic distributed compact routing.

- A first step : distributed spanner construction.
- An open problem : existence of sparse additive spanners.

Conclusion

- A challenge : dynamic distributed compact routing.
- A first step : distributed spanner construction.
- An open problem : existence of sparse additive spanners.

Conclusion

- A challenge : dynamic distributed compact routing.
- A first step : distributed spanner construction.
- An open problem : existence of sparse additive spanners.

Spanner Variants

Spanners and link state routing

Link state routing :

- Each node discovers its neighbors,
- and advertises the state of some neighboring links.

Optimize link state advertisements :

- few links (flooded information),
- efficient routes.

Dense network G

8 1/1 3

1/1 35 / 32

Sub-Graph H

1/1 36 / 32

Augmented sub-graph H_u

Definition (Remote Spanner, JV'09)

 $H \subseteq G \text{ is an } (a, \beta)\text{-remote-spanner of } G \text{ iff} \\ d_{H_u}(u, v) \leq a \cdot d_G(u, v) + \beta \text{ for all } u, v \text{ where} \\ H_u = H \cup \{uv \mid v \in N(u)\}.$

OLSR relies on the construction of a (1, 0)-remote-spanner.

- An (α, β)-spanner is an (α, β α + 1)-remote-spanner implying the existence of (k, 0)-spanner with O(kn^{1+1/k}) edges using [Baswana & al. 2005].
- A random unit disk graph has a (1,0)-remote-spanner with $O(n^{4/3})$ edges in expectation.
- A (1,0)-remote-spanner with size O(log n) from optimal can distributively be computed in O(1) time.

- An (α, β)-spanner is an (α, β α + 1)-remote-spanner implying the existence of (k, 0)-spanner with O(kn^{1+1/k}) edges using [Baswana & al. 2005].
- A random unit disk graph has a (1,0)-remote-spanner with $O(n^{4/3})$ edges in expectation.
- A (1,0)-remote-spanner with size O(log n) from optimal can distributively be computed in O(1) time.

- An (α, β)-spanner is an (α, β α + 1)-remote-spanner implying the existence of (k, 0)-spanner with O(kn^{1+1/k}) edges using [Baswana & al. 2005].
- A random unit disk graph has a (1,0)-remote-spanner with $O(n^{4/3})$ edges in expectation.
- A (1,0)-remote-spanner with size O(log n) from optimal can distributively be computed in O(1) time.

- If G is the unit ball graph of a doubling metric with dimension p (distances are unknown), a (1 + ε, 1 - 2ε)-remote-spanner with O(nε^{-(p+1)}) edges can be computed in O(ε⁻¹) time.
- If G is the unit ball of a doubling metric, a 2-multipath (2,-1)-remote-spanner (ε = 1) with O(n) edges can be computed in O(1) time.
- A c-multipath (1,0)-remote-spanner with size O(log n) from optimal can distributively be computed in O(1) time.

- If G is the unit ball graph of a doubling metric with dimension p (distances are unknown), a (1 + ε, 1 2ε)-remote-spanner with O(nε^{-(p+1)}) edges can be computed in O(ε⁻¹) time.
- If G is the unit ball of a doubling metric, a 2-multipath (2,-1)-remote-spanner (ε = 1) with O(n) edges can be computed in O(1) time.
- A c-multipath (1,0)-remote-spanner with size O(log n) from optimal can distributively be computed in O(1) time.

- If G is the unit ball graph of a doubling metric with dimension p (distances are unknown), a (1 + ε, 1 2ε)-remote-spanner with O(nε^{-(p+1)}) edges can be computed in O(ε⁻¹) time.
- If G is the unit ball of a doubling metric, a 2-multipath (2,-1)-remote-spanner (ε = 1) with O(n) edges can be computed in O(1) time.
- A c-multipath (1,0)-remote-spanner with size O(log n) from optimal can distributively be computed in O(1) time.

Spanner of Directed Graphs

Definition (Roundtrip Distance, Cowen & Wagner 1999) In a strongly connected graph G the roundtrip distance $d_G(u, v)$ is the weight of a lightest circuit traversing u and v: $d_G(u, v) = \overrightarrow{d_G}(u, v) + \overrightarrow{d_G}(v, u)$

Theorem (Roditty & al. 2002)

Every graph has a (3,0)-roundtrip-spanner with $O(n^{3/2})$ edges and a (2k + ε ,0)-roundtrip-spanner with $O(\frac{k^2}{\varepsilon}n^{1+1/k}\log nW)$ edges where the weights are in the range [1, W].

Spanner of Directed Graphs

Definition (Roundtrip Distance, Cowen & Wagner 1999) In a strongly connected graph G the roundtrip distance $d_G(u, v)$ is the weight of a lightest circuit traversing u and v:

$$d_{\mathcal{G}}(u,v)=\overrightarrow{d_{\mathcal{G}}}(u,v)+\overrightarrow{d_{\mathcal{G}}}(v,u)$$

Theorem (Roditty & al. 2002)

Every graph has a (3,0)-roundtrip-spanner with $O(n^{3/2})$ edges and a (2k + ε ,0)-roundtrip-spanner with $O(\frac{k^2}{\varepsilon}n^{1+1/k}\log nW)$ edges where the weights are in the range [1, W].

Multipath Spanners

Definition (Multipath Distance, JV'09)

The c-multipath distance $d_{G}^{c}(u, v)$ is the weight of the lightest collection of c disjoint paths from u to v.

Definition (Multipath Spanner, JV'09)

 $H \subseteq G \text{ is a } c \text{-multipath } (\alpha, \beta) \text{-spanner of } G \text{ iff} \\ d^i_H(u, v) \leq \alpha \cdot d^i_G(u, v) + i\beta \text{ for all } u, v \text{ and } i \leq c.$

Theorem (GGV'10)

Every graph has a 2-multipath (3,0)-spanner with $O(n^{3/2})$ edges and a c-multipath (c(2k - 1), 0)-spanner with $O(cn^{1+1/k})$ edges (edge disjoint paths are considered).

Multipath Spanners

Definition (Multipath Distance, JV'09)

The c-multipath distance $d_{G}^{c}(u, v)$ is the weight of the lightest collection of c disjoint paths from u to v.

Definition (Multipath Spanner, JV'09) $H \subseteq G$ is a *c*-multipath (α, β)-spanner of G iff $d^i_H(u, v) \leq \alpha \cdot d^i_G(u, v) + i\beta$ for all u, v and $i \leq c$.

Theorem (GGV'10)

Every graph has a 2-multipath (3,0)-spanner with $O(n^{3/2})$ edges and a c-multipath (c(2k - 1), 0)-spanner with $O(cn^{1+1/k})$ edges (edge disjoint paths are considered).

Multipath Spanners

Definition (Multipath Distance, JV'09)

The c-multipath distance $d_G^c(u, v)$ is the weight of the lightest collection of c disjoint paths from u to v.

Definition (Multipath Spanner, JV'09)

 $H \subseteq G \text{ is a } c \text{-multipath } (\mathfrak{a}, \beta) \text{-spanner of } G \text{ iff} \\ d^{i}_{H}(u, v) \leq \mathfrak{a} \cdot d^{i}_{G}(u, v) + i\beta \text{ for all } u, v \text{ and } i \leq c.$

Theorem (GGV'10)

Every graph has a 2-multipath (3,0)-spanner with $O(n^{3/2})$ edges and a c-multipath (c(2k – 1),0)-spanner with $O(cn^{1+1/k})$ edges (edge disjoint paths are considered).

Fault Tolerant Spanner

Definition (Fault Tolerant Spanner, Chechik & al. 2009) $H \subseteq G$ is a f-fault tolerant (a, β) -spanner of G iff $d_{H-F}(u, v) \leq ad_{G-F}(u, v) + \beta$ for all u, v and $F \subset V(G)$ with $n(F) \leq f$.

Theorem (Chechik & al. 2009)

Every graph has an f-fault tolerant (2k - 1, 0)-spanner with $O(f^3k^{f+1} \cdot n^{1+1/k} \log^{1-1/k} n)$ edges.

Fault Tolerant Spanner

Definition (Fault Tolerant Spanner, Chechik & al. 2009) $H \subseteq G$ is a f-fault tolerant (a, β) -spanner of G iff $d_{H-F}(u, v) \leq ad_{G-F}(u, v) + \beta$ for all u, v and $F \subset V(G)$ with $n(F) \leq f$.

Theorem (Chechik & al. 2009)

Every graph has an f-fault tolerant (2k - 1, 0)-spanner with $O(f^3k^{f+1} \cdot n^{1+1/k} \log^{1-1/k} n)$ edges.

Distance Emulators

Definition (Distance Eumlator, Dor & al. 2000) H is an (a,β) -emulator of G iff for all u, v, $d_G(u,v) \leq d_H(u,v) \leq a \cdot d_G(u,v) + \beta$.

Theorem (Dor & al. 2000) Every graph has (1, 4)-emulator with $O(n^{3/2})$ edges. Theorem (Thorup & Zwick 2006) Every graph has an f-emulator with $O(kn^{1+\frac{1}{2^{k-1}}})$ edges where

 $f(d) = d + O\left(kd^{1-\frac{1}{k-1}}\right).$

Distance Emulators

Definition (Distance Eumlator, Dor & al. 2000) *H* is an (a,β) -emulator of *G* iff for all u, v, $d_G(u,v) \leq d_H(u,v) \leq a \cdot d_G(u,v) + \beta$.

Theorem (Dor & al. 2000) Every graph has (1, 4)-emulator with $O(n^{3/2})$ edges.

Theorem (Thorup & Zwick 2006) Every graph has an f-emulator with $O(kn^{1+\frac{1}{2^{k-1}}})$ edges where $f(d) = d + O(kd^{1-\frac{1}{k-1}})$.

Distance Emulators

Definition (Distance Eumlator, Dor & al. 2000) H is an (a,β) -emulator of G iff for all u, v, $d_G(u,v) \leq d_H(u,v) \leq a \cdot d_G(u,v) + \beta$.

Theorem (Dor & al. 2000) Every graph has (1,4)-emulator with O(n^{3/2}) edges.

Theorem (Thorup & Zwick 2006) Every graph has an f-emulator with $O(kn^{1+\frac{1}{2^{k-1}}})$ edges where $f(d) = d + O(kd^{1-\frac{1}{k-1}})$.
Distance Preservers

Definition (Bollobás & al. 2003)

$H \subseteq G$ is a D-preserver iff $d_H(u, v) = d_G(u, v)$ for all u, v such that $d_G(u, v) \ge D$.

Theorem (Bollobás & al. 2003)

Every graph has a D-preserver with $O(n^2/D)$ edges (and this is optimal).

Distance Preservers

Definition (Bollobás & al. 2003)

 $H \subseteq G$ is a D-preserver iff $d_H(u, v) = d_G(u, v)$ for all u, v such that $d_G(u, v) \ge D$.

Theorem (Bollobás & al. 2003)

Every graph has a D-preserver with $O(n^2/D)$ edges (and this is optimal).

Conclusion

There are still new spanner algorithms to find.