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From a graph G

300 18⇐ ? ⇒ 1 / 1 2 / 32



Compute a subgraph H spanning G

300 5⇐ ? ⇒ 1 / 1 3 / 32



Graph spanner

Definition
A spanner H of a graph G is a subgraph of G with :

• few edges,
• short distances.

Trade-off number of edges vs stretch of distances.

⇐ ? ⇒ 1 / 2 4 / 32
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What for ?

• Synchronizer [Awerbuch 1985, Peleg & Ullman 1989].
• Implicit pre-processing step of approximate distance

oracle computation [Thorup & Zwick 2005].
• By-product of compact routing schemes [Peleg & Upfal

1989].

⇐ ? ⇒ 1 / 1 5 / 32



Compact routing

Definition
A compact routing scheme for a graph G consists in
designing routing tables with :

• small size,
• short routes.

Trade-off table size vs stretch of routes.

Examples :
• Classical routing : one entry per destination (size O (n)

per node).
• Grid : use coordinates (size O (1) per node).

⇐ ? ⇒ 1 / 4 6 / 32
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BGP entries in the Internet
Internet : use prefix of addresses.

⇐ ? ⇒ 1 / 1 7 / 32



Compact routing theory

• Explicit trade-off between table size and route length
[Peleg89], [Gavoille96], [Thorup01],...

• Static centralized solutions : [Thorup01], [Brady06],
[Abraham04], [Abraham08],...

• Challenge : dynamic distributed compact routing.

⇐ ? ⇒ 1 / 2 8 / 32
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From compact routing to spanner construction

• Take a compact routing scheme for G .
• For each node add to H the link to each neighbor listed

in its routing table.
• H is a spanner of G .
• Challenge for today : distributed spanner construction.
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Graph spanner

Definition (Peleg & al. 1987-89)
Given an undirected graph G, a subgraph H ⊆ G is an
(α, β)-spanner of G iff for all u , v,

dH (u , v) ≤ α · dG (u , v) + β

• α : multiplicative stretch
• β : additive stretch
• m(H ) : size (number of edges)

⇐ ? ⇒ 1 / 2 10 / 32
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Example

⇐ ? ⇒ 1 / 1 11 / 32



A Greedy Algorithm [Althöfer & al. 1993]

H := ∅
For each edge uv ∈ E (G ) do

If dH (u , v) > 2k − 1 then add uv to H .

• H is a (2k − 1, 0)-spanner of G .
• H has girth g(H ) > 2k implying m(H ) < n1+1/k .
• This is optimal assuming the girth conjecture.

⇐ ? ⇒ 1 / 1 12 / 32



Large Girth, Few Edges

Theorem (Folklore, see Bollobás or Matoušek)
A graph H with girth g(H ) > 2k has m(H ) ≤ n + n1+1/k edges.

• Case 2k : H contains an induced subgraph with minimal
degree δ ≥ 1

2d . The graph induced by nodes at distance
≤ k from some u is a tree implying (δ − 1)k ≤ n .

⇐ ? ⇒ 1 / 1 13 / 32



Erdös-Simonovits Girth Conjecture

• The previous bound seems tight :
• For k = 1 (or girth 3, 4) : consider Kn/2,n/2.
• For k = 2 (or girth 5, 6) : consider the finite projective

plane of order ≈ n1/2 and the bipartite graph of
point-line incidences.

Conjecture (Erdös 1964, see Erdös & Simonovits 1982)
For any k ≥ 1, there exist graphs with Ω(n1+1/k ) edges and
girth greater than 2k .

• Proved for k = 1, 2, 3, 5 [see Wenger 1991].
• There exist graphs with Ω(n1+2/3k ) edges and girth

greater than 2k [Lazebnik & al. 1995].

⇐ ? ⇒ 1 / 3 14 / 32
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Beyond the Girth Conjecture

• With stretch (2k − 1, 0), can we get O (f (n ,m , k ))
edges ?

• E.g., O (nd 1/k
) ?

⇐ ? ⇒ 1 / 1 15 / 32



Distributed Spanner Computation

⇐ ? ⇒ 1 / 1 16 / 32



The problem

• G is the communication network of a distributed
system.

• Compute an (α, β)-spanner of G in the LOCAL model :
synchronous rounds, unbounded message size.

⇐ ? ⇒ 1 / 1 17 / 32



Lower Bound

Theorem (Elkin 2006, DGPV’08)
Assuming the girth conjecture, an algorithm that computes
a connected subgraph with o(n1+1/k ) edges has expected
time at least k .

• A graph with girth greater than 2k looks like a tree
after t ≤ k rounds.

⇐ ? ⇒ 1 / 1 18 / 32



Upper Bound

Theorem (DGPV’08)
It is possible to compute a (2k − 1, 0)-spanner with
O (kn1+1/k ) edges in k rounds (in 3k − 1 rounds if n is
unknown).

⇐ ? ⇒ 1 / 1 19 / 32



Per Node Cluster Growth [DGPV’08]

⇐ ? ⇒ 1 / 1 20 / 32



Without Knowing n [DGPV’08]

Set σ(u) to any value in [maxv∈B (u ,k−1) |B (v , k )|1/k , n1/k ].
C (u) := {u} /* cluster around u */
H (u) := ({u} , ∅) /* spanner edges selected by u */
For i := 1 to k do

Node u sends C (u) to all nodes in N (u),
and receives C (v) from all v ∈ N (u).
W (u) := N (u) \

{
v | C (u) ∩ C (v) ≠ ∅

}
/* nodes to

cover */
j := 0
While ∃w ∈ W (u) and j < σ(u) do

Pick w ∈ W (u).
Add edge uw to H (u).
Add C (w) to C (u).
W (u) := W (u) \

{
v ∈ W (u) | C (v) ∩ C (w) ≠ ∅

}
j := j + 1

⇐ ? ⇒ 1 / 1 21 / 32



Without Knowing n (Performances)

• Time : 3k − 1 rounds (k if n is known).
• Edges : m(H ) ≤

∑
u kσ(u) ≤ kn∆1/k

k ≤ kn1+1/k where
∆k = maxu |B (u , k )|.

• After iteration i , radius(C (u)) ≤ i .
• After iteration i , |C (u)| ≥ maxv∈B (u ,k−i ) |B (v , k )|i/k or

W (u) = ∅.
• Stretch : at the end, W (u) = ∅ and for v ∈ N (u),

dH (u , v) ≤ 1 + (k − 1) + (k − 1).

⇐ ? ⇒ 1 / 2 22 / 32
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Related Upper Bounds

• [Baswana et al. 2007] provide an algorithm for
computing a (k , k − 1)-spanner (unweighted) with
O (kn1+1/k ) expected size in O (k ) rounds using
randomized sampling :

• at round i , a cluster is considered for growing with
probability n−1/k .

• It is randomized and requires knowledge of n .
• [Baswana et al. 2007] provide an algorithm for

computing a (2k − 1, 0)-spanner (weighted) with
O (kn1+1/k ) expected size in O (k2) rounds using also
randomized sampling and knowledge of n .

⇐ ? ⇒ 1 / 1 23 / 32



Toward Additive Spanners

⇐ ? ⇒ 1 / 1 24 / 32



The Open Problem

• Do (1, 2k − 2)-spanners with O (n1+1/k ) edges exist ?
• k = 2 : yes [Aingworth & al. 1999].
• k = 3 : ok with stretch (1, 6) [Baswana & al. 2005].
• k > 3 : ? ?
• Do (1,O (1))-spanners with o(n4/3) edges exist ?

⇐ ? ⇒ 1 / 5 25 / 32
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(1, 2)-spanners of size O (n3/2) [Aingworth & al.
1999]

G ′ := G
H := ∅
While ∃u ∈ V (G ′) | degG ′(u) > n1/2 do

C (u) := BG ′(u , 1) /* cluster around u */
G ′ := G ′ − C (u)
H := H ∪ BFSG (u)

H := H ∪ E (G ′) /* add remaining edges */

• H is a (1, 2)-spanner of G .
• m(H ) ≤ 2n3/2 (at most n1/2 clusters).

⇐ ? ⇒ 1 / 1 26 / 32



Proof of stretch

ô-+g<

⇐ ? ⇒ 1 / 1 27 / 32



(1, 6)-spanners of size O (n4/3) [Baswana & al. 2005]

• Greedily compute clusters of size greater than n1/3.
• At most n2/3 clusters.
• Add shortest paths for reducing distances between all

cluster pairs.

• This works because
(
n2/3

)2
= n4/3.

• For k = 4 :
(
n3/4

)2
>> n5/4...

⇐ ? ⇒ 1 / 1 28 / 32



Nearly Additive Spanners

• (1 + ε, β)-spanners with O (βn1+1/k ) edges with
β = k log log k−log ε [Elkin & Peleg 2004].

• (1 + ε,O (1/ε)k−2)-spanners with O (kn1+1/k ) edges
[Thorup & Zwick 2006], indeed f -spanners with
f (d ) = d + O

(
kd 1− 1

k−1
)
.

⇐ ? ⇒ 1 / 1 29 / 32



Distributed Nearly Additive Spanners [DGPV’09]
Set σ(u) to a value in
[maxv∈B (u ,ρ[2,k ]) |B (v , ρ[1, k ])|1/k , n1/k ]
C (u) := {u} /* cluster around u */
F (u) := FALSE /* termination flag */
H (u) := ({u} , ∅) /* spanner edges selected by u */
For i := 1 to k do

Node u sends C (u), F (u) to all nodes in B (u , ρi ),
and receives C (v), F (v) from all v ∈ B (u , ρi ).
W (u) :=
B (u , ρi ) \

{
v | F (v) = TRUE or C (u) ∩ C (v) ≠ ∅

}
j := 0
While ∃w ∈ W (u) and j < σ(u) do

Pick w ∈ W (u) such that dG (u ,w) is minimal.
Add a shortest path in G from u to w to H (u).
Add C (w) to C (u).
W (u) := W (u) \

{
v ∈ W (u) | C (v) ∩ C (w) ≠ ∅

}
j := j + 1

If W (u) = ∅ then F (u) := TRUE else F (u) := FALSE
⇐ ? ⇒ 1 / 1 30 / 32



Performances

• Time : O (ρ1 + · · · + ρk ).
• Edges : m(H ) ≤ (ρ1 + · · · + ρk )n1+1/k .
• After iteration i , radius(C (u)) ≤ ρ1 + · · · + ρi .

stretch size time parameters

(2k − 1, 0) k · n1+1/k O (k ) ρ1 = · · · = ρk = 1

(1 + ε, 2 − ε) (1+
⌈
2
ε

⌉
) ·n3/2 O (ε−1) ρ1 = 1, ρ2 =

⌈
2
ε

⌉
,

ε ∈ (0, 2]
(1 + ε,

4(1 +
⌈
4
ε

⌉
)k−2 − ε)

(1 +
⌈
4
ε

⌉
)k−1 ·

n1+1/k
O ((1 +

⌈
4
ε

⌉
)k−1)

ρ1 = 1,
ρi =

⌈
4
ε

⌉
(1 +

⌈
4
ε

⌉
)i−2,

ε ∈ (0, 4]
(5, 2k − 4) 2k−1 · n1+1/k O (2k ) ↪→ with ε = 4

(3, 4 · 3k−2 − 2) 3k−1 · n1+1/k O (3k ) ↪→ with ε = 2
(2, 4 · 5k−2 − 2) 5k−1 · n1+1/k O (5k ) ↪→ with ε = 1

⇐ ? ⇒ 1 / 2 31 / 32
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Conclusion

• A challenge : dynamic distributed compact routing.
• A first step : distributed spanner construction.
• An open problem : existence of sparse additive

spanners.

⇐ ? ⇒ 1 / 3 32 / 32
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Spanner Variants

⇐ ? ⇒ 1 / 1 33 / 32



Spanners and link state routing

Link state routing :
• Each node discovers its neighbors,
• and advertises the state of some neighboring links.

Optimize link state advertisements :
• few links (flooded information),
• efficient routes.

⇐ ? ⇒ 1 / 1 34 / 32



Dense network G

300 18⇐ ? ⇒ 1 / 1 35 / 32



Sub-Graph H

300 5⇐ ? ⇒ 1 / 1 36 / 32



Augmented sub-graph Hu

300 5⇐ ? ⇒ 1 / 1 37 / 32



Remote Spanners

Definition (Remote Spanner, JV’09)
H ⊆ G is an (α, β)-remote-spanner of G iff
dHu (u , v) ≤ α · dG (u , v) + β for all u , v where
Hu = H ∪

{
uv | v ∈ N (u)

}
.

OLSR relies on the construction of a (1, 0)-remote-spanner.

⇐ ? ⇒ 1 / 1 38 / 32



Remote Spanners

Theorem (JV’09)

• An (α, β)-spanner is an (α, β − α + 1)-remote-spanner
implying the existence of (k , 0)-spanner with O (kn1+1/k )
edges using [Baswana & al. 2005].

• A random unit disk graph has a (1, 0)-remote-spanner
with O (n4/3) edges in expectation.

• A (1, 0)-remote-spanner with size O (log n) from optimal
can distributively be computed in O (1) time.

⇐ ? ⇒ 1 / 6 39 / 32
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Remote Spanners

Theorem (JV’09)

• If G is the unit ball graph of a doubling metric with
dimension p (distances are unknown), a
(1 + ε, 1 − 2ε)-remote-spanner with O (nε−(p+1)) edges can
be computed in O (ε−1) time.

• If G is the unit ball of a doubling metric, a 2-multipath
(2, −1)-remote-spanner (ε = 1) with O (n) edges can be
computed in O (1) time.

• A c-multipath (1, 0)-remote-spanner with size O (log n)
from optimal can distributively be computed in O (1)
time.
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Spanner of Directed Graphs

Definition (Roundtrip Distance, Cowen & Wagner 1999)
In a strongly connected graph G the roundtrip distance
dG (u , v) is the weight of a lightest circuit traversing u and
v :

dG (u , v) =
−−−→
dG (u , v) +

−−−→
dG (v , u)

Theorem (Roditty & al. 2002)
Every graph has a (3, 0)-roundtrip-spanner with O (n3/2)
edges and a (2k + ε, 0)-roundtrip-spanner with
O (k2

ε n1+1/k log nW ) edges where the weights are in the
range [1,W ].

⇐ ? ⇒ 1 / 2 40 / 32
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Multipath Spanners

Definition (Multipath Distance, JV’09)
The c-multipath distance d c

G (u , v) is the weight of the
lightest collection of c disjoint paths from u to v.

Definition (Multipath Spanner, JV’09)
H ⊆ G is a c-multipath (α, β)-spanner of G iff
d i
H (u , v) ≤ α · d i

G (u , v) + iβ for all u , v and i ≤ c.

Theorem (GGV’10)
Every graph has a 2-multipath (3, 0)-spanner with O (n3/2)
edges and a c-multipath (c(2k − 1), 0)-spanner with
O (cn1+1/k ) edges (edge disjoint paths are considered).

⇐ ? ⇒ 1 / 3 41 / 32
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Fault Tolerant Spanner

Definition (Fault Tolerant Spanner, Chechik & al. 2009)
H ⊆ G is a f-fault tolerant (α, β)-spanner of G iff
dH−F (u , v) ≤ αdG−F (u , v) + β for all u , v and F ⊂ V (G ) with
n(F ) ≤ f .

Theorem (Chechik & al. 2009)
Every graph has an f-fault tolerant (2k − 1, 0)-spanner with
O (f3k f+1 · n1+1/k log1−1/k n) edges.
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Distance Emulators

Definition (Distance Eumlator, Dor & al. 2000)
H is an (α, β)-emulator of G iff for all u , v,
dG (u , v) ≤ dH (u , v) ≤ α · dG (u , v) + β.

Theorem (Dor & al. 2000)
Every graph has (1, 4)-emulator with O (n3/2) edges.

Theorem (Thorup & Zwick 2006)
Every graph has an f-emulator with O (kn1+ 1

2k −1 ) edges where
f (d ) = d + O

(
kd 1− 1

k−1
)
.
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Distance Preservers

Definition (Bollobás & al. 2003)
H ⊆ G is a D-preserver iff dH (u , v) = dG (u , v) for all u , v
such that dG (u , v) ≥ D.

Theorem (Bollobás & al. 2003)
Every graph has a D-preserver with O (n2/D ) edges (and
this is optimal).
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Conclusion

There are still new spanner algorithms to find.

⇐ ? ⇒ 1 / 1 45 / 32


