Graph spanners

Laurent Viennot

June 3rd, 2010
From a graph G
Compute a subgraph H spanning G
Graph spanner

Definition
A spanner H of a graph G is a subgraph of G with:

- few edges,
- short distances.

Trade-off number of edges vs stretch of distances.
Graph spanner

Definition
A spanner H of a graph G is a subgraph of G with:

- few edges,
- short distances.

Trade-off number of edges vs stretch of distances.
What for?

- Implicit pre-processing step of approximate distance oracle computation [Thorup & Zwick 2005].
- By-product of compact routing schemes [Peleg & Upfal 1989].
Compact routing

Definition

A compact routing scheme for a graph G consists in designing routing tables with:

- **small size,**
- **short routes.**

Trade-off table size vs stretch of routes.

Examples:

- **Classical routing:** one entry per destination (size $O(n)$ per node).
- **Grid:** use coordinates (size $O(1)$ per node).
Compact routing

Definition
A compact routing scheme for a graph G consists in designing routing tables with:
- small size,
- short routes.

Trade-off table size vs stretch of routes.

Examples:
- Classical routing: one entry per destination (size $O(n)$ per node).
- Grid: use coordinates (size $O(1)$ per node).
Compact routing

Definition

A compact routing scheme for a graph G consists in designing routing tables with:

- **small size,**
- **short routes.**

Trade-off table size vs stretch of routes.

Examples:

- **Classical routing:** one entry per destination (size $O(n)$ per node).
- **Grid:** use coordinates (size $O(1)$ per node).
Compact routing

Definition
A compact routing scheme for a graph G consists in designing routing tables with:

- small size,
- short routes.

Trade-off table size vs stretch of routes.

Examples:
- Classical routing: one entry per destination (size $O(n)$ per node).
- Grid: use coordinates (size $O(1)$ per node).
BGP entries in the Internet

Internet: use prefix of addresses.
Compact routing theory

- Explicit trade-off between table size and route length [Peleg89], [Gavoille96], [Thorup01],...
- Static centralized solutions: [Thorup01], [Brady06], [Abraham04], [Abraham08],...
- Challenge: dynamic distributed compact routing.
Compact routing theory

- Explicit trade-off between table size and route length [Peleg89], [Gavoille96], [Thorup01],...
- Static centralized solutions: [Thorup01], [Brady06], [Abraham04], [Abraham08],...
- Challenge: dynamic distributed compact routing.
From compact routing to spanner construction

- Take a compact routing scheme for G.
- For each node add to H the link to each neighbor listed in its routing table.
- H is a spanner of G.
- Challenge for today: distributed spanner construction.
From compact routing to spanner construction

- Take a compact routing scheme for G.
- For each node add to H the link to each neighbor listed in its routing table.
- H is a spanner of G.
- Challenge for today: distributed spanner construction.
• Take a compact routing scheme for G.
• For each node add to H the link to each neighbor listed in its routing table.
• H is a spanner of G.
• Challenge for today: distributed spanner construction.
Graph spanner

Definition (Peleg & al. 1987-89)

Given an undirected graph G, a subgraph $H \subseteq G$ is an (α, β)-spanner of G iff for all u, v,

$$d_H(u, v) \leq \alpha \cdot d_G(u, v) + \beta$$

- α : multiplicative stretch
- β : additive stretch
- $m(H)$: size (number of edges)
Graph spanner

Definition (Peleg & al. 1987-89)

Given an undirected graph G, a subgraph $H \subseteq G$ is an (α, β)-spanner of G iff for all u, v,

$$d_H(u, v) \leq \alpha \cdot d_G(u, v) + \beta$$

- α: multiplicative stretch
- β: additive stretch
- $m(H)$: size (number of edges)
Example

G

H

T
A Greedy Algorithm [Althöfer & al. 1993]

\[H := \emptyset \]
For each edge \(uv \in E(G) \) do
 \[\text{If } d_H(u, v) > 2k - 1 \text{ then add } uv \text{ to } H. \]

- \(H \) is a \((2k - 1, 0)\)-spanner of \(G \).
- \(H \) has girth \(g(H) > 2k \) implying \(m(H) < n^{1+1/k} \).
- This is optimal assuming the girth conjecture.
Theorem (Folklore, see Bollobás or Matoušek)
A graph \(H \) with girth \(g(H) > 2k \) has \(m(H) \leq n + n^{1+1/k} \) edges.

- **Case 2** \(2k \): \(H \) contains an induced subgraph with minimal degree \(\delta \geq \frac{1}{2} \bar{d} \). The graph induced by nodes at distance \(\leq k \) from some \(u \) is a tree implying \((\delta - 1)^k \leq n \).
The previous bound seems tight:

- For \(k = 1 \) (or girth 3, 4): consider \(K_{n/2,n/2} \).
- For \(k = 2 \) (or girth 5, 6): consider the finite projective plane of order \(\approx n^{1/2} \) and the bipartite graph of point-line incidences.

Conjecture (Erdős 1964, see Erdős & Simonovits 1982)

For any \(k \geq 1 \), there exist graphs with \(\Omega(n^{1+1/k}) \) edges and girth greater than \(2k \).

- Proved for \(k = 1, 2, 3, 5 \) [see Wenger 1991].
- There exist graphs with \(\Omega(n^{1+2/3k}) \) edges and girth greater than \(2k \) [Lazebnik & al. 1995].
Erdős-Simonovits Girth Conjecture

- The previous bound seems tight:
 - For $k = 1$ (or girth $3, 4$): consider $K_{n/2,n/2}$.
 - For $k = 2$ (or girth $5, 6$): consider the finite projective plane of order $\approx n^{1/2}$ and the bipartite graph of point-line incidences.

Conjecture (Erdős 1964, see Erdős & Simonovits 1982)

For any $k \geq 1$, there exist graphs with $\Omega(n^{1+1/k})$ edges and girth greater than $2k$.

- Proved for $k = 1, 2, 3, 5$ [see Wenger 1991].
- There exist graphs with $\Omega(n^{1+2/3k})$ edges and girth greater than $2k$ [Lazebnik & al. 1995].
Erdös-Simonovits Girth Conjecture

- The previous bound seems tight:
- For \(k = 1 \) (or girth 3, 4): consider \(K_{n/2,n/2} \).
- For \(k = 2 \) (or girth 5, 6): consider the finite projective plane of order \(n^{1/2} \) and the bipartite graph of point-line incidences.

Conjecture (Erdös 1964, see Erdös & Simonovits 1982)

For any \(k \geq 1 \), there exist graphs with \(\Omega(n^{1+1/k}) \) edges and girth greater than \(2k \).

- Proved for \(k = 1, 2, 3, 5 \) [see Wenger 1991].
- There exist graphs with \(\Omega(n^{1+2/3k}) \) edges and girth greater than \(2k \) [Lazebnik & al. 1995].
Beyond the Girth Conjecture

- With stretch $(2k - 1, 0)$, can we get $O(f(n, m, k))$ edges?
- E.g., $O(n d^{1/k})$?
Distributed Spanner Computation
The problem

- G is the communication network of a distributed system.
- Compute an (α, β)-spanner of G in the LOCAL model: synchronous rounds, unbounded message size.
Lower Bound

Theorem (Elkin 2006, DGPV’08)

Assuming the girth conjecture, an algorithm that computes a connected subgraph with $o(n^{1+1/k})$ edges has expected time at least k.

- A graph with girth greater than $2k$ looks like a tree after $t \leq k$ rounds.
Upper Bound

Theorem (DGPV'08)

It is possible to compute a $(2k - 1, 0)$-spanner with $O(kn^{1+1/k})$ edges in k rounds (in $3k - 1$ rounds if n is unknown).
Per Node Cluster Growth [DGPV'08]
Set $\sigma(u)$ to any value in $[\max_{v \in B(u, k-1)} |B(v, k)|^{1/k}, n^{1/k}]$.

$C(u) := \{u\}$ /* cluster around u */

$H(u) := (\{u\}, \emptyset)$ /* spanner edges selected by u */

For $i := 1$ to k do

Node u sends $C(u)$ to all nodes in $N(u)$, and receives $C(v)$ from all $v \in N(u)$.

$W(u) := N(u) \setminus \{v \mid C(u) \cap C(v) \neq \emptyset\}$ /* nodes to cover */

$j := 0$

While $\exists w \in W(u)$ and $j < \sigma(u)$ do

Pick $w \in W(u)$.

Add edge uw to $H(u)$.

Add $C(w)$ to $C(u)$.

$W(u) := W(u) \setminus \{v \in W(u) \mid C(v) \cap C(w) \neq \emptyset\}$

$j := j + 1$
Without Knowing n (Performances)

- **Time**: $3k - 1$ rounds (k if n is known).
- **Edges**: $m(H) \leq \sum_u k\sigma(u) \leq kn\Delta_k^{1/k} \leq kn^{1+1/k}$ where $\Delta_k = \max_u |B(u, k)|$.
- After iteration i, radius($C(u)$) $\leq i$.
- After iteration i, $|C(u)| \geq \max_{v \in B(u, k-i)} |B(v, k)|^{i/k}$ or $W(u) = \emptyset$.
- **Stretch**: at the end, $W(u) = \emptyset$ and for $v \in N(u)$, $d_H(u, v) \leq 1 + (k - 1) + (k - 1)$.

⇐ \Rightarrow $\frac{1}{2}$ $\frac{2}{3}$
Without Knowing n (Performances)

- Time: $3k - 1$ rounds (k if n is known).
- Edges: $m(H) \leq \sum_u k\sigma(u) \leq kn\Delta_k^{1/k} \leq kn^{1+1/k}$ where $\Delta_k = \max_u |B(u, k)|$.
- After iteration i, radius$(C(u)) \leq i$.
- After iteration i, $|C(u)| \geq \max_{v \in B(u, k-i)} |B(v, k)|^{i/k}$ or $W(u) = \emptyset$.
- Stretch: at the end, $W(u) = \emptyset$ and for $v \in N(u)$, $d_H(u, v) \leq 1 + (k - 1) + (k - 1)$.
Related Upper Bounds

- [Baswana et al. 2007] provide an algorithm for computing a \((k, k - 1)\)-spanner (unweighted) with \(O(kn^{1+1/k})\) expected size in \(O(k)\) rounds using randomized sampling:
 - at round \(i\), a cluster is considered for growing with probability \(n^{-1/k}\).
 - It is randomized and requires knowledge of \(n\).
- [Baswana et al. 2007] provide an algorithm for computing a \((2k - 1, 0)\)-spanner (weighted) with \(O(kn^{1+1/k})\) expected size in \(O(k^2)\) rounds using also randomized sampling and knowledge of \(n\).
Toward Additive Spanners
The Open Problem

- Do $(1, 2k - 2)$-spanners with $O(n^{1+1/k})$ edges exist?
 - $k = 2$: yes [Aingworth & al. 1999].
 - $k = 3$: ok with stretch $(1, 6)$ [Baswana & al. 2005].
 - $k > 3$: ??
- Do $(1, O(1))$-spanners with $o(n^{4/3})$ edges exist?
The Open Problem

- Do \((1, 2k - 2)\)-spanners with \(O(n^{1+1/k})\) edges exist?
- \(k = 2\) : yes [Aingworth & al. 1999].
- \(k = 3\) : ok with stretch \((1, 6)\) [Baswana & al. 2005].
- \(k > 3\) : ??
- Do \((1, O(1))\)-spanners with \(o(n^{4/3})\) edges exist?
The Open Problem

• Do \((1, 2k - 2)\)-spanners with \(O(n^{1+1/k})\) edges exist?
• \(k = 2\) : yes [Aingworth & al. 1999].
• \(k = 3\) : ok with stretch \((1, 6)\) [Baswana & al. 2005].
• \(k > 3\) : ??
• Do \((1, O(1))\)-spanners with \(o(n^{4/3})\) edges exist?
The Open Problem

- Do \((1, 2k - 2)\)-spanners with \(O(n^{1+1/k})\) edges exist?
- \(k = 2\): yes [Aingworth & al. 1999].
- \(k = 3\): ok with stretch \((1, 6)\) [Baswana & al. 2005].
- \(k > 3\): ??

- Do \((1, O(1))\)-spanners with \(o(n^{4/3})\) edges exist?
The Open Problem

- Do $(1, 2k - 2)$-spanners with $O(n^{1+1/k})$ edges exist?
 - $k = 2$: yes [Aingworth & al. 1999].
 - $k = 3$: ok with stretch $(1, 6)$ [Baswana & al. 2005].
 - $k > 3$: ??
- Do $(1, O(1))$-spanners with $o(n^{4/3})$ edges exist?
(1, 2)-spanners of size $O(n^{3/2})$ [Aingworth & al. 1999]

\[
G' := G \\
H := \emptyset \\
\textbf{While } \exists u \in V(G') \mid \text{deg}_{G'}(u) > n^{1/2} \textbf{ do} \\
\quad C(u) := B_{G'}(u, 1) \quad \text{/* cluster around } u \text{ */} \\
\quad G' := G' - C(u) \\
\quad H := H \cup \text{BFS}_{G}(u) \\
H := H \cup E(G') \quad \text{/* add remaining edges */}
\]

- H is a (1, 2)-spanner of G.
- $m(H) \leq 2n^{3/2}$ (at most $n^{1/2}$ clusters).
Proof of stretch
(1, 6)-spanners of size $O(n^{4/3})$ [Baswana & al. 2005]

- Greedily compute clusters of size greater than $n^{1/3}$.
- At most $n^{2/3}$ clusters.
- Add shortest paths for reducing distances between all cluster pairs.
- This works because $(n^{2/3})^2 = n^{4/3}$.
- For $k = 4 : \left(n^{3/4} \right)^2 \gg n^{5/4}$...
Nearly Additive Spanners

- $(1 + \varepsilon, \beta)$-spanners with $O(\beta n^{1+1/k})$ edges with $
abla = k^{\log \log k - \log \varepsilon}$ [Elkin & Peleg 2004].
- $(1 + \varepsilon, O(1/\varepsilon)^{k-2})$-spanners with $O(kn^{1+1/k})$ edges [Thorup & Zwick 2006], indeed f-spanners with $f(d) = d + O \left(kd^{1 - \frac{1}{k-1}} \right)$.
Set \(\sigma(u) \) to a value in
\[\max_{v \in B(u, \rho[2,k])} |B(v, \rho[1,k])|^{1/k}, n^{1/k} \]
\(C(u) := \{u\} \) /* cluster around \(u \) */
\(F(u) := \text{FALSE} \) /* termination flag */
\(H(u) := (\{u\}, \emptyset) \) /* spanner edges selected by \(u \) */

For \(i := 1 \) to \(k \) do

Node \(u \) sends \(C(u) \), \(F(u) \) to all nodes in \(B(u, \rho_i) \),
and receives \(C(v), F(v) \) from all \(v \in B(u, \rho_i) \).
\(W(u) := B(u, \rho_i) \setminus \{v \mid F(v) = \text{TRUE} \text{ or } C(u) \cap C(v) \neq \emptyset\} \)
\(j := 0 \)

While \(\exists w \in W(u) \) and \(j < \sigma(u) \) do

Pick \(w \in W(u) \) such that \(d_G(u, w) \) is minimal.
Add a shortest path in \(G \) from \(u \) to \(w \) to \(H(u) \).
Add \(C(w) \) to \(C(u) \).
\(W(u) := W(u) \setminus \{v \in W(u) \mid C(v) \cap C(w) \neq \emptyset\} \)
\(j := j + 1 \)

If \(W(u) = \emptyset \) then \(F(u) := \text{TRUE} \) else \(F(u) := \text{FALSE} \)
Performances

- **Time:** $O(\rho_1 + \cdots + \rho_k)$.
- **Edges:** $m(H) \leq (\rho_1 + \cdots + \rho_k)n^{1+1/k}$.
- **After iteration i, radius($C(u)$) $\leq \rho_1 + \cdots + \rho_i$.**

<table>
<thead>
<tr>
<th>stretch</th>
<th>size</th>
<th>time</th>
<th>parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2k - 1, 0)$</td>
<td>$k \cdot n^{1+1/k}$</td>
<td>$O(k)$</td>
<td>$\rho_1 = \cdots = \rho_k = 1$</td>
</tr>
<tr>
<td>$(1 + \varepsilon, 2 - \varepsilon)$</td>
<td>$(1 + \left\lceil \frac{2}{\varepsilon} \right\rceil) \cdot n^{3/2}$</td>
<td>$O(\varepsilon^{-1})$</td>
<td>$\rho_1 = 1, \rho_2 = \left\lceil \frac{2}{\varepsilon} \right\rceil, \varepsilon \in (0, 2]$</td>
</tr>
<tr>
<td>$4(1 + \left\lceil \frac{4}{\varepsilon} \right\rceil k^{-2} - \varepsilon)$</td>
<td>$(1 + \left\lceil \frac{4}{\varepsilon} \right\rceil)^{k-1} \cdot n^{1+1/k}$</td>
<td>$O((1 + \left\lceil \frac{4}{\varepsilon} \right\rceil)^{k-1})$</td>
<td>$\rho_1 = 1, \rho_i = \left\lceil \frac{4}{\varepsilon} \right\rceil (1 + \left\lceil \frac{4}{\varepsilon} \right\rceil)^{i-2}$, $\varepsilon \in (0, 4]$</td>
</tr>
<tr>
<td>$(5, 2^k - 4)$</td>
<td>$2^{k-1} \cdot n^{1+1/k}$</td>
<td>$O(2^k)$</td>
<td>\leftrightarrow with $\varepsilon = 4$</td>
</tr>
<tr>
<td>$(3, 4 \cdot 3^{k-2} - 2)$</td>
<td>$3^{k-1} \cdot n^{1+1/k}$</td>
<td>$O(3^k)$</td>
<td>\leftrightarrow with $\varepsilon = 2$</td>
</tr>
<tr>
<td>$(2, 4 \cdot 5^{k-2} - 2)$</td>
<td>$5^{k-1} \cdot n^{1+1/k}$</td>
<td>$O(5^k)$</td>
<td>\leftrightarrow with $\varepsilon = 1$</td>
</tr>
</tbody>
</table>
Performances

- **Time**: $O(\rho_1 + \cdots + \rho_k)$.
- **Edges**: $m(H) \leq (\rho_1 + \cdots + \rho_k)n^{1+1/k}$.
- **After iteration** i, radius($C(u)) \leq \rho_1 + \cdots + \rho_i$.

<table>
<thead>
<tr>
<th>stretch</th>
<th>size</th>
<th>time</th>
<th>parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2k - 1, 0)$</td>
<td>$k \cdot n^{1+1/k}$</td>
<td>$O(k)$</td>
<td>$\rho_1 = \cdots = \rho_k = 1$</td>
</tr>
<tr>
<td>$(1 + \varepsilon, 2 - \varepsilon)$</td>
<td>$(1 + \left\lceil \frac{2}{\varepsilon} \right\rceil) \cdot n^{3/2}$</td>
<td>$O(\varepsilon^{-1})$</td>
<td>$\rho_1 = 1$, $\rho_2 = \left\lceil \frac{2}{\varepsilon} \right\rceil$, $\varepsilon \in (0, 2]$</td>
</tr>
<tr>
<td>$(1 + \varepsilon, 4(1 + \left\lceil \frac{4}{\varepsilon} \right\rceil)k^{-2} - \varepsilon)$</td>
<td>$(1 + \left\lceil \frac{4}{\varepsilon} \right\rceil)k^{-1} \cdot n^{1+1/k}$</td>
<td>$O((1 + \left\lceil \frac{4}{\varepsilon} \right\rceil)k^{-1})$</td>
<td>$\rho_1 = 1$, $\rho_i = \left\lceil \frac{4}{\varepsilon} \right\rceil(1 + \left\lceil \frac{4}{\varepsilon} \right\rceil)^i$, $\varepsilon \in (0, 4]$</td>
</tr>
<tr>
<td>$(5, 2^k - 4)$</td>
<td>$2^{k-1} \cdot n^{1+1/k}$</td>
<td>$O(2^k)$</td>
<td>\leftrightarrow with $\varepsilon = 4$</td>
</tr>
<tr>
<td>$(3, 4 \cdot 3^{k-2} - 2)$</td>
<td>$3^{k-1} \cdot n^{1+1/k}$</td>
<td>$O(3^k)$</td>
<td>\leftrightarrow with $\varepsilon = 2$</td>
</tr>
<tr>
<td>$(2, 4 \cdot 5^{k-2} - 2)$</td>
<td>$5^{k-1} \cdot n^{1+1/k}$</td>
<td>$O(5^k)$</td>
<td>\leftrightarrow with $\varepsilon = 1$</td>
</tr>
</tbody>
</table>
Conclusion

• A challenge: dynamic distributed compact routing.
• A first step: distributed spanner construction.
• An open problem: existence of sparse additive spanners.
Conclusion

- A challenge: dynamic distributed compact routing.
- A first step: distributed spanner construction.
- An open problem: existence of sparse additive spanners.
Conclusion

• A challenge: dynamic distributed compact routing.
• A first step: distributed spanner construction.
• An open problem: existence of sparse additive spanners.
Spanner Variants
Spanners and link state routing

Link state routing:
- Each node discovers its neighbors,
- and advertises the state of some neighboring links.

Optimize link state advertisements:
- few links (flooded information),
- efficient routes.
Dense network G
Sub-Graph H
Augmented sub-graph H_u
Definition (Remote Spanner, JV’09)

\[H \subseteq G \text{ is an } (a, \beta)\text{-remote-spanner of } G \text{ iff } \]
\[d_{H_u}(u, v) \leq a \cdot d_G(u, v) + \beta \text{ for all } u, v \text{ where } \]
\[H_u = H \cup \{uv \mid v \in N(u)\}. \]

OLSR relies on the construction of a \((1, 0)\)-remote-spanner.
Remote Spanners

Theorem (JV’09)

- An \((a, \beta)\)-spanner is an \((a, \beta - a + 1)\)-remote-spanner implying the existence of \((k, 0)\)-spanner with \(O(kn^{1+1/k})\) edges using [Baswana & al. 2005].

- A random unit disk graph has a \((1, 0)\)-remote-spanner with \(O(n^{4/3})\) edges in expectation.

- A \((1, 0)\)-remote-spanner with size \(O(\log n)\) from optimal can distributively be computed in \(O(1)\) time.
Remote Spanners

Theorem (JV’09)

- An (a, β)-spanner is an $(a, \beta - a + 1)$-remote-spanner implying the existence of $(k, 0)$-spanner with $O(kn^{1+1/k})$ edges using [Baswana & al. 2005].

- A random unit disk graph has a $(1, 0)$-remote-spanner with $O(n^{4/3})$ edges in expectation.

- A $(1, 0)$-remote-spanner with size $O(\log n)$ from optimal can distributively be computed in $O(1)$ time.
Remote Spanners

Theorem (JV’09)

- An \((a, \beta)\)-spanner is an \((a, \beta - a + 1)\)-remote-spanner implying the existence of \((k, 0)\)-spanner with \(O(kn^{1+1/k})\) edges using [Baswana & al. 2005].

- A random unit disk graph has a \((1, 0)\)-remote-spanner with \(O(n^{4/3})\) edges in expectation.

- A \((1, 0)\)-remote-spanner with size \(O(\log n)\) from optimal can distributively be computed in \(O(1)\) time.
Remote Spanners

Theorem (JV’09)

- If G is the unit ball graph of a doubling metric with dimension p (distances are unknown), a $(1 + \varepsilon, 1 - 2\varepsilon)$-remote-spanner with $O(n\varepsilon^{-(p+1)})$ edges can be computed in $O(\varepsilon^{-1})$ time.

- If G is the unit ball of a doubling metric, a 2-multipath $(2, -1)$-remote-spanner ($\varepsilon = 1$) with $O(n)$ edges can be computed in $O(1)$ time.

- A c-multipath $(1, 0)$-remote-spanner with size $O(\log n)$ from optimal can distributively be computed in $O(1)$ time.
Remote Spanners

Theorem (JV’09)

- If G is the unit ball graph of a doubling metric with dimension p (distances are unknown), a $(1 + \varepsilon, 1 - 2\varepsilon)$-remote-spanner with $O(n\varepsilon^{-(p+1)})$ edges can be computed in $O(\varepsilon^{-1})$ time.

- If G is the unit ball of a doubling metric, a 2-multipath $(2, -1)$-remote-spanner ($\varepsilon = 1$) with $O(n)$ edges can be computed in $O(1)$ time.

- A c-multipath $(1, 0)$-remote-spanner with size $O(\log n)$ from optimal can distributively be computed in $O(1)$ time.
Remote Spanners

Theorem (JV’09)

- If G is the unit ball graph of a doubling metric with dimension p (distances are unknown), a $(1 + \varepsilon, 1 - 2\varepsilon)$-remote-spanner with $O(n\varepsilon^{-(p+1)})$ edges can be computed in $O(\varepsilon^{-1})$ time.
- If G is the unit ball of a doubling metric, a 2-multipath $(2, -1)$-remote-spanner ($\varepsilon = 1$) with $O(n)$ edges can be computed in $O(1)$ time.
- A c-multipath $(1, 0)$-remote-spanner with size $O(\log n)$ from optimal can distributively be computed in $O(1)$ time.
Spanner of Directed Graphs

Definition (Roundtrip Distance, Cowen & Wagner 1999)
In a strongly connected graph G the roundtrip distance $d_G(u, v)$ is the weight of a lightest circuit traversing u and v:

$$d_G(u, v) = d_G(u, v) + d_G(v, u)$$

Theorem (Roditty & al. 2002)
Every graph has a $(3, 0)$-roundtrip-spanner with $O(n^{3/2})$ edges and a $(2k + \varepsilon, 0)$-roundtrip-spanner with $O(k^2 n^{1+1/k} \log nW)$ edges where the weights are in the range $[1, W]$.

⇐ ? ⇒
Spanner of Directed Graphs

Definition (Roundtrip Distance, Cowen & Wagner 1999)
In a strongly connected graph G the roundtrip distance $d_G(u, v)$ is the weight of a lightest circuit traversing u and v:

$$d_G(u, v) = \overrightarrow{d}_G(u, v) + \overrightarrow{d}_G(v, u)$$

Theorem (Roditty & al. 2002)
Every graph has a $(3, 0)$-roundtrip-spanner with $O(n^{3/2})$ edges and a $(2k + \varepsilon, 0)$-roundtrip-spanner with $O\left(\frac{k^2}{\varepsilon} n^{1+1/k} \log nW\right)$ edges where the weights are in the range $[1, W]$.
Multipath Spanners

Definition (Multipath Distance, JV'09)
The c-multipath distance $d_G^c(u,v)$ is the weight of the lightest collection of c disjoint paths from u to v.

Definition (Multipath Spanner, JV'09)
$H \subseteq G$ is a c-multipath (a, β)-spanner of G iff $d_H^i(u,v) \leq a \cdot d_G^i(u,v) + i\beta$ for all u,v and $i \leq c$.

Theorem (GGV'10)
Every graph has a 2-multipath $(3,0)$-spanner with $O(n^{3/2})$ edges and a c-multipath $(c(2k - 1), 0)$-spanner with $O(cn^{1+1/k})$ edges (edge disjoint paths are considered).
Definition (Multipath Distance, JV’09)
The c-multipath distance $d_G^c(u, v)$ is the weight of the lightest collection of c disjoint paths from u to v.

Definition (Multipath Spanner, JV’09)
$H \subseteq G$ is a c-multipath (a, β)-spanner of G iff $d_H^i(u, v) \leq a \cdot d_G^i(u, v) + i \beta$ for all u, v and $i \leq c$.

Theorem (GGV’10)
Every graph has a 2-multipath $(3, 0)$-spanner with $O(n^{3/2})$ edges and a c-multipath $(c(2k - 1), 0)$-spanner with $O(cn^{1+1/k})$ edges (edge disjoint paths are considered).
Multipath Spanners

Definition (Multipath Distance, JV’09)
The c-multipath distance $d_G^c(u,v)$ is the weight of the lightest collection of c disjoint paths from u to v.

Definition (Multipath Spanner, JV’09)
$H \subseteq G$ is a c-multipath (α, β)-spanner of G iff $d_H^i(u,v) \leq \alpha \cdot d_G^i(u,v) + i\beta$ for all u,v and $i \leq c$.

Theorem (GGV’10)
Every graph has a 2-multipath $(3,0)$-spanner with $O(n^{3/2})$ edges and a c-multipath $(c(2k - 1), 0)$-spanner with $O(cn^{1+1/k})$ edges (edge disjoint paths are considered).
Definition (Fault Tolerant Spanner, Chechik & al. 2009)

$H \subseteq G$ is a f-fault tolerant (a, β)-spanner of G iff

$$d_{H-F}(u, v) \leq ad_{G-F}(u, v) + \beta \text{ for all } u, v \text{ and } F \subseteq V(G) \text{ with } n(F) \leq f.$$

Theorem (Chechik & al. 2009)

Every graph has an f-fault tolerant $(2k - 1, 0)$-spanner with

$$O(f^3 k^{f+1} \cdot n^{1+1/k} \log^{1-1/k} n) \text{ edges.}$$
Fault Tolerant Spanner

Definition (Fault Tolerant Spanner, Chechik & al. 2009)

$H \subseteq G$ is a f-fault tolerant (α, β)-spanner of G iff
$d_{H-F}(u, v) \leq ad_{G-F}(u, v) + \beta$ for all u, v and $F \subseteq V(G)$ with $n(F) \leq f$.

Theorem (Chechik & al. 2009)

Every graph has an f-fault tolerant $(2k - 1, 0)$-spanner with $O(f^{3} k^{f+1} \cdot n^{1+1/k} \log^{1-1/k} n)$ edges.
Definition (Distance Emulator, Dor & al. 2000)

H is an (α, β)-emulator of G iff for all u, v, $d_G(u, v) \leq d_H(u, v) \leq \alpha \cdot d_G(u, v) + \beta$.

Theorem (Dor & al. 2000)

Every graph has $(1, 4)$-emulator with $O(n^{3/2})$ edges.

Theorem (Thorup & Zwick 2006)

Every graph has an f-emulator with $O(kn^{1+\frac{1}{2k-1}})$ edges where $f(d) = d + O\left(kd^{1-\frac{1}{k-1}}\right)$.
Distance Emulators

Definition (Distance Emulator, Dor & al. 2000)

H is an (α, β)-emulator of G iff for all u, v,
$\text{d}_G(u, v) \leq \text{d}_H(u, v) \leq \alpha \cdot \text{d}_G(u, v) + \beta$.

Theorem (Dor & al. 2000)

Every graph has $(1, 4)$-emulator with $O(n^{3/2})$ edges.

Theorem (Thorup & Zwick 2006)

Every graph has an f-emulator with $O(kn^{1+\frac{1}{2k-1}})$ edges where
$f(d) = d + O\left(kd^{1-\frac{1}{k-1}}\right)$.
Distance Emulators

Definition (Distance Eumulator, Dor & al. 2000)

H is an (α, β)-emulator of G iff for all $u, v,$

$$d_G(u, v) \leq d_H(u, v) \leq \alpha \cdot d_G(u, v) + \beta.$$

Theorem (Dor & al. 2000)

Every graph has $(1, 4)$-emulator with $O(n^{3/2})$ edges.

Theorem (Thorup & Zwick 2006)

Every graph has an f-emulator with $O(\kappa n^{1 + \frac{1}{2k-1}})$ edges where

$$f(d) = d + O\left(kd^{1 - \frac{1}{k-1}}\right).$$
Distance Preservers

Definition (Bollobás & al. 2003)

\[H \subseteq G \] is a \(D \)-preserver iff \(d_H(u, v) = d_G(u, v) \) for all \(u, v \) such that \(d_G(u, v) \geq D \).

Theorem (Bollobás & al. 2003)

Every graph has a \(D \)-preserver with \(O(n^2/D) \) edges (and this is optimal).
Distance Preservers

Definition (Bollobás & al. 2003)

$H \subseteq G$ is a D-preserver iff $d_H(u, v) = d_G(u, v)$ for all u, v such that $d_G(u, v) \geq D$.

Theorem (Bollobás & al. 2003)

Every graph has a D-preserver with $O(n^2/D)$ edges (and this is optimal).
Conclusion

There are still new spanner algorithms to find.