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Graph spanner

Definition

A spanner H of a graph G is a subgraph of G with :
e few edges,
e short distances.
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Graph spanner

Definition

A spanner H of a graph G is a subgraph of G with :
e few edges,
e short distances.

Trade-of f number of edges vs stretch of distances.
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What for?

® Synchronizer [Awerbuch 1985, Peleg & Uliman 1989].

® Implicit pre-processing step of approximate distance
oracle computation [Thorup & Zwick 2005].

® By-product of compact routing schemes [Peleg & Upfal
19891.
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Compact routing

Definition
A compact routing scheme for a graph & consists in
designing routing tables with :

e small size,

® short routes.
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designing routing tables with :
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Compact routing

Definition
A compact routing scheme for a graph & consists in
designing routing tables with :

e small size,

® short routes.

Trade-off table size vs stretch of routes.

Examples :

® Classical routing : one entry per destination (size O(n)
per node).
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Compact routing

Definition
A compact routing scheme for a graph & consists in
designing routing tables with :

e small size,

® short routes.

Trade-off table size vs stretch of routes.

Examples :

® Classical routing : one entry per destination (size O(n)
per node).

® Grid : use coordinates (size O(1) per node).
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BGP entries in the Internet

Internet : use prefix of addresses.
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Compact routing theory

e Explicit trade-off between table size and route length
[Peleg89], [Gavoille96], [ThorupO1],...

® Static centralized solutions : [ThorupO1], [Brady06],
[Abraham04], [Abraham08]....
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Compact routing theory

e Explicit trade-off between table size and route length
[Peleg89], [Gavoille96], [ThorupO1],...

® Static centralized solutions : [ThorupO1], [Brady06],
[Abraham04], [Abraham08]....

® Challenge : dynamic distributed compact routing.
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From compact routing to spanner construction

® Take a compact routing scheme for 6.

® For each node add to H the link to each neighbor listed
in its routing table.
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From compact routing to spanner construction

® Take a compact routing scheme for 6.

® For each node add to H the link to each neighbor listed
in its routing table.

® H is aspanner of 6.
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From compact routing to spanner construction

Take a compact routing scheme for 6.

For each node add to H the link to each neighbor listed
in its routing table.

H is a spanner of 6.
Challenge for today : distributed spanner construction.
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Graph spanner

Definition (Peleg & al. 1987-89)

Given an undirected graph 6, a subgraph H C G is an
(a, p)-spanner of G iff forallu,v,

dy(u,v)<a-dg(u,v)+p
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Graph spanner

Definition (Peleg & al. 1987-89)

Given an undirected graph 6, a subgraph H C G is an
(a, p)-spanner of G iff forallu,v,

dy(u,v)<a-dg(u,v)+p

® a: multiplicative stretch
e B : additive stretch
e m(H) : size (number of edges)
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Example
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A Greedy Algorithm [Althofer & al. 1993]

H:=0
For each edge uv € E(6) do
| If dy(u,v)> 2k -1thenadd uv to H.

=?=

e Hisa (2k -1,0)-spanner of .
® H has girth g(H) > 2k implying m(H) < n**/k.
® This is optimal assuming the girth conjecture.
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Large Girth, Few Edges

Theorem (Folklore, see Bollobds or Matousek)
A graph H with girth g(H) > 2k has m(H) < n + n**Vk edges.

® Case 2k : H contains an induced subgraph with minimal
degree 3 > 3d. The graph induced by nodes at distance
< k from some u is a tree implying (3 - 1)¥ < n.
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Erdds-Simonovits Girth Conjecture

® The previous bound seems tight :

® For k =1 (or girth 3,4) : consider K,z /2.

® For k = 2 (or girth 5,6) : consider the finite projective
plane of order # n'/2 and the bipartite graph of
point-line incidences.

=?2 = 173 14/ 32



Erdds-Simonovits Girth Conjecture

Conjecture (Erdos 1964, see Erdos & Simonovits 1982)

For any k > 1, there exist graphs with Q(n'*'/¥) edges and
girth greater than 2k.
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Erdds-Simonovits Girth Conjecture

Conjecture (Erdos 1964, see Erdos & Simonovits 1982)

For any k > 1, there exist graphs with Q(n*'/¥) edges and
girth greater than 2k.

® Proved for k = 1,2,3,5 [see Wenger 1991].

e There exist graphs with Q(n'*?/3k) edges and girth
greater than 2k [Lazebnik & al. 1995].

=? = 3,314/ 32



Beyond the Girth Conjecture

e With stretch (2k - 1,0), can we get O(f(n, m, k))
edges?

e Eg, O(ngl/k) ?

=?=
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Distributed Spanner Computation
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The problem

® G is the communication network of a distributed
system.

e Compute an (a, p)-spanner of & in the LOCAL model :
synchronous rounds, unbounded message size.

=?=
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Lower Bound

Theorem (Elkin 2006, DGPV'08)

Assuming the girth conjecture, an algorithm that computes
a connected subgraph with o(n*/k) edges has expected
time at least k.

® A graph with girth greater than 2k looks like a tree
after t < k rounds.
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Upper Bound

Theorem (DGPV'08)

It is possible to compute a (2k - 1,0)-spanner with
O(kn'*'/k) edges in k rounds (in 3k - 1 rounds if n is
unknown).

=?=
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Per Node Cluster Growth [DGPV'08]
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Without Knowing n [DGPV'08]

=?=

Set o(u) to any value in [max,cp(y k-1y | B(v, k)Y, n/k].
C(u) :={u} /* cluster around u */
H(u) := ({u},0) /* spanner edges selected by u */
Fori:=1to k do
Node u sends C(u) to all nodes in N(u),
and receives C(v) from all v € N(u).
W(u) = Nw)\ {v | Cu)yn C(v) 2 0} /* nodes to
cover */
ji=0
While 3w € W(u) and j < o(u) do
Pick w € W(u).
Add edge uw to H(u).
Add C(w) to C(u).
W(u) = W)\ {ve W) | c(vync(w)z0}
ji=+

1,121/ 32



Without Knowing n (Performances)

e Time: 3k - 1rounds (k if n is known).

e Edges : m(H) < 3, ko(u) < knAl'k < kn**1/k where
Ay = max, |B(u, k).

=?=
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Without Knowing n (Performances)

e After iteration i, radius(C(u)) < i.

e After iteration i, |C(u)| > max,cp x-iy |B(v, K)|"/K or
W(u) = 0.

e Stretch : at the end, W(u) = 0 and for v € N(u),
duy(u,v)<1+(k-1+(k-1).

=?=
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Related Upper Bounds

=?=

® [Baswana et al. 2007] provide an algorithm for
computing a (k, k - 1)-spanner (unweighted) with
O(kn'*'/k) expected size in O(k) rounds using
randomized sampling :

® at round i, a cluster is considered for growing with
probability n"t/k.
e It is randomized and requires knowledge of n.

® [Baswana et al. 2007] provide an algorithm for
computing a (2k - 1,0)-spanner (weighted) with
O(kn'*k) expected size in O(k?) rounds using also
randomized sampling and knowledge of n.
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Toward Additive Spanners
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The Open Problem

e Do (1,2k - 2)-spanners with O(n'*/k) edges exist ?
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The Open Problem

e Do (1,2k - 2)-spanners with O(n'*/k) edges exist ?
® k = 2:yes [Aingworth & al. 1999].
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The Open Problem

e Do (1,2k - 2)-spanners with O(n'*/k) edges exist ?
® k = 2:yes [Aingworth & al. 1999].
® k = 3: ok with stretch (1,6) [Baswana & al. 2005].

=?=

3/5 26/ 32



The Open Problem

Do (1, 2k - 2)-spanners with O(n'*/k) edges exist ?
k = 2 : yes [Aingworth & al. 1999].

k = 3 : ok with stretch (1, 6) [Baswana & al. 2005].
k>3:?2?
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The Open Problem

Do (1, 2k - 2)-spanners with O(n'*/k) edges exist ?
k = 2 : yes [Aingworth & al. 1999].

k = 3 : ok with stretch (1, 6) [Baswana & al. 2005].
k>3:2?

Do (1, O(1))-spanners with o(n*'3) edges exist ?
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(1, 2)-spanners of size O(n'?) [Aingworth & al.

1999]
6 =6
Hi=0

=?=

While u € V(6') | deg,(u) > n'/2 do
C(u):= Bg/(u,1)  /* cluster around u */
L G'=6"-C(u)
H = HU BFSg(u)
H:=HUE(E') /* add remaining edges */

e Hisa(l,2)-spanner of 6.
e m(H) < 2n3/2 (at most n'/2 clusters).
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Proof of stretch

=?=
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(1,6)-spanners of size O(n*3) [Baswana & al. 2005]

e Greedily compute clusters of size greater than n'/3.
e At most n?/3 clusters.
® Add shortest paths for reducing distances between all
cluster pairs.
2
e This works because <n2/3) = n%3,
2
e Fork=4: (n3/4) »nd4

=?2 = 1/1 28/ 32



Nearly Additive Spanners

e (1+¢,p)-spanners with O(pn'*/k) edges with
p = kloglogk-lege [E|kin & Peleg 2004].

e (1+¢,0(1/e)k?)-spanners with O(kn'*1k) edges
[Thorup & Zwick 2006], indeed f-spanners with

fldy=d+0 (kdl'ﬁ).
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Distributed Nearly Additive Spanners [DGPV'09]

=?=

Set o(u) to a value in

[max,ep(u o2k |B(v.p[1, k1)|VK, nl/k]

C(u) :={u} /* cluster around u */

F(u) := FALSE /* termination flag */

H(u) := ({u},0) /* spanner edges selected by u */

For i :=1to k do

Node u sends C(u), F(u) to all nodes in B(u,p;),

and receives C(v), F(v) fromall v € B(u,p;).

W(U) =

B(u,pi)\ {v | F(v) = TRUE or C(u)N C(v) 2 B}

j=0

While 3w € W(u) and j < o(u) do
Pick w € W(u) such that dg(u, w) is minimal.
Add a shortest path in 6 from u to w to H(u).
Add C(w) to C(u).
W(u) = W)\ {ve W) | c(vync(w)z0}
ENES!

| If W(u) = 0 then F(u) := TRUE else F(u) := FALSE

1/
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Performances

e Time: O(pr +-"+pg).
e Edges: m(H) < (py + - - + py)nt*V/k,

e After iteration i, radius(C(u)) < p1 + -

=?=

*pi.
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Performances

e Time: O(pr +-"+pg).
e Edges: m(H) < (p1 +...+pk)n1+1/k'
e After iteration i, radius(C(u)) < p1 + - +p;.

stretch | size | time | parameters

(2k -1,0) k - n+1/k O(k) pr=-r=p=1

=1p,=|2

1+8/2_8 1+ g .n3/2 08’1 P1 P2 K

( ) | a2 COR R

(1+¢, 1+ 4 )k—l. 4 p1=1,
47]yk-1 ) .
(2o | RN o@e 8 G e gy
e € (0,4]

(5.2 -4) kL. pl+l/k 0(2%) — withe=4
(3,4-3k2-2) | 3K1.pllk oJEL) — withe=2
(2,4-5%2-2) | BkT.pllk o(5%) — withe =1
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Conclusion

® A challenge : dynamic distributed compact routing.
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Conclusion

® A challenge : dynamic distributed compact routing.
® A first step : distributed spanner construction.
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Conclusion

® A challenge : dynamic distributed compact routing.
® A first step : distributed spanner construction.

® An open problem : existence of sparse additive
spanners.

=?=
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Spanner Variants

=?=
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Spanners and link state routing

Link state routing :
® Each node discovers its neighbors,

® and advertises the state of some neighboring links.

Optimize link state advertisements :
e few links (flooded information),
e efficient routes.

=?=

1/1 34/ 32



Dense network G

s 30018 1/1 35/ 32
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Remote Spanners

Definition (Remote Spanner, JV'09)

H C 6 is an(a,p)-remote-spanner of G iff
du,(u,v)<a-dg(u,v)+p forall u,v where
Hy=HU {uv | v e N()}.

OLSR relies on the construction of a (1,0)-remote-spanner.
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Remote Spanners

Theorem (JV'09)
® An(a,p)-spanner is an(a,p - a + 1)-remote-spanner

implying the existence of (k,0)-spanner with O(kn'*'/k)
edges using [Baswana & al. 2005].
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Remote Spanners

Theorem (JV'09)

® A random unit disk graph has a (1,0)-remote-spanner
with O(n*'3) edges in expectation.

=?=
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Remote Spanners

Theorem (JV'09)

® A (1,0)-remote-spanner with size O(log n) from optimal
can distributively be computed in O(1) time.
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Remote Spanners

Theorem (JV'09)

e If G is the unit ball graph of a doubling metric with
dimension p (distances are unknown), a
(1+¢,1-2¢)-remote-spanner with O(ne"P*)) edges can
be computed in O(e!) time.
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Remote Spanners

Theorem (JV'09)

e If G is the unit ball of a doubling metric, a 2-multipath
(2,-1)-remote-spanner (¢ = 1) with O(n) edges can be
computed in O(1) time.

=272 = 5/6 39/ 32



Remote Spanners

Theorem (JV'09)

® A c-multipath (1,0)-remote-spanner with size O(log n)
from optimal can distributively be computed in O(1)
time.
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Spanner of Directed Graphs

Definition (Roundtrip Distance, Cowen & Wagner 1999)

In a strongly connected graph G the roundtrip distance
dg(u, v) is the weight of a lightest circuit traversing u and
v —_ —_

dg(u,v) = dg(u,v)+dg(v,u)
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Spanner of Directed Graphs

=?=

Definition (Roundtrip Distance, Cowen & Wagner 1999)

In a strongly connected graph G the roundtrip distance
dg(u, v) is the weight of a lightest circuit traversing u and

v —_ —_
dg(u,v) = dg(u,v)+dg(v,u)

Theorem (Roditty & al. 2002)

Every graph has a (3,0)-roundtrip-spanner with O(n%/2)
edges and a (2k + €,0)-roundtrip-spanner with

O(¥n¥1/k log nW) edges where the weights are in the
range [1, W1.
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Multipath Spanners

Definition (Multipath Distance, JV'09)

The c-multipath distance df(u, v) is the weight of the
lightest collection of c disjoint paths from u to v.
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Multipath Spanners

=?=

Definition (Multipath Distance, JV'09)

The c-multipath distance df(u, v) is the weight of the
lightest collection of c disjoint paths from u to v.

Definition (Multipath Spanner, JV'09)

H C & is a c-multipath (a, p)-spanner of & iff
d/(u,v)<a-dg(u,v)+ip forallu,vandizc.
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Multipath Spanners

=?=

Definition (Multipath Distance, JV'09)

The c-multipath distance df(u, v) is the weight of the
lightest collection of c disjoint paths from u to v.

Definition (Multipath Spanner, JV'09)

H C & is a c-multipath (a, p)-spanner of & iff
d/(u,v)<a-dg(u,v)+ip forallu,vandizc.

Theorem (66V'10)

Every graph has a 2-multipath (3,0)-spanner with O(n3?)
edges and a c-multipath (c(2k - 1),0)-spanner with
O(cn'*Vk) edges (edge disjoint paths are considered).
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Fault Tolerant Spanner

Definition (Fault Tolerant Spanner, Chechik & al. 2009)
H C 6 is a f-fault tolerant (a, p)-spanner of G iff
dy-r(u,v) < adg.g(u,v)+p forallu,vand F C V(G) with
n(F)< f.
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Fault Tolerant Spanner

=?=

Definition (Fault Tolerant Spanner, Chechik & al. 2009)

H C 6 is a f-fault tolerant (a, p)-spanner of G iff
dy-r(u,v) < adg.g(u,v)+p forallu,vand F C V(G) with
n(F)< f.

Theorem (Chechik & al. 2009)
Every graph has an f-fault tolerant (2k - 1,0)-spanner with
O(F3kf*L - nt*Vk jog™ ) edges.
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Distance Emulators

Definition (Distance Eumlator, Dor & al. 2000)

H is an (a, p)-emulator of G iff forall u,v,
dg(u,v) < dy(u,v)<a-dg(u,v)+p.
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Distance Emulators

Definition (Distance Eumlator, Dor & al. 2000)

H is an (a, p)-emulator of G iff forall u,v,
dg(u,v) < dy(u,v)<a-dg(u,v)+p.

Theorem (Dor & al. 2000)
Every graph has (1, 4)-emulator with O(n%/?) edges.
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Distance Emulators

Definition (Distance Eumlator, Dor & al. 2000)

H is an (a, p)-emulator of G iff forall u,v,
dg(u,v) < dy(u,v)<a-dg(u,v)+p.

Theorem (Thorup & Zwick 2006)

el
Every graph has an f -emulator with O(kn1 2k-1) edges where
f(d)=d+0 (kd"%).
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Distance Preservers

Definition (Bollobds & al. 2003)
H C G is a D-preserver iff dy(u,v) = dg(u,v) forallu,v
such that dg(u,v) 2 D.
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Distance Preservers

~=?=

Definition (Bollobds & al. 2003)
H C G is a D-preserver iff dy(u,v) = dg(u,v) forallu,v
such that dg(u,v) 2 D.

Theorem (Bollobds & al. 2003)

Every graph has a D -preserver with O(n%/D) edges (and
this is optimal).
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Conclusion

There are still new spanner algorithms to find.
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