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Abstract

Many large real-world networks actually have a 2-mode mattheir nodes may be

separated into two classes, the links being between nodekffefent classes only.

Despite this, and despite the fact that many ad-hoc tools hagn designed for the study
of special cases, very few exist to analyse (describe, @xtedevant information) such

networks in a systematic way. We propose here an extensitmeahost basic notions

used nowadays to analyse large 1-mode networks (the @hsarge) to the 2-mode case.
To achieve this, we introduce a set of simple statisticsciwiwe discuss by comparing
their values on a representative set of real-world netwaridson their random versions.
This makes it possible to evaluate their relevance in cagysroperties of interest in

2-mode networks.

INTRODUCTION.

A bipartite graph is a tripleG = (T, L, E) whereT is the set oftop nodes, L is the set ofbottom
nodes, and® C T x L is the set of links. The difference wittlassicalgraphs lies in the fact that the
nodes are in two disjoint sets, and that the links always ateden a node of one set and a node of the
other. In other words, there cannot be any link between twaeson the same set.

Many large real-world networks of interest may be modeletunadly by a bipartite graph. These
networks are calle@-mode networksor affiliation networkswhen they represent groups and members
(i.e. each link represents a social actor’s affiliation to a grol} us cite for instance the actors-movies
network, where each actor is linked to the movies he/shesplay .9, Watts & Strogatz, 1998; Newman
et al, 2001a), authoring networks, where the authors are linketié¢ paper they signe@.g, Newman,
2001a; Newman, 2001b), occurrence networks, where thesmcdurring in a book are linked to the
sentences of the book they appeararg( Ferrer & Solé, 2001), company board networks, where tlaedo
members are linked to the companies they lead,(Robins & Alexander, 2004; Conyon & Muldoon,
2004; Battiston & Catanzaro, 2004), and peer-to-peer exganetworks in which peers are linked to
the data they provide/search.q, Fessantkt al, 2004; Voulgariset al, 2004; Guillaumeet al., 2005;
Guillaumeet al,, 2004).

Although there is nowadays a significant amount of notiond tols to analyse (classical) 1-mode
networks, there is still a lack of such results fitting the deeéor analysing 2-mode networks. In such
cases, one generally has to transform the 2-mode netwarkaidtmode one and/or to introduce ad-hoc
notions. In the first case, there is an important loss of mfdion, as well as other problems that we
detail below (Section Ill). In the second case, there isrotidack of rigor and generality, which makes
the relevance of the obtained results difficult to evaluate.

The aim of this contribution is to provide a set of simpleistats which will make it possible and easy
to analyse real-world 2-mode networks (or at least make tise dtep towards this goal) while keeping
their bipartite nature.

To achieve this, we will first present an overview of the basitions and methodologies used in the
analysis of 1-mode networks. We will then show how peoplealiguransform bipartite networks into
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1-mode networks in order to be able to analyse them with thks tesigned for this case. This will lead
us to a description of the state of the art, then of the metloggoused in this paper. Finally, we will
present and evaluate the statistics we propose for the asalf 2-mode networks.

Before entering in the core of this contribution, let us oetthat we only deal here with simgle
undirected, unweighted, static networks. Consideringat@d, weighted, and/or dynamic networks is out
of the scope of this paper; we will discuss this further in to@clusion. Moreover, in all the cases we
will consider here (and in most real-world cases), the grhaaé a huge connected componer, there
exists a path in the graph from almost any node to any othéhdriollowing, we will make our statistics
on the whole graph everywhere this makes sense, but we williceourselves to the largest connected
component where this is necessary (namely for distance etatipns). Again, this is classical in the
literature and has no significant impact on our results.

I. CLASSICAL NOTIONS.

Let us consider a (classical) graph= (V, E), whereV is the set of nodes anl C V' x V is the set
of links. We will denote byN (v) = {u € V, (u,v) € E} the neighbourhoodf a nodev, the elements
of N(v) being theneighboursof v. The number of nodes iV (v) is thedegreeof v: d°(v) = |N(v)|.

The most basic statistics describing such a graph are isnsiz |V|, its number of linksm = |E],
and its average degrée—= 27’”“ Its densityd(G) = % i.e. the number of existing links divided by the
number of possible links, also is an important notion. It @hmng but the probability that two randomly
chosen (distinct) nodes are linked together.

Going further, one may define the distance between two naddseigraph as the minimal number of
links one has to follow to go from one node to the other. Not this only make sense if there is a
path between the two nodess. if they are in the same connected component. As explainedealoo all
the paper, we will only consider distances between the nadélse largest connected component (and
we will give its size). Then, the average distance of the lgrapG), is nothing but the average of the
distances for all pairs of nodes in the largest connectedpooent.

The statistics described above are the ones we will callbdsc statistics. The next one is not so
classical. It is the degree distributiore. for all integer: the fractionp; of nodes of degree. In other
words, it is the probability that a randomly chosen node leggeki. One may also observe the correlations
between degrees, defined as the average degree of the naigldicmodes of degreg for each integer
7. Other notions concerning degrees have been studied, dkertativity (Newman, 2003a) for instance,
but we do not detail this here.

The last kind of statistics we will discuss here aims at capgua notion of overlap: it measures the
probability that two nodes are linked together, provideg/thave a neighbour in common. In other words,
it is the probability that any two neighbours of any node an&dd together. This may be done using
two slightly different notions, both calledustering coefficientamong which there often is a confusion
in the literature¢. Both will be useful in the following therefore we discus®h precisely here.

The first one computes the probability, for any given nodesehoat random, that two neighbours of
this node are linked together. It therefore relies on theéonoof clustering coefficient for any node of
degree at least, defined by:

e (o) = AEvol 2B
INOINOED ~ do(v)(d(v) — 1)

where Ey () = EN (N(v) x N(v)) is the set of links between neighbours:ofin other words, cgv) is
the probability that two neighbours af are linked together. Notice that it is nothing but the dgnsit

3This means that we do not allow loops (links from a node tolfjts®r multiple links between two given nodes. This is claakin
studies of large networks: loops are managed separatedgnie occur, and multiple links are generally encoded asvieighs, or simply
ignored.

“Some authors make a difference by calling the first notitustering coefficienand the second onansitivity ratio, but we prefer to
follow the most classical conventions of large network Esdere.



the neighbourhood of, and in this sense it captures the local density. The clagtaoefficient of the
graph itself is the average of this value for all the nodes:

Zuev CC'(U)
[{veV, d(v) =2}

cG(G) =

One may define directly another notion of clustering coedfitiof G as a whole as follows:

3N
cc,(G) = NVA

where N, denotes the number of triangles. sets of three nodes with three links@ and N, denotes
the number of connected triplese. sets of three nodes with at least two links,Gh This notion of
clustering is slightly different from the previous one sntgives the probability, when one chooses two
links with one extremity in common, that the two other extitsgs are linked together.

Both notions have their own drawbacks and advantages. Téteofiie has the advantage of giving a
value for each node, which makes it possible to observe ttelition of this value and the correlations
between this value and the degree, for instance. It howeaethe drawback of reducing the role of high
degree nodes. Moreover, importantly, these definitionsucaslightly different notions, which may both
be relevant depending on the context. We will therefore wdk botions in the following. This is why we
introduced two different notations, namely,cand c¢,, which emphasises the fact that one is centered
on nodes and the other is centered on pairs of links with otreraity in common.

One may consider many other statistics to describe larggonks. Let us cite for instance centrality
measures, various decompositions, and notions captunm@lility of each node to spread information
in the network. See Wasserman & Faust, 1994; Albert & Basial#002; Newman, 2003b; Bornholdt &
Schuster, 2003; Brandes & Erlebach, 2005 for surveys frdferdnt perspectives. We will not consider
here such statistics. Instead, we will focus on the most leimopes, described above, because they play
a central role in recent studies of large networks, which alémost-1998 studies, as we will explain in
the next section.

[I. ONE-MODE LARGE REAL-WORLD NETWORKS

Many large real-world networks have been studied in theditee, ranging from technological networks
(power grids, internet) to social ones (collaboration rets, economical relations), or from biological
ones (protein interactions, brain topology) to linguisties (cooccurrence networks, synonymy networks).
See Wasserman & Faust, 1994; Albert & Barabasi, 2002; Newr2@03b; Bornholdt & Schuster, 2003;
Brandes & Erlebach, 2005 and references therein for ddtakamples.

It appeared recentlye(g, Watts & Strogatz, 1998; Albert & Barabasi, 2002; Newmad)Zb; Bornholdt
& Schuster, 2003) that most of these large real-world nédta/drave several nontrivial properties in
common. This was unexpected, and led to an important strdastudies, developping a new kind of
network analysis which we will call post-1998 network arsidy(as it followed the seminal paper Watts
& Strogatz, 1998). This section is devoted to an overview disgussion of these properties (based on
the definitions given in previous section), on which the wdsthe paper will rely. We will use the same
notations as in Section I.

We are concerned here with large networks only, which mdaets:tis large. In most real-world cases,
it appeared thatn is of the same order of magnitude asi.e. the average degrefeis small compared
to n. Therefore, the density generally is very smallG) = n(’n‘”jl) ~ g which is close td) sincen is
much larger thark in general. We will always suppose we are in this case in thewmng.

It is now a well known fact that the average distance in laggd-world networks is in general very
small mall-world effect), even in very large ones, see for instance Milgra@§71 Watts & Strogatz,
1998. This is actually true in most graphs, since a small arnoirandomness is sufficient to ensure this,
see for instance Watts & Strogatz, 1998; Kleinberg, 200dajnkerg, 2000b; Bollobas, 2001; Erdos &




Rényi, 1959. This property, though it may have importamtsamuences and should be taken into account,
should therefore not be considered as a significant propéréygiven network (see Section V).

Another issue which received recently much attention, seénktance Faloutsast al., 1999; Barabasi
& Albert, 1999, is the fact that the degree distributtoof most large real-world networks is highly
heterogeneous, often well fitted by a power law:~ k= for an exponenty generally betweer and
3.5. This means that, despite most nodes have a low degree,dkiste nodes with a very high degree.
This implies in general that the average degree is not afgignt property, bringing much less information
than the exponent which is a measurement of the heterogeneity of degrees.

If one samples a random network with the same dieeds many nodes and links) as a given real-world
one®, thus with the same density, then the obtained degreehititrin is qualitatively different: it follows
a Poisson law. This means that the heterogeneous degrabudish is not a trivial property, in the sense
that it makes large real-world networks very different franost graphs (of which a random graph is
typical). The degree correlations and other properties egraks, however, behave differently depending
on the network under concern.

Going further, the clustering coefficients (according tdhbdefinitions) are quite large in most real-
world networks: despite most pairs of nodes are not linkgettwer (the density is very low), if two nodes
have a neighbour in common then they are linked together avipnobability significantly higher thaf
(the local density is high). However, the clustering coedfit distributions, their correlations with degrees,
and other properties related to clustering, behave diftgrelepending on the network under concern.

If, as above, one samples a random graph with the same sizeagymal one then the two definitions
of clustering coefficients are equivalent and equal to thesitie The clustering coefficients therefore are
very low in this case. If one samples a random graph with tineesaumber of nodeand the very same
degree distributioh then the clustering coefficients still are very small, clése) (Newman, 2003b).
Clustering coefficients therefore capture a property ofvoets which is not a trivial consequence of their
degree distribution.

Finally, it was observed that the vast majority of large +@alld networks have a very low density, a
small average distance, a highly heterogeneous degre#bdligtn and high clustering coefficients. These
two last properties make them very different from randonpgsa(both purely random and random with
prescribed degree distribution). More subtle propertiag be studied, but until now no other one appeared
to be a general feature of most large real-world networks. diloperties described here therefore serve, in
most post-1998 studies, as a basis for the analysis of la@a@enorld networks, and so we will focus on
them in the following. Our aim will be to define and discussitieguivalent for 2-mode networks / bipartite
graphs.

[Il. PROJECTION

Let us now consider a large 2-mode network modeled as a bgataphG = (T,L, E). The
1 -projection ofG is the graphZ, = (L, E'|) in which two nodes (ofL) are linked together if they have
at least one neighbour in common (i) in G: £, = {(u,v), 3z € T : (u,z) € F and(v,z) € E}.
The T-projectionG+ is defined dually. See Figure 1 for an example.

In order to be able to use the many notions defined on 1-modwriet, and to compare a particular
network to others, one generally transforms a 2-mode né&twup its | -projection, often called the
one-mode version of the network. This was typically donetha 2-mode networks we presented in the
introduction: the actors-movies network is transformet its | -projection where two actors are linked
if they acted together in a movie.g, Watts & Strogatz, 1998); the authoring networks are tiamséd

®See the appendix, page 23 for more detailed definitions amsd bih how to understand this kind of statistics.

®We consider here a network chosen uniformly at random ambeghes having this size, using typically the Erdds andyRérodel
(Bollobas, 2001; Erdds & Rényi, 1959).

"We consider here a network chosen uniformly at random amea@mes having this number of nodes and this degree distributsing
typically theconfigurationmodel (Bender & Canfield, 1978; Bollobas, 2001; Molloy & Re&895; Molloy & Reed, 1998; Viger & Latapy,
2005.
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Fig. 1. An example of bipartite graph (center), togethemhvits T-projection (left) and itsL-projection (right).

into their 1 -projections,i.e. coauthoring networks where two authors are linked if thgned a paper
together €.g, Newman, 2001a; Newman, 2001b; Newmetnal, 2001a); the occurrence networks are
transformed into their_-projectionsj.e. cooccurrence networks where two words are linked if theyeapp
in the same sentence.§, Ferrer & Solé, 2001); the company board networks are fioam&d into their

L -projections where two persons are linked together if theyraember of a same boare.§, Robins &
Alexander, 2004; Conyon & Muldoon, 2004; Battiston & Catamg 2004; Kogut & Walker, 2003; Kogut
et al, 2006); and the peer-to-peer exchange networks are tramsfbinto their L -projections where two
data are linked together if they are provided/searched amegeerd.g, Fessantet al,, 2004; Voulgaris
et al, 2004; Guillaumeet al,, 2005; Guillaumeet al., 2004).

This approach is of course relevant since the projectiorgeiustudy make sense, and also encode
much information. Moreover, this allows the study of 2-maustworks using the powerful tools and
notions provided for classical, 1-mode, networks. We h@awergue that in most cases there would be a
significant gain in considering the bipartite version of ttega. The main reasons are as follows.

« Most importantly, there is much information in the bipatgtructure which may disappear after
projection. For instance, the fact that two actors playednamy movies together, and the size of
these movies, brings much information which is not avadaibl the projection, in which they are
simply linked together. This loss of information is partexly clear when one notices that there are
many bipartite graphs which lead to the same projection lémbach bipartite graph has only one
T- and one_-projection), see Guillaume & Latapy, 2004b; Guillaume &ta@my, 2004a. The fact
that much important information is encoded in the bipaditeicture is a central point which we will
illustrate all along this paper.

« Notice that each top node of degréénduces@ links in the L-projection, and conversely. This
induces an inflation of the number of links when one goes frobipartite gaph to its projection,
see Table I. In our examples, this is particularly true foerg®-peer: the number of links reaches
more thanl0 billions in the L-projection, which needs more th& GigaBytes of central memory
to be stored using classical (compact) encodings (whiletiggnal 2-mode network needs less than
500 MegaBytes). This is a typical case in which the huge numbéink$ induced by the projection
is responsible for limitations on the computations we are &b handle on the graph in practice.

| actors-movieg authoring| occurrences peer-to-peer

Number of links inG 1,470,418 | 45,904 183,363 55,829,392

Number of links inG 15,038,083 | 29,552 392,066 | 10,142,780,673

Number of links inG+ | 20,490,112 | 134,492 | 51,405,275| 1,085,217,140
TABLE |

NUMBER OF LINKS IN 2-MODE NETWORKS AND THEIR PROJECTIONSFOR THE FOUR EXAMPLES WE WILL DESCRIBE INSECTION V.

« Finally, some properties of the projection may be due to thgeption process rather than the
underlying data itself. For instance, it is shown in Newneéal, 2001a; Guillaume & Latapy, 2004b;
Guillaume & Latapy, 2004a that when considering the prapecof a random bipartite graph, one
observes high clustering coefficients. Therefore, higlsteling coefficients in projections may not
be viewed as significant properties: they are consequerfcée dipartite nature of the underlying



2-mode network. Likewise, the projection may lead to verys#e networks, even if the bipartite

version is not dense; this is particularly the case hereterTt-projection of occurrences.
One way to avoid some of these problems is to useeghtedprojection. For instance, the weight of
a link (u,v) between two bottom nodes in the weighté&eprojection may be defined as the number of
(top) neighbours, and v have in common in the bipartite graph. Other definitions maycbnsidered:
each top node may contribute to each link it induces in_thgrojection in a way that decreases with its
degree, for instance. In all cases, and despite such anaghpie relevant and promising, one still loses
a significant amount of information, and one transforms trablem of analysing a bipartite structure
into the problem of analysing a weighted one, which is notezakdeed, despite the fact that important
progress has recently be done in this direction (Bagtadl, 2004; Barthélemyet al, 2005; Newman,
2004), much remains to be done before being able to analgsesply the structure of weighted networks.

Our aim in this paper is to provide an alternative to the ptigm approach, leading to a better

understanding of 2-mode networks. It must however be clealr (weighted) projection approachs also
lead to significant insight, and we consider that the two @aghes should be used as complementary
means to understand in details the properties of 2-modeonkesw

IV. STATE OF THE ART.

Two-mode networks have been studied in an amazingly widetyawsf context. Let us cite for instance
company boardse(g, Robins & Alexander, 2004; Conyon & Muldoon, 2004; Battistb Catanzaro, 2004;
Newmanet al, 2001a), sport team.g, Bonacich, 1972; Onody & de Castro, 2004), movie acterg,(
Watts & Strogatz, 1998; Newmaet al, 2001a), management scieneeg, Kogut & Walker, 2003; Kogut
et al, 2006), human sexual relations.g, Ergun, 2002; Lindet al, 2005), attendance to evenis.d,
Faustet al, 2002; Freeman, 2003), financial networlesg, Caldarelliet al, 2004; Dahuiet al, 2005;
Garlaschelliet al., 2004; Young-Choon, 1998), recommandation netwogkg,(Peruginiet al, 2003),
theatre performances.@, Agneessenst al., 2004; Uzzi & Spiro, 2005), politic ativisne(g, Boudourides
& Botetzagias, 2004), student course registratiang,(Holme et al, 2004), word cooccurrences.(,
Dhillon, 2001; Véronis & lde, 1995), file sharing.g, lamnitchi et al, 2004; Fessanét al, 2004;
Voulgariset al, 2004; Guillaumeet al,, 2005; Guillaumeet al., 2004), and scientific authoring.g, Roth
& Bourgine, 2005; Morris & Yen, 2005; Newman, 2001a; Newm2@01b; Newman, 2000).

These studies are made in disciplines as various as sogaices, computer science, linguistics and
physics, which makes the literature very rich. In all thesetexts, scientists face 2-mode networks which
they try to analyse, with various motivations and tools. yrh# have one feature in common: they insist
on the fact that the bipartite nature of their data plays gooirtant role, and should be taken into account.
They also emphasise the lack of notions and tools for doing so

Because of this lack of relevant notions and tools, mostasathave no choice but to consider the
most relevant projection of their 2-mode network. This k&at instance to studies of interlocks between
companies, see Robins & Alexander, 2004; Conyon & Muldo@®42 studies of coauthoring networks,
see Newman, 2001a; Newman, 2001b; Newman, 2000, or stuleeclobanges between peers in peer-to-
peer systems, see Fessantal, 2004; Voulgariset al, 2004; Guillaumeet al, 2005; Guillaumeet al,
2004.

Many authors realise that this approach is not sufficierd,tanto use the bipartite nature of their data.
This is generally done by combining the use of projectiors thie use of basic bipartite statistics, mostly
degrees. For instance, one studies the coauthoring meaftgpically a projection) and the distributions
of the number of papers signed by authors and of the numbeutbbies of papersi.e. the bipartite
degree distributions, see Section VI) (Newman, 2000). Axghmay also consider weighted projections,
see for instance Battiston & Catanzaro, 2004; Morris & YedQZ2 Guillaumeet al, 2004; Guillaume
et al, 2005; lamnitchiet al, 2004; Newman, 2000, which has advantages and drawbackksassed
in Section Il

Going further, some authors introduce bipartite notiormgtesd for the case under study. This is often
implicit and restricted to very basic properties, like trese of degree distributions cited above (which



essentially capture the size efents and the number of events in whigiersonsor objectsare involved,

in most cases). But some authors introduce more subtle ntitke notions of overlap (Bonacich,
1972), clustering (Borgatti & Everett, 1997; Robins & Alexker, 2004; Lindet al, 2005), centrality
measures (Faust, 1997), degree correlations (Peltomakie&aA2005), and others (Young-Choon, 1998;
Ergun, 2002; Caldarellet al, 2004; Peruginiet al, 2003; lamnitchiet al, 2004; Borgatti & Everett,
1997; Robins & Alexander, 2004; Linet al., 2005). Most of these notions are ad hoc and specific to the
case under study, but some of them actually are very generabyg be generalised. One of our central
aims here is to give a complete and unified framework for thetrgeneral of these notions. We will cite
appropriate references when the notions we will discusg laéready been considered previously.

As already said, a different and interesting approach igldg@ed in Newmaret al,, 2001a; Guillaume &
Latapy, 2004b; Guillaume & Latapy, 2004a. The authors stindyexpected properties of the projections
given the properties (namely the degree distributions)hef underlying bipartite graph. They show in
particular that the expected clustering coefficient in tragztions is large, and give an efficient estimation
formula; this means that a high clustering coefficient in @jgmtion may be seen as a consequence of the
underlying bipartite structure rather than a specific prgpef the network. Conversely, if the clustering
coefficient of the projection is different from the expectede, it means that the underlying bipartite
structure has nontrivial properties responsible for ite3dnproperties should therefore be further analysed.
Our aim here is to propose notions and tools for such an asalykis approach has been used with
profit in several cases, see for instance Newmiaal., 2001a; Newmart al, 2002; Conyon & Muldoon,
2004; Uzzi & Spiro, 2005.

Finally, a significant effort has already been made to aehtee goal we have here, or similar goals:
some studies propose general approaches for the analygisnoide networks. This is for instance the
case of Faust, 1997, focused on centrality measures, of@rel974, which proposes to consider both
projections and compare them, and of Bonacich, 1972, whiafliess in depth the notion of overlap.

Let us cite in particular Borgatti & Everett, 1997, which hag very same aim as we have here, but
belongs to what we catilassical or pre-1998, social network analysis. In particular, tdeynot use the
comparison with random graphs, central to our contribu{see Section V), which probably reflects the
fact that this method was not as usual in 1997 as it is now. k®isame reasons, they do not deal with
clustering questions, which play a key role here. On therdtlaed, they address some important issues
(like visualisation) which we consider as out of the scopewf contribution. It is interesting to see that,
although the initially claimed aim is very similar, the finantributions are significantly different.

Other researchers propose formalisms suited for the asabjs2-mode networks, often based on a
generalisation of well known models. Let us cite Galoisdat €.9, Roth & Bourgine, 2005), correspon-
dence analysise(g, Jr., 2000; Faust, 2005), extensions of blockmodelg,(Borgatti & Everett, 1992;
Doreianet al., 2004) and p* modelse(g, Skvoretz & Faust, 1999; Fauset al., 2002; Agneesserst al,,
2004) and a particularly original approach based on boo#dgebra in Bonacich, 1978.

Therefore, there already exists quite an impressive amafuabrk on 2-mode networks, and on methods
for their analysis. However, we observe that many of the @ggres proposed previously, though very
relevant, are hardly applicable targe networks, typically networks with several hundreds of thends
nodes. Moreover, they often rely on quite complex notiorgsfarmalisms, which are difficult to handle for
people only interested in analysing a given network. Fpalbne of them consists in a generalisation of
the post-1998 notions outlined in Section I, which are naayadvidely used to analyse 1-mode networks.

We propose here such a contribution. We design simple motiod methods to analyse very large
2-mode networks, which could be used as a first step in p&tictiudies. These methods may then be
extended to fit the details of particular cases, and we explaw to do so. Moreover, they are not only
extensions of classical notions; we go further by proposiew notions designed specifically for the
bipartite case. Our approach may also be applied to smadksvanks, as long as they are not too small
(typically thousands of nodes).

As explained above, the topic has a deep interdisciplinatyre. In order to make our techniques



usable by a wide audience, we give a didactic presentatidnnanfocus on basic notions. Let us insist
however on the fact that this presentation is rigorous anahdf and, as will appear all along the paper,
the results are sufficient to bring a significant amount obrnfation on a given network.

Finally, we insist on the fact that analysing properly andlétails a given network is a difficult task,
which may be handled using different methods. There is ngueiway to obtain relevant information
and results in such cases. Moreover, much resides in theiatations made from the outputs of these
approaches. All the ones we have cited above, and the oneapes® here, should therefore be seen as
complementary rather than concurrent.

Let us conclude this section by noticing that, because ofwite dispersion of contributions due to
the interdisciplinary nature of the topic (and the fact thateceived continuous attention since several
decades), we certainly missed some references. We howgvectdhat the ones we have cited span well
the contributions on the topic.

V. METHODOLOGY AND DATA.

As already said, the methodology we follow has mainly beeveldgpped since the publication of
the seminal paper Watts & Strogatz, 1998, and thus we cdfleitpost-1998 approach. It relies on the
introduction of statistical parameters aimed at captuangjven feature of networks under concern, and
then on the comparison of the behaviours of real-world ngtg/zooncerning these parameters as compared
to random one% The underlying principle is that a parameter which behaweglarly on real-world and
random networks is just a property afostnetworks (of which random networks are representatives)
and so, though it may play an important role, it should not twesaered as surprising and meaningful
concerning the description of the real-world network. éast, one generally looks for properties which
make real-world networks different from most networks.

Our contribution here relies on this methodology. Namelky,will define statistical parameters aimed at
capturing properties of bipartite graphs, and then evaltteg relevance of these parameters by comparing
their values on random bipartite graphs and on real-wondo2le networks.

Just like one considers purely random graphs and randonhgnajh prescribed degree distributions
in the case of 1-mode networks, we will use both purely randgpartite graphs and random bipartite
graphs with prescribed degree distributions. Such graphsa@nstructed easily by extending the 1-mode
case, see for instance Newmanal, 2001a; Guillaume & Latapy, 2004bNote that these models (both
the 1-mode and 2-mode versions) generate graphs that arecessarilysimple they may contain some
loops and multiple links. There are however very few suckdjrand simply removing them generally
has no impact on the results. This is what is generally dontnenliterature, and we will follow this
convention here: in our context, it cannot have a significampact'®.

Notice also that the properties of random graphs may be fbrmstudied, see for instance Newman
et al, 2001a; Guillaume & Latapy, 2004a. One may also evaluatertban properties of these graphs,
and their standard deviations, using typically approadikeshe ones developped in the p-star or ERGM
(exponential random graph models) framewor&s)( Robinset al, 2005)!*. However, our purpose here
is only to identify properties that make real-world dataetént from random ones, not to quantify these
differences precisely. We will therefore only compare empl data to a typical random graph of the
considered class (the fact that it is typical was checkedepyoducing many times our experiments, which
led to the same observations), and leave these investigdfiio further work, see Section X.

8In the whole paper, the termandomrefers to object chosen uniformly at random in the givensclasery element of the class has the
same probability to be chosen. For descriptions on how temgea such graphs, we refer to Erdds & Rényi, 1959; BodpB@01; Newman
et al, 2001a; Guillaume & Latapy, 2004b; Viger & Latapy, 2005.

®We provide a program generating such graphbtatp: //j | gui | | aure. free. f r/ ww/ pr ogr ans. php

%0ne may also use the methods described in Viger & Latapy, &0@btain directly simple (connected) graphs, but this iserintricate,
and unnecessary in our context.

1Seeht t p: / / www. sna. uni nel b. edu. au/ pnet/pnet. ht i andhttp://csde. washi ngt on. edu/ st at net/ .



In order to complete our comparison between random andwedti cases, we also need a set of
real-world 2-mode networks. We chose the following fourtamees, which correspond to the examples
given in the introduction and have the advantage of spanwigfjthe variety of cases met in practice:

« the actors-moviesetwork as obtained from thimternet Movie Data Bas® in 2005, concerning

n, = 127,823 actors andh+ = 383,640 movies, withm = 1,470,418 links;
« anauthoringnetwork obtained from the onlirgXiv preprint repository?, with n+ = 19,885 papers,
n, = 16,400 authors, andn = 45,904 links;

« anoccurrencegraph obtained from a version of the Bibfewhich contains:; = 9,264 words and

nt = 13,587 sentences withn = 183,363 links;

« apeer-to-peeexchange network obtained by registering all the exchapgeessed by a large server

during 48 hours (Guillaumet al,, 2005; Guillaumeet al,, 2004), leading to:+ = 1,986,588 peers,
n, = 5,380,546 data, andn = 55,829,392 links;
We provide these data, together with the programs comptiiagtatistics described in this paperThe
key point here is that this dataset spans quite well the tyagkcontext in which large 2-mode networks
appear, as well as the variety of data sizes.

Let us insist on the fact that our aim here is not to derive kmions on these particular networks: we
only use them as real-world instances to illustrate the dssupresults and to discuss their generality.
This is why we do not detail more the way they are gathered haut televance to any study. This is
discussed in various references and is out of the scope optper.

VI. BASIC BIPARTITE STATISTICS

The basic statistics on bipartite graphs are direct exteissof the ones on classical (1-mode) graphs.
One just has to be careful with the fact that some classicgdapties give birth to twin bipartite properties
while others must be redefined.

Let us consider a bipartite gragh= (T, L, F'). We denote by: = |T| andn, = | L| the numbers of
top and bottom nodes, respectively. We denoterby |E| the number of links in the network. This leads
to a top average degrée = o and a bottom oné, = +-. One may obtain the average degree in the

graphG’ = (TUL, E) ask = 2 = nthrtiibi Finally, we obtain the bipartite densityG) = —

nT4+n n ntn,’
i.e. the fraction of existing links with repeTct to possible ondste that this is different from the &eﬁsity
of G 6(G") = Gmytass =+ Which is much lower.

Concerning the average distance (again, we restrict distanmputation¥ to the largest connected
component (denoted hgc), which contains the vast majority of nodes, see Table higre is no crucial
difference except that one may be interested by the avermsgi@nde between top nodes and between
bottom nodesd+ andd,. These values may be significantly different but one may et they are
very close since a path between two top (resp. bottom) nadesthing but a path between bottom (resp.
top) nodes with two additionnal links. Notice that there ¢ simple way to derive the average distance
d in G’ from the bipartite statisticd, andd-.

The values obtained for each of these basic properties orfaourexamples, together with values
obained for random bipartite networks with the same sizegaren in Table Il. It appears clearly that our
examples may be considered as large networks with smalageetegrees, compared to their size. The
density therefore is small. Moreover, the average distasme@dso small. These basic properties are very

125eeht t p: // www. i ndb. cont .

1BSeehttp://arxiv.org/.

YSeehttp: // ww. tniv.info/bible/.

15Seehttp: //www. | i af a. j ussi eu. fr/ ~ at apy/ Bi p/ .

Distance computations are expensive; the exact value taenmmputed in a reasonable amount of time for data of theeveizconsider
here. Instead, we approximate the average by computingviirage distance from a subset of the nodes to all the othigsssubset being
large enough to ensure that increasing it does not improvestimation anymore, which is a classical method. All otb@mputations are
exact.
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actors-movies authoring occurrences peer-to-peer
real random| real random real random real random
nT 127,823 idem 19,885 idem | 13,587 idem | 1,986,588 idem
n, 383,640 idem 16,400 idem 9,264 idem | 5,380,546 idem
m 1,470,418 idem 45,904 idem | 183,363 idem | 55,829,392 idem

kT 11.5 idem 2.3 idem 13.5 idem 28.1 idem
ki 3.8 idem 2.8 idem 19.8 idem 104 idem
k 5.7 idem 2.5 idem 16.0 idem 15.2 idem

) 0.000030  idem | 0.00014 idem | 0.0015 idem | 0.0000052 idem
lccr | 124,414 125,944 | 16,209 18,512 | 13,579 13,587 | 1,986,343 1,426,978
lcc, | 374,511 381,431 | 11,654 14,607 | 9,246 9,264 | 5,380,507 5,054,689

dr 6.8 2.3 13.1 9.3 3.1 3.0 9.3 2.0

dy 7.3 2.8 13.9 9.9 3.8 3.7 5.4 4.9

d 7.2 5.8 13.5 9.6 3.4 3.2 5.3 4.9
TABLE Il

BASIC BIPARTITE STATISTICS ON OUR FOUR EXAMPLES AND ON RANDOMBIPARTITE GRAPHS WITH THE SAME SIZE(SAME NUMBER OF
NODES AND LINKS, AND THUS SAME DENSITY AND AVERAGE DEGREE AS THE REAEWORLD ONES).

similar to what is observed on 1-mode networks: both 1-madke2xmode large real-world networks are
sparse and have a small average distance, and in both oftiexis also true on random graphs.

VII. BIPARTITE STATISTICS ON DEGREES

The notion of degree distribution has an immediate extentothe bipartite case. We denote hy
the fraction of nodes inL having degree and by T; the fraction of nodes in" having degree, and
then call(_L;);>o the bottom degree distribution arid;);>, the top one. See the appendix, page 23, for
more detailed definitions and hints on how to understandkinid of statistics.

actors-movies authoring occurrences peer-to-peer
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Fig. 2. Degree distributions in our four real-world 2-modetworks. First row: for top nodes. Second row: for bottom ewsd

The top and bottom degree distributions of our four examatesgiven in Figure 2. One may observe
on these plots that the bottom degree distributions are lvetgrogeneous and well fitted by power laws
(of various exponents). This is true in particular for theweences graph, which is a well known fact for
a long time (Zipf, 1932): the frequency of occurrences of dgoin a text generally follows a particular
kind of power law, namedipf law. Instead, the shape of the top degree distribution digpen the case
under concern: whereas it is well fitted by a power law in theryie-peer and actors-movies cases, it
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is far from a power law in the authoring and occurrences cadas is due to the fact that papers have
a limited number of authors (hone has one hundred authonmstance), and likewise sentences have a
limited number of words. Moreover, the number of very shemtences also is not huge. In these two
cases, one can hardly conclude that the top degrees are etempgeneous.

We finally conclude that, even if heterogeneity is presenabteast one side of a 2-mode network,
this is not generally true for both sides. This separatebwedd 2-mode networks into two distinct
classes, which should be taken into account in practices @lsio confirms that considering the bipartite
statistics brings significant information as compared ® phojections, which exhibit power law degree
distributions in all cases.

Let us now compare these real-world statistics with randoaplgs. If one generates purely random
bipartite graphs of the same size as the ones consideredime(@ and_L) degree distributions are Poisson
laws. Therefore, the heterogenity of some degree distobsiis not present, and even in the cases where
the distributions are not very heterogeneous they do notbdirandom case. We will therefore compare
in the following our real-world 2-mode networks to randonpdotite graphs with the same size and the
same (top and bottom) degree distributions.

The next natural step is to observe possible correlatiobstween top and bottom degrees. In order
to do this, we plot in Figure 3 the average degree of neigtltotinodes as a function of their degree,
both for top and bottom nodes, separately. In other wordse&oh integet we plot the average degree
of all nodes which are neighbours of a node of degred/e plot the same values obtained for random
graphs of the same size and same degree distributions.

actors-movies authorlng occurrences peer-to-peer
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Fig. 3. Degree correlations in our four real-world 2-modéwweks, and in random bipartite graphs of the same size amk sdegree
distributions. First row: for top nodes. Second row: fortbot nodes.

In the cases of actors-movies and peer-to-peer, the plotsdadandom cases are close to horizontal lines,
showing that there are no correlations between a node dequbé¢he average degree of its neighbours:
this last value is independent of the node degree. In botlascémwever, the real-world network displays
nontrivial correlations. In the case of actors-movies, iftstance, the average degree of neighbours of
bottom nodes (the lower-left corner plot in Figure 3) desesawith the node degree. In other words,
if an actor plays in many movies then he/she tends to play iallsmmovies (in terms of the number
of involved actors). Such nontrivial observations may belenan the other plots for actors-movies and
peer-to-peer as well.

In the cases of authoring and occurrences, the plots foraith@om graphs are nontrivial: they grow for
the top statistics, and are far from smooth for the bottonmsohftere again, the real-world cases exhibit

17See the appendix, page 23 for more detailed definitions ams bin how to understand this kind of statistics.
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significantly different behaviours, at least for the toptistecs, thus demonstrating that these behaviours
are nontrivial and related to intrinsinc properties of thederlying networks. Detailing this however is
out of the scope of this paper. The key point here is to haveeege of the relevance of these statistics.

Notice that, despite they already bring much informatidre, statistics observed until now are almost
immediate extensions of the classical ones. One may wohtlee bipartite nature of the networks under
concern may lead to entirely new notions concerning degi&espropose one below, with its variants.

Let us consider a nodein a bipartite grapiG = (T, L, E), and let us denote by (N (v)) the nodes
at distance2 from v, not includingv, calleddistance2 neighboursof v. We will suppose that is a top
node, the other case being dual. Notice thgtV(v)) C T, and actuallyN (N (v)) is nothing butN(v)
in the T-projectionG+. The integerf N(N(v))| therefore plays a central role in the projection approach,
since it is the degree af in G-.

But there are several ways ferto be linked to the nodes itV (N (v)), this information being lost
during the projection. The two extreme cases occur whes linked to only one node: in L, with
N(u) = N(N(v)), or whenwv is linked to|N(N(v))| nodes inL, each being linked to only one other
node inT. Of course, intermediate cases may occur, and the actuatisth may be observed by plotting
the correlations between the degree of nodese. |N(v)|, and their number of distanceneighbours,
|N(N(v))|. These statistics therefore offer a way to study how nodeegsgin the projection appear, and
to distinguish between different behaviours. For instamicey make it possible to say if a given author
has many coauthors because he/she writes many papers dshieherites papers with many authors.
Such an information is not available in the projection of #uthoring 2-mode network.
actors-movies
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Fig. 4. Correlations of the number of distarZeeighbours with node degrees in our four examples, and idorarbipartite graphs with
the same size and degree distributions. First row: for tageaoSecond row: for bottom nodes.

The plots in Figure 4 show that, as one may have guessed, thbamnwf distance neighbours of a
node grows with its degree; more precisely, it generallyyngras a power of the degree (the plots follow
straight lines in log-log scale), and actually almost lieaThis is in conformance with the intuition
that the number of distanc2 neighbours should be close to the degree of the node timeaviirage
degree of its neighbours. In the random cases, this leadsrjostraight plots (except in the top plot of
occurrences). The real-world plots are quite close to thdam ones, with a few notable exceptions: the
slope of the plot is significantly different for the top plot peer-to-peer, the real-world plots often are
significantly below the random ones for large degrees, aeg #re in general slightly lower than the
random ones even for small degrees. This means that thememie sedundancy in the neighbourhoods:
whereas in random cases the number of dist@nneighbours is close to the sum of the degrees of the
direct neighbours, in real-world cases the direct neighbbave many neighbours in common and so the
number of distanc@ neighbours is significantly lower. This is an important teatof large real-world
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networks, that we will deepen in the next sections.

VIIlI. BIPARTITE CLUSTERING AND OVERLAP

Whereas there were quite direct extensions of the basistgtatand the ones on degrees to the bipartite
case, the notion of clustering coefficient does not make angesin itself in this context. Indeed, it relies
on the enumeration of the triangles in the graphs, and trerdoe no triangle in a bipartite graph. We will
therefore have to discuss the features captured by theaahshistering coefficients in order to propose
bipartite extensions.

Both definitions of classical clustering coefficients captthe fact that when two nodes have something
in common (one neighbour) then they are linked together avjthobability much higher than two randomly
chosen nodes. Conversely, they capture the fact that whenaaes are linked together then they probably
have neighbours in common. In other words, they capturestaions between neighbourhoods. We will
use this point of view here and define a first notion of clustgrcoefficient defined for pairs of nodes
(in the same set or 1):

_ [N(w) n N(v)

[N (u) UN(v)|

This is the most direct generalisation of the classicalamtiand it was already suggested in Borgatti
& Everett, 1997, and explicitely used in Guillaureé al, 2005 in the context of peer-to-peer exchange
analysis. It captures the overlap between neighbourhobd®des: if u and v have no neighbour in
common then cdu,v) = 0. If they have the same neighbourhood, theg(ecv) = 1. And if their
neighbourhoods partially overlap then the value is in betwecloser tol when the overlap is large
compared to their degrees. See Figure 5 for an illustration.

This definition however has several drawbacks. The first enthe fact that it defines a value for
pairs of nodes. One may want to capture the tendencgred particular node to have its neighbourhood
included in the ones of other nodes. To achieve this, one nmaglys define the clustering coefficient of
one node as the average of its clustering coefficients wiibratodes. We however do not include in this
averaging the pairs for which the overlap is emi§tymost nodes have disjoint neighbourhood, which
does not bring information. Like in the 1-mode case, we wanteasure the implication of the fact of
having one neighbour in common on the rest of the neighbadtioWe finally obtain:

2 veN(N(w) € (U, v)
[N(N(u))]

One may then observe the distribution of these values, toerelations with degrees, etc. One may also
define the clustering coefficient of the top (resp. bottonge® denoted by ¢€T) (resp. c¢(L)) as the
average of this value over top (resp. bottom) nodes. Theageeover the all graph, denoted by, @),
can then be obtained easily:,¢6!) = “TC=(14C&M e will discuss the obtained values below, see
Table .

The notion of clustering coefficient discussed until now s extension of the first classical one. It
captures the fact that a node which has a neighbour in comnitin amother node generally has a
significant portion of neighbours in common with it. Thereaisother way to capture this, similar to the
second definition of classical clustering coefficient, isnieasure the probability that, given four nodes
with three links, they actually are connected with four 8nfall the possible bipartite ones):

2N
con(G) = 7

whereN, is the number of quadruplets of nodes with four linkgdnpand Ny is the number of quadruplets
of nodes with at least three. This extension of the seconibmaif classical clustering coefficient

CC (u, v)

cG(u) =

8As a consequence, the obtained value will neveb bieut it may be very small. Notice also that the clusteringffitient is not defined
for nodesv such thatV (N (v)) = 0 (recall that, by definitionp ¢ N (N (v)).
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was already proposed in Robins & Alexander, 2004 in the ctrié company board networks. It is
a natural generalisation of the clustering coefficiant on classical (1-mode) graphs: this last notion is
the probability, when three nodes are linked in a chain (with links), that they form a triangle; the gc
notion is nothing but the probability, when four nodes ardéid in a chain (with three links), that they
form a square. This extension is natural since there cana@nly triangle in bipartite graphs. We will
discuss the obtained values below, see Table IlI.

The two notions above generalise the classical definitidnslustering coefficients. Capturing the
overlap between neighbours may however need more preciSigspose that degrees are heterogeneous
in the network, as it is often the case (Section VII), and aerstwo nodesu andv. If one of these
nodes has a high degree and the other has not, thén, e¢ will necessarily be small. This will be true
even if one of the neighbourhoods is entirely included in oilger. One may however want to capture
this, which can be done using the following definition:

|N(u) N N(v)|
min(|N(U)|>|N(U)D.

e (u,v) =

One may define dually: N -
N(u) NV N(v

max (|N(u)l, |N(v)])

See Figure 5 for an illustration. These two notions, called-rand max-clustering, were introduced first
in Guillaumeet al, 2005. The first one emphasises on the fact that small neighbods may intersect
significantly large ones; it is equal tb whenever one of the neighbourhoods is included in the other.
The second one emphasises on the fact that neighbourhoattissfinall or large ones) may overlap very
significantly: it is1 only when the two neighbourhoods are the same and it tendedreases rapidly

if the degree of one of the involved nodes increases. It captthe fact that nodes witkimilar degrees
have high neighbourhood overlaps.

NN AN A

Fig. 5. Examples of bipartite clustering coefficients, antklipretations. Left: a case in which.¢e, v) = 5 = 0.333--- is quite small,
despite the fact that, and v have two neighbours in common, due to the fact that the unfotheir neighbours is qmte large; on the
contrary, ce(u,v) = % = 0.666 - - - is quite large, revealing that one of the neighbourhooddnmwst included in the other; the value of
cG(u,v) = % = 0.4 indicates that this may be due to the fact that one of the nbdssa high degree. The situation is different in the
case at the center: all clustering coefficients are quith (rigsp.0.5, 0.666 - - -, and0.666 - - -), indicating that there is not only an important
overlap, but that this overlap concerns a significant padamh neighbourhoods (and thus the two nodes have similageig On the right,
the two nodes have a small clustering coefficient(acv) = 2 = 0.25, and the fact that the value of ga:,v) = 2 = 0.4 remains quite
small indicates that this is not due to the fact that one oftth@nodes has a very high degree compared to the other oneesf aonsiders

larger degree nodes, then the difference betwsreall and high values is clearer, but the figure would be unreadable.

CG(u,v) =

With these definitions, one may define,@g), cG(T), ca(Ll), ca(G), ca(v), cG(T), ca(L), and
cG(G) in a way similar to the one used above fog @9, cc(T), ¢ (L), and c¢(G). The distributions
and various correlations may then be observed.

We give in Table Il the values obtained for our four exampiegether with the values obtained for
random bipartite graphs with same size and degree distritzi({the values for purely random bipartite
graphs are similar). It appears clearly that the notions msduced capture different kinds of overlaps
between neighbourhoods. However, except fox; (€€), the obtained values are not very different on
random graphs and on real-world networks. This indicate$ these statistics do not capture a very
significant feature of large real-world networks, whichlwliscuss this further below. Instead, the obtained
values for cg(G) is significantly larger on real-world networks than on ramdgraphs, which shows
that it captures more relevant information.
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actors-movies authoring occurrences peer-to-peer
real random| real random| real random real random

0.37 0.21 0.33 0.26 | 0.069 0.041 | 0.091  0.089

TABLE 11l
BIPARTITE CLUSTERING STATISTICS ON OUR FOUR EXAMPLES AND ONANDOM BIPARTITE GRAPHS WITH THE SAME SIZE AND SAME

cG(T) | 0.064 0.046 | 0.29 0.27 10.066 0.066 | 0.056  0.019

cG(Ll) | 0.36 0.20 0.31 0.25 ]0.065 0.038 | 0.076  0.074

coy(G) | 0.0082 0.00024 | 0.079 0.00012 | 0.053  0.048 | 0.0094 0.00019

cG(T) | 0.24 0.23 0.56 0.56 0.19 0.20 0.27 0.24

cG(Ll) | 0.81 0.79 0.73 0.70 0.64 0.61 0.39 0.42

cG(T) | 0.087 0.062 | 0.36 0.34 ]0.097 0.097 | 0.074  0.024
(L)

DEGREE DISTRIBUTIONS
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Fig. 6. Cumulative distributions of the various clustericmefficients in our four real-world 2-mode networks. Firsivr for top nodes.
Second row: for bottom nodes.

We show in Figure 6 the cumulative distributidfi®f cc,(v), ca(v) and cg(v) for our four examples,
i.e. for each valuex on the horizontal axis the ratio of all the nodes having a edhwer thanz
for these statistics. Before entering in the discussionheke¢ plots, notice that, by definition, we have
cG(v) < cG(v) < ca(v) for any v. Therefore, the lower plots in each case of Figure 6 is theaine
cG(v), the upper is the one for g@) and the one for ggv) is in between.

More interesting, the plots exhibit quite different belmaws. In several cases (in particular top of
actors-movies, occurrences and peer-to-peer, as wellteanbof occurrences and peer-to-peer) the plots
for ccs(v) and cq(v) grow very rapidly and are close toalmost immediately. This means that the values
of these statistics are very small, almostor most nodes: in these cases, the neighbours of nodes have
a small intersection, compared to the union of their neiginboods. However, in several cases, the plots
for ca (v) grow much less quickly, and remain lower tharfor a long time. In several cases, it is even
significantly lower thanl by the end of the plot, meaning that for an important numbenades the
value of cg(v) is equal tol: almost10% in the case of top of actors-movies, alm@st in the cases of
top authoring and bottom of peer-to-peer, and more thiga in the case of bottom of occurrences. This
means that, despite overlaps are in general small comparttkeir possible value, the neighbourhoods
of many low-degree nodes significantly or even completelgriap with other nodes neighbours.

Other cases display a very different behaviour: in both tagh lBottom plots of authoring, and in bottom
of actors-movies, it appears clearly that a significant nemah nodes have a large value for, €¢), cG(v)

19See the appendix, page 23 for more detailed definitions ams bin how to understand this kind of statistics.
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and cg(v). This means that node neighbours overlap significantly,thatithis is not only a consequence
of the fact that low degree nodes have their neighbourhaodsaded in the ones of other nodes.

actors-movies authoring occurrences peer-to-peer
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Fig. 7. Cumulative distributions of the gclustering coefficient in our four real-world 2-mode neti®rand in random bipartite graphs
of the same size and same degree distributions. First rawtofpnodes. Second row: for bottom nodes.

Again, our aim here is not to discuss in detail the speciéisitf each case, but to give evidence of the
fact that these statistics have nontrivial behaviours apdure significant information. It is clear from the
discussion above that the three notions of clustering cagtby cg(v), ca(v) and cg(v) are different,
and give complementary insight on the underlying netwodpprties. One may however be surprised by
the fact that cg(v) often is very small, which we deepen now by comparing its bielhas on real-world
cases and on random ones, see Figui® 7

In these plots, it appears clearly that, except in the cadsotibm of actors-movies, the plots of the
real-world values and of the random ones are quite similais Theans that, concerning the values of
cG (v), real-world graphs are not drastically different from randones (they however have slightly higher
values of cg(v) in most cases). In other words, this statistics does noticapery significant information,
according to the methodology described in Section V. Thidue to the fact that the low degree nodes
(which are numerous in our networks) have with high prolgbiheir neighbours in common with high
degree nodes; by definition, this induces a low value fQf:g¢ and even lower for g€v). This is true by
construction for random graphs, and the plots above shoithisais mostly true for real-world networks
also, which was not obvious.

Similar conclusions follow from the study of g@), but the study of cfv) leads to the opposite
conclusion: an important number of nodes have their neightmod included in the one of other (large
degree) nodes, as already discussed, which happens muehranely in random graphs. We do not detalil
these results here, since they do not fit in the scope of tluerpénstead, we will propose a new statistics
in the next section that has several advantages on the rohgstoefficients discussed here and does not
have their drawbacks.

Before turning to this other statistics, let us observe theetations between node degrees and their
clustering coefficient. Again, for clarity and to maintaimetpaper within a reasonable length, we focus
on cG(v) and its comparison with the random case. See Figure 8.

The values for the random graphs are below the ones for thevoeld cases (or they coincide at some
points), in all plots. This shows that the value of @@g are larger in real-world cases than in random
ones, but the difference is small, which confirms the obsrms above. More interestingly, it appears

2For clarity and to avoid long discussions on specific behagiowhich is out of our scope here, we only compare the realdxand
the random behaviours of g@) (not of the two other notions of clustering coefficients).
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Fig. 8. Correlations of the ¢¢v) clustering coefficient with node degrees in our four exaspénd in random bipartite graphs with the
same size and degree distributions. First row: for top noflesond row: for bottom nodes.

clearly that in most cases &) decreases as a power of the degree @traight line in log-log scale).
In other words, the clustering coefficient of low degree roequite large, but the one of large degree
nodes is very small, like in random graphs.

IX. THE NOTION OF REDUNDANCY

In the previous section, we discussed several ways to extenclassical notions of clustering coefficient
to the bipartite case. One may wonder if the bipartite natfirthe networks under concern may lead to
new, specific notions, just like we observed concerning elegjin Section VII. Moreover, one may want
to capture the notion of overlap concernioigeparticular node; in previous section, this was only possibl
by averaging the value obtained for a possibly large numbeas of nodes. This section answers this:
it is devoted to a new notion aimed at capturing overlap iratiife networks, in a node-centered fashion.

First notice that neighbourhood overlaps correspond teslimhich are obtained in several ways during
the projection, and that these links cannot be distinguisitee from another in the projection. They also
reveal the fact that, among all the links induced by a node bipartite graph in the projection, many
(and possibly all) may actually be induced by others too.threpwords, if we remove this node from the
bipartite graph then the projection may be only slightlyraped (or even not at all). This can be captured
by the following parameter, which we call tmedundancy coefficierdf v:

_ {{w,w} € N), 30" #v, (v',u) € E and(v',w) € E}|
- IO '

rc(v)

In other words, the redundancy coefficientuak the fraction of pairs of neighbours oflinked to another
node tharv. In the projection, these nodes would be linked togethen &ve were not there, see Figure 9;
this is why we call this the redundancy. If it is equalltdhen the projection would be exactly the same
without v; if it is 0 it means that none of its neighbours would be linked togeithéne projectiorf®.
Again, we can derive from this definition the ones afT¢, rc(L) and r¢G), as well as distributions and
correlations. We give in Table IV the values obtained for fmur examples and for comparable random
graphs. It appears clearly from these values that, excephancase of occurrences, the redundancy
coefficient is much larger in real-world networks than indam graphs, and that it actually is very

Hinterestingly, the notion of redundancy we propose heregisivalent to the generalisation of the notion of clustergagfficient to
squares, denoted Wy, (), proposed independently in Liret al, 2005: it is the probability, when a node has two neighbotlnat these two
nodes have (another) neighbour in common. Though the twatpaoif view are quite different, and the definitions termeffiedéntly, the
two notions are exactly the same.
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A
Fig. 9. Example of redundancy computation. From left to tighbipartite graph, itsL-projection, and thel -projection obtained if the
node A is first removed. Only two links disappear, leading t0A¢ = % = 0.666 - - -.

large: in peer-to-peer, for instance, on average half thes [ peers that have a common interest for a
given data also have a common interest for another dataeTasges are much larger than the ones for
the clustering coefficients in the previous section, sedeTdh and the difference they make between
random graphs and real-world networks is much more signifida this regard, it may be considered as a
better generalisation of clustering coefficients in 1-mod&vorks than the bipartite clustering coefficients
defined in Section VIII.

The case of occurrences is different: the projections oh bioles are very dense, which is very particular
as already noticed. The redundancy coefficient therefoheige, but this is not because of a property of
how the neighbourhoods overlap: this is a direct consequefndche high density of the projections. In
such a case, the redundancy coefficient is meaningless, andiliwtherefore not discuss this case any
further in this section; simply notice that the redundaneogfficient has similar behaviours in such graphs
and in their random equivalent.

actors-movie authoring occurrences | peer-to-peer
real random real random| real random real random
rce(T) | 0.26  0.014 | 0.38 0.0016 | 0.80 0.74 0.31 0.011
re(L) ‘ 0.25 0.011 ‘ 0.33 0.00037 ‘ 0.83 0.75 ‘ 0.50 0.069
TABLE IV
THE REDUNDANCY COEFFICIENT FOR OUR FOUR EXAMPLES AND FOR RANDM BIPARTITE GRAPHS WITH THE SAME SIZE AND SAME
DEGREE DISTRIBUTIONS

We show in Figure 10 the distributions of(tg for our four examples together with plots for comparable
random graphs. These plots confirm that the redundancy ceefficaptures a property that makes large
real-world networks different from random ones: in all theeses except occurrences, the value of this
coefficient in random graphs is almogtfor all nodes (both top and bottom); instead, in real-world
networks it is significantly larger, and equal tofor a large portion of the nodes. This last fact is not
surprising since q¢v) = 1 implies rqv) = 1 for all nodesw.

However, the redundancy coefficient has a much wider rang@laks than ¢v), which generally is
close to0 or 1, see Figure 6. Moreover, the redundancy coefficient captardifferent property: in the
case of actors-movies, for instance, it does not only meanatsignificant number of movies have a cast
that is a sub-cast of another movie (as captured Ryug); but that when two actors act together in a
movie then there often exists (at least) another movie ircvthey also act together. Both are interesting,
and complementary, but the redundancy coefficient ceytaiaptures a more general feature.

Let us now observe the correlations between node redundavefficient and their degree, plotted in
Figure 11. In these plots, except for occurrences, the fdothe random graphs coincide with the x-axis,
which confirms that the values of node redundancy in rand@plw are very small, independently of node
degrees. Real-world cases, on the contrary, exhibit naaltibehaviours. In most cases, the redundancy
decreases with the degree, which is not surprising sincentimber of links needed in the projection
in order for the redundancy of a node to be large grows withdipeare of its degree. However, the
redundancy remains large even for quite large degrees:dlose to0.15 for nodes of degre&0 for
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Fig. 10. Cumulative distributions of the redundancy cogffit in our four real-world 2-mode networks, and in randompaiite graphs of
the same size and same degree distributions. First rowpfonbodes. Second row: for bottom nodes.

top nodes in actors-movies, for instance, meaning that gntlo@435 possible pairs of neighbours of
these nodes, on average are linked to another top node in common. This has a very |@baduility in
random graphs. Likewise, one may notice that some very hégined nodes have a very large redundancy
coefficient in several cases, which also is a significantrmédion.

actors-movies authorlng occurrences peer-to-peer
04r i e 05 . o 0.95- L 08r i e e
. . 0.45 - Lo - . .
035- R 04 - - . ~ 0.9 - - o7
03- . . - . 0.6 -
035~ . - 0.85 - C-
0.25- - ) - 03- - e 0.5 -
0.2- y 0.25 - - 08- . . Y- 0.4 -
0.5 - 02 - - FRA. Ty 03- "
0.75 - -
0.15 - - i .
0.1- o1- ) 0 x&&? . 0.2
0.05 - 0.05 - - - 57 0.1-
0+ 0+ x x xoox s 0.65 L P 0 & ¥ xommm
1 1 10 1 10 100 1
0.6 i e wa 09+  + Te o i e i i 0.9 ¢ i e
08 - - 08 -
05 - . - . 09 - °
07- - 07 - .
0.4 - - 0.6 - - 0.8 - 06-
[ 05 - 05 -
0.3 - 07-
0.4 - X 0.4 -
02- sy e ST - 0.3- T N - 0.6 - 03-
o Y N
01- ' W% - 02- 05- 02~
L 0.1 o 0.1- ]
0. xorrree S S S 04+ i e oo O i 6T
1 10 100 1000 1 10 100 1 10 100 1000 10000 100000 1 10 100 1000 10000

Fig. 11. Correlations of redundancy coefficient with nodgrdes in our four real-world 2-mode networks, and in randdpartite graphs
of the same size and same degree distributions. First rawtofpnodes. Second row: for bottom nodes.

One may push further the study of the redundancy, for instdoyc counting how many nodes have
an overlap with a given one, and so may be responsible forigts redundancy. This is nothing but the
degree of the node in the appropriate projection, which emsigles once again that our approach may be
fruitfully combined with the one based on projection, asuadin Section Ill.

X. CONCLUSION AND PERSPECTIVES

The core contribution of this paper is a set of rigorous arfteoent statistical properties usable as a basis
for the analysis of large real-world 2-mode networks foilogvthe post-1998 approach. These statistics
go from the very basics (size, distances, etc) to subtle @gpgally various clustering coefficients and
their correlations with degrees). Let us insist on the faet tve do not only extend classical notions to
the bipartite case, but also develop new notions which makses only in this context. Moreover, the
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proposed approach avoids projection of 2-mode networlks IAnode ones, which makes it possible to
grab much richer information. We hope that this unified freumik and discussion will help significantly
people involved in analysis of such networks.

A first conclusion drawn from the computation of these stiagson four representative real-world
examples is that, just like large real-world 1-mode netwotkey have nontrivial properties in common
which make them very different from random networks. In jeatar, there is a high heterogeneity
between degrees of nodes of at least one kind, and theregaiécsint overlaps between neighbourhoods.
Concerning this last property, we show that immediate esttars of the classical notions of clustering
coefficients are not sufficient to make the difference bebmemal-world networks and random graphs;
we propose the notion aedundancyas a relevant alternative. Overall, these facts are sgikiolose to
what is met in 1-mode networks and should play a similar rGlenversely, we observed many properties
which behave differently depending on the 2-mode netwodeuniconcern, which may be used to describe
a particular instance in more details.

Notice that these contributions do not only concern the 2lennetworks themselves, but also their
projection: keeping the bipartite nature of the data makg®ssible to obtain more precise information
on the projection itself. For instance, statistics on degmake it possible to separate high degree nodes in
the projection into two distinct classes: the ones whichliaieed to many nodes in the 2-mode network,
and the ones linked to nodes of high degree in the 2-mode netwtis kind of analysis could be
deepened using clustering and redundancy notions.

Going further, one may use the notions we introduced herefio& new relevant statistics on 1-mode
networks. Indeed, any gragh = (V, E') may be seen as a bipartite gragh= (V,V, E') where the links
are between tweaopiesof V. The statistics we studied here may then be computed onitrastibe graph,
leading to new insight on the original gragh

There are many directions to improve and continue the woekgmted here. Among them, let us cite
the analytic study of the parameters we propose, which cagrarticular be done using the techniques
in Newmanet al,, 2001b or in Robingt al, 2005. One might prove in this way the expected behaviour
of these parameters and deepen their understanding. Arditeetion is the developement of models of
2-mode networks capturing the properties met in practigst ds is the case for 1-mode networks, much
can be done concerning degrees, see Newetah, 2001a; Guillaume & Latapy, 2004a, but very little is
known concerning the modeling of clustering and redundaRmally, applying these results to practical
cases and giving precise interpretations of their meanmtigese different contexts would probably help in
designing other relevant notions. To this regard, thesttasil properties described in this paper may help
in deepening the key questions about group formation aradioek (like the emergence of interlocking
in company boards, see Robins & Alexander, 2004; Conyon &ddaih, 2004; Battiston & Catanzaro,
2004; Newmaret al, 2001a or of scientific areas and communities, see Roth & @oey 2005; Morris
& Yen, 2005; Newman, 2001a; Newman, 2001b; Newman, 2000ijciwive did not consider here.

Let us conclude by noticing that the field of large networklgsia is only at its beginning, though
much has been done, before and after 1998, on 1-mode netwaéokgever, most real-world networks
are directed, weighted, labelled, hybrid, and/or evolverdutime. Some work has recently been done
concerning weighted networks (Barrat al., 2004; Barthélemyet al, 2005; Newman, 2004), and we
propose here a contribution concerning 2-mode networkseder, there is still much to do to be able to
analyse efficiently these various kinds of networks. Extegdhe notions we discussed here to the case
of multipartite graphs (nodes are in several disjoint sett) links between nodes in different sets only)
would be a step further in this direction.
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APPENDIX
HOw TO READ AND UNDERSTAND OUR PLOTS

We give in this appendix additional hints on how to read andewstand the plots presented in this
paper, for the readers who are not familiar with these s$tedisapproaches. Of course, this appendix will
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not replace a statistics textbook, but it aims at giving sigfit intuition on the notions under concern to
help the reader significantly.

Distributions.

The main statistical notion used in this paper is the onéistribution of a measured quantity: it is,
for each possible valug of this quantity, the fractiorp, of objects which exhibit this value when the
quantity is measured on theéf For instance, the degree distribution in a network is, fasheintegerk,
the fraction of nodes of degrée(i.e. with & links).

One may consider thaumberof objects in place of thdraction. Both notions of distributions are
strongly related, since the fraction is the number dividedhe total number of objects. As a consequence,
the shape of the plot is exactly the same; the only differdiesan the rescaling of the vertical axis (initially
between 0 and the total number of objects, to between 0 anted rakcaling). Both variants have their
own advantages and drawbacks. In this paper, we usé&ahgon variant to make it easier to compare
between different cases: it is easier to compare the fattithane network the fraction of degree one
nodes i0.5 (i.e. 50 % of the nodes have degree one) and in another oneliBigi.e. 80 %) than the raw
numbers.

In our context, the key property of the observed distrilngios wether they arédomogeneou®r
heterogeneous

The plot of an homogeneous distributidrhave a peak around an average value, and no object with
measured value very different from this aver&geviore formally, the fraction of objects with measured
value k, p,, decreases exponentially fast when one goes away from #w@age value. Intuitively, this
means that no object are very different from the average caseerning the observed value. This has
important consequences, in particular the fact that theageeis meaningful: it indicates theormal
behavior, or what one may expect when taking an object atorand

On the contrary, some distributions are heterogen€otisere are several orders of magnitude between
observed values, and there is a significant number of objectghich the measured value is very different
from the average one. In such casgsdecreases only polynomially fast when one goes away from the
average value, thus much slower than in an homogeneouibdigin. Then, the average value brings little
information: it is not the value observed on most objects] arrandomly chosen object may exhibit a
very different value. In such cases, characterising therbgéeneity of the distribution is more meaningful.
This is generally done by fitting the distribution with a povi@w (p, ~ £~* for a constanty) and then
considering the exponent of this power-law) @s a measure of the heterogenity of the distribution (lower
exponents reveal higher heterogeneity, but the fact tredtbtribution is well fitted by a power-law is
sufficient to show that it is highly heterogeneous).

Notice that it is not immediate to determine if a given dlattion is well fitted by a power-law: on
usual plots, the difference between exponential and pofyalddecreases is not visible. This is why, when
one suspects the presence of a power-law, one uses logd@Essmstead of plotting, as a function of
k one plotslog(px) as a function oflog(k). If the distribution is a power-law, we havg ~ k=<, and
thuslog(px) ~ —a - log(k). Therefore, the plot will be a straight line of negative €ep which is easy
to check. If the distribution has an exponential decredse Jdg-log plot will not be a straight line.

On empirical data, of course, the fits are never perfect. Asrmaay observe on the plots of this paper,
however, the approach just described makes it possiblestmguish between several cases. In Figure 2,
for instance, in the case of occurrence dataset, the bottgred distribution is very well fitted by a
power-law, whereas the top degree distribution certaislgat a power-law. This confirms the immediate

22j e. the number of such objects divided by the total number of aibje

ZMost famous such distributions are normal, Gaussian anssBoian distributions.

24 typical example is body height: there is an average heigt, nobody is twice this value high.
ZMost famous such distributions are Zipf and power-law dhistions.
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observation that, in this case, bottom degrees span semelats of magnitudes (fromh to more than
10000) whereas top degrees do not.

Cumulative distributions.

For several reasons, it is interesting in some situatiortsider thecumulativedistributions, instead
of classical distributions as described above: one plasfithiction of objects having a measured value
lower than or equal td, for eachk, instead of the fraction of objects having exactly this nuead value.

This is particularily useful when one wants to observe tradriiution of a property taking real values,
not only integer ones: it is sufficient to consider a finite tn@mof points in the plot. This is why we used
cumulative distributions for our plots of clustering coeiffints and redundancy (Figures 6, 7 and 10). It
also helps in estimating the number of nodes with high ctirjecoefficients or redundancy, which is
appealing in this context.

Correlations.

Finally, we present in this paper another kind of plots, alraeobserving correlations between different
values attached to a same object (like the degree of a nod¢hanaverage degree of its neighbors, in
Figure 3). There are many way to investigate such correlatiVe use here plots in which we put a dot
for each object, this dot having coordinates given by the vafoies of interest (in Figure 3, each node
leads to a dot for whiclhxr is the degree of the node anpds the average degree of its neighbors).

Such plots make it possible to observe if having a given viéduene observed property is related to
having a given value for another one. In particular, one miageove if having high value for the first
implies a high value for the second. In the case of Figure Binfstance, the leftmost plot of the first row
(top degree correlations for the actors-movies networkysithat in random networks the average degree
of neighbors of a node is independent of the degree of the:nbfla@ms an horizontal line, indicating
that it is a constant (roughly equal 82). Instead, in the same plot, one sees that for high degreesnod
the average degree of their neighbors tends to be smallarfttdower degree nodes, thus indicating
that high degree nodes are more linked to low degree nodesdtiers (and more than if links were
random). In terms of the underlying data, it shows that if asimdnas many actors, then many of these
actors played in few movies only.



