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Abstract
This contribution deals with actual routes followed by packets on the internet at IP
level. We first propose a set of statistical properties to analyse such routes, which
brings detailed information on them. We then use the obtained results to suggest and
evaluate methods for generating artificial routes suitablefor simulation purposes. This
also makes it possible to evaluate various network models. This work is based on large
data sets provided mainly byCAIDA ’s skitter infrastructure.

I. I NTRODUCTION

Realistic modeling of routes in the internet is a challenge for network simulation. Until now, one had
to choose one of the three following approaches to simulate routes: (1) use the shortest path model, (2)
explicitly model the internet hierarchy, and separately simulate inter- and intra-domain routing, or (3)
replay routes that have been recorded with a tool liketraceroute [1]. All of these methods have
serious drawbacks.

The first method does not reflect reality: routes do not in general have the same properties as shortest
paths, as already pointed out for instance by Paxson [2], [3], probably because of routing policies [4],
[5] mainly at the autonomous system (AS) level. As describedin detail recently by Spring et al. [4], and
earlier by Tangmunarunkit et al. [6], [5], this often induces path inflation.

The second method is limited by our ability to explicitly simulate the internet hierarchy. Much work has
been done to model the internet topology (see for instance [7], [8]), and much progress has been made,
but today’s topology generators are still capable of being highly inaccurate in capturing some parameters
while they strive to adhere to others. (See, for instance, the findings in Li et al.’s Sigcomm 2004 paper [9].)
Then, even if one is satisfied with the quality of the topologymodel, there is the question of simulating
dynamic inter- and intra-domain routing. A non-negligibleprogramming effort is required if the choice is
made not to use a simulator, such asns [10], that has these algorithms built in. Even here, the modeling
issues are challenging.

Finally, the third method is not suitable if routes from a large number of sources are to be simulated.
Today’s route tracing systems employ at most a few hundred sources.CAIDA ’s skitter [11], [12] infras-
tructure, for instance, produces an extensive graph suitable for simulations, but it is based on routes from
just around thirty sources. Moreover, such data is in general not publicly available, and collecting them
is a difficult task.

Despite its well known drawbacks, and because of the lack of more accurate models, the shortest path
model is generally used. Examples from recent years includeLakhina et al.’s Infocom 2003 paper [13],
Barford et al.’s Sigcomm 2002 paper [8], Riley et al.’s MASCOTS2000 paper [14], Guillaume et al.’s Info-
com 2005 paper [15], and Clauset et al.’sSTOC 2005 paper [16]. Thensnetwork simulator documentation
itself proposes to simulate routes by shortest paths as an alternative to simulate routing algorithms [10,
Chs. 26, 29].

1A reduced conference version of this paper has been published in the proceedings of the international conferenceNetworking 2005. This
version is much more detailed, contains significantly more results, and we corrected a few mistakes.
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This paper’s principal contribution is a new approach to modeling routes in the internet, one that
does not share the drawbacks just described. We suggest using an actual measured graph of the internet
topology, such as the graph generated byskitter. From that topology, we suggest choosing sources and
destinations as one wishes from the nodes of the graph. Between these sources and destinations, we then
generate artificial routes with a model chosen to reflect statistical properties of actual routes.

Central to this contribution are two specific models for artificial route generation: the random deviation
model and the node degree model. These models generate routes with relatively inexpensive calculations,
and the routes that they generate better reflect the statistical properties of actual routes than does the
shortest path model.

This paper’s other contribution is to update measurements of some familiar statistical properties of real
routes, notably path length and the hop direction, and to introduce and measure a new statistical property:
the evolution of node degree along a route. These propertiesserve as the standard for evaluating whether
simulated routes resemble real routes. By introducing this standard, this paper lays the groundwork for
going beyond the work described here through the eventual introduction of yet better models.

The remainder of this paper is organized as follows. Sec. II describes the data set that we have used
and the context in which our work lies. Sec. III proposes the set of statistical properties to describe routes
in the internet. Sec. IV proposes the models we use to simulate routes based on these properties. Sec. V
evaluates those models and the assumptions we made, and Sec.VI concludes the paper.

II. T HE FRAMEWORK

The ideal perspective from which to characterize routes in the internet would be from a snapshot of the
routing tables of routers throughout the network. Unfortunately, such a snapshot is impossible to obtain
on the scale of the entire network. In this section, we describe the alternative that we opted for, and the
hypotheses we made.

A. The internet as a graph

Efforts to map the internet graph take place at three levels as Fig. 1 shows. One is the autonomous
system (AS) connectivity graph, which can be constructed from BGP announcements (captured for instance
by The Oregon Route Views Project [17] from peering arrangements with roughly60 network service
providers). The others are the router graph, where the nodesare the routers and the links are the physical
connections between them, and the IP graph, where the nodes are the IP addresses and the links between
them correspond to logical links (hopsin the routing). Basically, in the IP graph two addresses are linked
together if they belong to two routers with a link between them. The IP graph can be obtained using
traceroute and similar tools from a number of different points in the network. To our knowledge,skitter,
which conducts traceroutes from on the order of 30 servers toon the order of a million destinations, is
the most extensive ongoing effort at the IP level. The routerlevel has to be inferred from the IP level.

Fig. 1. Three levels of the internet architecture. Each black dot represents aninterface (i.e. an IP address). Several interfaces belong to
each router, and several routers belong to each AS (the shaded areas). The (plain or dotted) lines correspond to physical links (always
between two interfaces). They induce a graph over the set of interfaces,as well as graphs at the router level and at the AS level.

Note that this separation into three levels is not exhaustive. One may consider the logical links between
routers or the physical ones, for instance. One may also consider the physical links between interfaces.
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It would also be possible to consider link-layer devices, such as hubs and bridges. The three-levels view
however is a good approximation of what happens on the network layer, and will be sufficient for our
purpose.

Let us insist on the fact that, because of the fully distributed nature of the internet, these graphs are
not directly observable. In order to study them, one has to collect a large amount of information from
various sources, and then recompose a (partial and possiblybiased) view of the real graph.

Neither level is ideally suited to the task of modeling the behavior of routes at the router level. While
the AS graph is directly based upon routing information, it is too coarse-grained to capture the details
of path inflation. Moreover, a shortest path at the AS level does not necessarily correspond to a shortest
path at the router or IP levels. As mentioned in the Introduction, simulators that do not explicitly model
the AS hierarchy have been found by Tangmunarunkit et al. [7]to do better at generating graphs with
desirable properties. Since our goal is to help in network simulations, we will therefore focus on the IP
and router levels. Similar work should however be done at theAS level, and the comparison of the two
would certainly be very interesting.

The main problem when usingtraceroute is that what one actually sees is the IP graph, while the
graph of routers would be more relevant. One single node in the router graph appears as several separate
nodes, one or more for each of its interfaces, in the IP graph.Moreover,traceroute captureslogical
links, which may miss the presence of tunneling, inATM or MPLS subnetworks for instance. Ideally, then,
one would construct the router graph using methods to “disambiguate” IP addresses, such as the alias
resolution techniques described by Pansiot et al. [18], andby Govindan et al. [19] forMercator. There are
also techniques, such as those used by Spring et al. [20], [21], in Rocketfuel, and by Teixeira et al. [22],
that take advantage of router and interface naming conventions to infer router-level topology from the IP
one. Up to our knowledge, no study deals with the tunneling problem and other sophisticated bias.

Most of these disambiguation techniques, as applied for example in theiffinder tool from CAIDA [23],
do not work by simple inspection of the IP graph; they requireactive probing, preferably simultaneously
with graph discovery. This constraint makes extensive disambiguated router-level graphs much harder
to obtain than IP graphs. At best, some core network topologies are available in this form thanks to
Rocketfuel. But Rocketfuel is untested in stub networks. Finally, it is very difficult to judge the extent to
which disambiguation is successful, and incomplete or incorrect disambiguation could introduce unknown
biases.

To avoid these difficulties, we have restricted ourselves tothe IP graph as obtained fromskitter, and
routes in this graph as obtained directly fromtraceroute . The resulting caveat is that the graph may
not be properly representative of the router level graph.

This caveat is however mitigated by the fact that the IP graphnonetheless resembles the router graph in
one important respect: except if we encounter tunneling, route lengths are preserved. That is to say that a
route that has a given length in the router level graph has thesame length in the corresponding IP graph.
Furthermore, as Broido et al. note [24], “interfaces are individual devices, with their own individual
processors, memory, buses, and failure modes. It is reasonable to view them as nodes with their own
connections.” Finally, we consider this work as a first step towards the accurate modeling of routes, and
therefore prefer to make choices as simple as possible. We will see in Sec. V that these assumptions have
little impact, if any, on our results.

B. The data set

This study usesskitter data from July 2nd 2003. The data was collected from 23 servers targeting
594,262 destinations, leading to 7,075,189 routes (not allsources probed all destinations) on that day. We
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obtained a graph by merging all these routes. We then removedinvalid IP addresses4 thus eliminating
3.95% of the edges and3.25% of the nodes. The resulting graph contains885,438 nodes and1,266,671
links.

This graph captures well the small-world, clusterized, andscale-free nature of the internet already
pointed out in numerous publications, see for instance Jin and Bestavros [26] and [27], [28], [29], [30],
[31]. In particular, the average distance is approximately11.4 hops, and the degree distribution is well
fitted by a power law of exponent1.97, see Fig. 2: the fraction of nodes of degreek is distributed ask−1.97.
This captures in particular the fact that, though most nodeshave a low degree, there is a non-negligible
number of nodes with very high degree. This graph also exhibits a high average clustering coefficient5 of
0.035 (compared to1.30×10−6 for a random graph of the same number of nodes and links). The fact that
this graph shares properties common to most complex networks encountered in practice, as described for
instance by Albert and Barabási [32] and Newman [33], will be useful for our characterisation of internet
routes.
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Fig. 2. Degree distribution in theskitter graph.

Notice that this graph is necessarily incomplete and biaseddue in particular to probing from a limited
number of sources, to route dynamics, to tunneling and to erroneous or absent responses to traceroute
probes. Biases of graphs induced by acquisition through a small number of traceroute monitors have been
studied for instance by Lakhina et al. [13] and by Clauset et al. [16].

However, recent studies by Dall’Asta et al. [34] and Guillaume et al. [15] show that one may be quite
confident of the accuracy, using this kind of exploration, ofdistances and degrees, which are the main
properties that we use here. Moreover,skitter data represents the current state of the art in its extent and
accuracy. We therefore consider this graph as a good approximate of the IP graph in this study, and will
call it the skitter graph.

III. STATISTICAL PROPERTIES OF ROUTES

This section presents a set of properties for the statistical description of internet routes. These properties
motivate the models of Sec. IV. Several properties have already been studied in previous works, and the
work here serves to evaluate, update and complete them.

A. Route lengths

It is well known that routes are not shortest paths: they are not optimal in general. Fig. 3 shows the
distributions of route lengths in our data set, and of the corresponding shortest paths. It also shows the
distribution of the difference (delta) between the length of a route and the corresponding shortest path.

4We consider an address invalid if it belongs to the following subset of the special-use addresses described in RFC 3330 [25]: the private
IP address blocks 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16, the link-local addresses in 169.254.0.0/16, theTEST-NET addresses in
192.0.2.0/24, the “this network” block 0.0.0.0/8, the loopback address block 127.0.0.0/8, the 6to4 relay anycast address block 192.88.99.0/24,
the benchmark testing block 198.18.0.0/15, the multicast address block224.0.0.0/4, and the reserved address block formerly known as the
Class E addresses, 240.0.0.0/4, which includes theLAN broadcast address, 255.255.255.255.

5The clustering coefficient of a node is the probability that two randomly chosen neighbors of this node are linked together.
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Fig. 3. Length distributions of routes and shortest paths, and distribution of the difference between the length of each route and the
corresponding shortest path length.

These distributions are compiled as follows. For each routei obtained bytraceroute , we compute
its length`i and the lengthsi of a shortest path between the source of the route and its destination. We
also compute the difference,δi = `i − si.

The mean length of15.57 hops for routes in this data set fits closely Paxson’s observations [3], [2] on
a data set that is older by nine years. The shortest paths havea mean length of11.4 hops.

The distributions are well centered on their mean value: no route has a length more than twice the
average. However, route lengths vary more around their mean, with a standard deviationσ = 3.99, than
do shortest paths (σ = 2.62).

The delta distribution confirms Tangmunarunkit et al’s observation [6], [5], mentioned at the beginning
of this paper, that roughly80% of routes are not shortest paths. In this particular data set, 19.34% of
routes are shortest paths. Notice that, since the data is incomplete, there are undiscovered links, which
implies that19.34% is an overestimate: at least80.66% of the considered routes are indeed longer than
shortest paths in the true IP graph.

Route lengths and shortest path lengths are both well fitted bygamma distributions. Shortest paths have
an estimated shape parameter ofk = 21.18 and an estimated scale parameter ofθ = 0.53. Routes have
k = 14.56 andθ = 1.07.

Tangmunarunkit et al. also observed that20% of routes were at least50% longer than shortest paths.
We find a somewhat larger portion:33.4%. Again, this is a lower bound, and therefore the larger value
may be due to a more accurate exploration.

One might wonder if the value ofδ is correlated to the length of the shortest path, which wouldseem
natural. For instance, routes between sources and destinations that are further apart may have a largerδ.
We examine more closely the shortest path lengths between 9 and 16, which represent more than85% of
the cases. In this range, the mean value ofδ is best fitted by the liney = 0.13x+1.46 with an asymptotic
standard error for both parameters under±13%, see Fig.4. Given this low slope and this standard error, it
may be seen as almost flat, which contradicts the intuition: the value of delta does not depend significantly
on the actual distance between the considered sources and destinations. Notice however that the mean
hides considerable variations, which can be observed in thequantile plots in Fig. 4.

B. Hop direction

When a packet travels from one router to another, it may move closer to its destination, but it may
also move further, or even stay at the same distance from the destination. Likewise, the distance from the
source may increase, decrease, or stay constant. We will call these behaviors thehop direction, considered
with respect to either the destination or the source. In principle, a hop should always increase the distance
from the source and decrease the distance to the destination; in such cases, the route is a shortest path.
Notice that hop directions in the IP graph correspond to the ones in the router graph, since distances are
preserved between the two graphs.
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Hop directions with respect to a given source may be computedfor all the routes starting at this source
using a breadth-first search rooted at it. This has a cost linear with respect to the size of the graph.
Likewise, it is possible to study hop directions with respect to the destinations using a breadth-first search
rooted at each destination. In our case, we have many destinations but only a few sources. Therefore,
only hop directions with respect to sources can be observed in a reasonable complexity. We will restrict
ourselves to this case in the following6.

Examining the route traces, we found that87.3% of hops go forwards,4.6% go backwards, and8.1%
remain at the same distance from the source (we call thesestablehops). More precisely, Fig. 5 shows the
portion of forward, backward, and stable hops as a function of the hop distance for routes of 15 hops7.
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Fig. 5. Hop directions along 15-hop routes (F: Forward, S: Stable, B: Backward).

As one would expect, the first and last few hops are generally forward because there are few alternatives,
if any. On the contrary, in the core of the network a significant proportion of the hops (more than one
third) do not go further from the source. This type of behavior has already been described in the literature
as a consequence of policy-based routing in the core of the internet. As Tangmunarunkit et al [6], [5]
note, such behaviors may be induced by load balancing, commercial considerations, etc.

C. Degree evolution along a route

Recent work has shown that many real-world complex networks tend to have very heterogeneous
degrees, well fitted by power laws. This is in particular truefor the internet, as observed by Faloutsos
et al. [27] and others. Moreover, most of the short paths between pairs of nodes in these networks tend

6Hop directions with respect to the destinations may be studied using only a part of all the destinations. But, since the number of sources
is small, the approximation would be poor in this case.

7We choosed this length because it correspond to the most numerous routes, roughly140,000. The obtained plot is typical of what we
obtained for any length. This will be true everywhere we will choose to focus on routes of a given length in the following.
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to pass through the highest degree nodes. Actually, almost all paths (not only short ones) tend to pass
through these nodes, which make them essential for network connectivity [35], [36], [37], [38], [39], [40].

These observations lead us to ask how the node degree evolvesalong a route. If routes tend to pass
through high degree nodes, where do they do so, and what degree nodes do they encounter? Furthermore,
does this tendency to pass through high degree nodes imply that, when a choice exists between next hops,
the next hop that leads to the highest degree node is generally chosen?

Fig. 6 shows how node degrees evolve along routes of length 15(notice the logarithmic vertical scale
for the quantile plot). There is a significant increase in thedegrees at the very begining of the plot, as
well as a significant decrease at the end. In between, the plotis quite flat. This leads us to the following
interpretation: the hosts have low degree, they are connected at their first hop router to relatively high
degree nodes which play the role of access points, and then packets are routed in a core network where
the degree (10 on average) does not depend much on the distance from the source or from the destination.
Notice that the flatness in the middle of the plot does not meanthat all the nodes in the core have a
similar degree (the degrees in the core follow a power law). But, once a packet has entered this core,
there is no correlation any longer between the degree of the node and the distance from the source or
from the destination.

 1

 10

 100

 1000

 10000

 0  2  4  6  8  10 12 14

de
gr

ee

distance

 0

 10

 20

 30

 40

 50

 60

 1  3  5  7  9  11  13  15

de
gr

ee

distance

Fig. 6. Degree evolution along routes of length 15. Left: quantile plots (dotsindicate the median, vertical lines run from the min to the
first quantile, and from the third to the max, tick marks indicate the 5th, 10th, 90th and 95th percentiles). The median and lower quantiles do
not appear on this plot for hop 15, as the median at that hop count is zero and the vertical scale is logarithmic. Right: the average value.

One may wonder if there is a simple local rule that can be observed for the degree evolution along
a route. In particular, when there is a choice of next hop along a route, is there a correlation between
the degree rank of the neighbors and their probability of being chosen? For instance, are highest degree
nodes chosen preferentially over lower degree ones? Note that such a rule could be perfectly compatible
with the observed flat degree evolution in the middle of routes.

Fig. 7 (left) plots the probability that a packet goes to a node’s i-th ranked neighbor, where the neighbors
are ranked from highest degree to lowest. We show the plots obtained for degrees 4 to 10, which are the
cases where both the degrees and the number of nodes are non-trivial.

There is no apparent correlation in this plot, which seems toinvalidate our hypothesis. However, if one
considers only the neighbors of a node to which it sometimes sends a packet (in other words, we consider
the skitter directed according to the ways the collected routes are traveled), then one obtains the plot on
the right of Fig. 7. One can then see a clear bias towards highest degree nodes, though this bias is rather
small.

IV. ROUTE MODELS

The previous section provides a set of statistical tools to capture some non-trivial properties of routes
in the internet. We now propose three simple models (only twoof which we eventually retain) designed
to capture these features.
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vision.

Our approach is as follows: we design a model as simple as possible which focuses on one of the
properties of interest, and then we use the other statisticsto evaluate the model (in the next section). This
ensures that the models stay very simple, and this makes it possible to study the relations between the
observed properties (are they independant or on the contrary can some of them be seen as consequences
of others?).

A. Path length model

The path length model is the simplest and the most obvious oneconceptually, but it proves to be
unusable in practice. The model aims at producing routes of the same lengths as real ones. As discussed
in Sec. III, a real route length typically exceeds that of theshortest known path by some small integer
valueδ > 0.

In order to construct a route from a sources to a destinationd, the path length model first computes
the length` of a shortest path froms to d. Then it samples a deviationδ from a distribution such as the
one shown in Fig. 3, and a route is generated by choosing a pathat random froms to d among the ones
which are loop-free and have length` + δ. This ensures that the difference between shortest path lengths
and actual route lengths will be captured by the model.

To choose such a path at random implies however that one must construct all the loop-free paths of
length ` + δ from s to d. In practice, the computation required to generate this number of paths may be
prohibitive, since even in simple cases it is exponential in` + δ. For example, in trying to generate all
paths of length21 between a pair of nodes in theskitter graph, we enumerated 1,206,525 possible paths.
Therefore, despite its conceptual simplicity, we will not consider this model further.

B. Random deviation model

The random deviation model is based upon the idea that a routeusually follows a shortest path, but
might occasionally deviate from it. We modeled this using one single parameter,p, the probability at any
point of deviating from the current shortest path to the destination, if such a deviation is possible.

A random deviation route from sources to destinationd is therefore based upon a shortest pathu from
s to d. At each hop, with probability1 − p, the route continues alongu. But with probabilityp it will,
if possible, deviate offu to another path. A deviation from current nodex to a neighboring nodey is
deemed possible only if there is a shortest pathw from y to d that does not pass throughx. Should there
be a deviation, the route continues alongw to d (unless another deviation should occur). The model is
precisely described by Algorithm 1.

Fig. 8 shows an example of how a route can be generated using the random deviation model. In this
graph, there is a five hop shortest path from sources to destinationd. The route follows this path for
three hops and then deviates atv. This deviation is possible because the shortest path fromv′ to d does
not containv. The resulting route is seven hops long.
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Algorithm 1: rand dev route (G,s,d,p)
Input : A network G, a sources, a destinationd, a deviation probabilityp.
Output : An artificial router from s to d in G, following the random deviation model with parameterp.
begin1

u ← a shortest path froms to d chosen at random;2
r ← empty list;3
v ← first element ofu;4
copy v to the end ofr;5
remove it fromu;6
while v 6= d do7

if rand[0,1] 6 p then8
C ← set of all the shortest paths from any neighbor ofv to d;9
Remove fromC the paths containingv;10
if C 6= ∅ then11

u ← random element ofC;12

v ← first element ofu;13
copy v to the end ofr;14
remove it fromu;15

returnr;16
end17

s v

v′′

d

v′

Fig. 8. A route (dashed lines) obtained using the random deviation model.

We can use Fig. 8 to illustrate some details of the random deviation model. It shows instances in which
no deviation is possible. For example, there can be no deviation at the first node of the shortest path from
s to d, since it has no neighbor that is not already on the shortest path being followed. Also, there can
be no deviation at the second node, even though there is a neighbor that is not on the shortest path. The
reason for this is that the only shortest path from this neighbor to d passes through the node we come
from. The figure also shows an instance where two deviations are possible: at nodev, deviations tov′

andv′′ are both possible. The choice of which to take (if any) is random.
Finally, notice that large numbers of routes to a given destinationd can be efficiently generated with

the random deviation model once a shortest path tree rooted at d has been computed.

C. Node degree model

Several previous authors, including [41], [36], [42], havetried to use the heterogeneity of node degrees
to compute short paths in complex networks. The basic idea isthat a path which goes preferentially
towards high degree nodes tends to see most nodes very rapidly (a node is considered to be seen when
the path passes through one of its neighbors).

The node degree model is based upon a similar approach, as follows. Two paths are computed, one
starting from the source and the other from the destination.The next node on the path is always the highest
degree neighbor of the current node. The computation terminates when we reach a situation where a node
is the highest degree neighbor of its own highest degree neighbor. One can show that only this kind of
loop can occur. Then, one of two cases applies: either the twopaths have met at a node, or they have
not. In the first case, the route produced by the model is the discovered path (both paths are truncated
at the meet up node, and are merged). In the second case, we compute a shortest path between the two
loops, and then obtain the route by merging the two paths and this shortest path, removing any loops.
The overall model is precisely described in Algorithm 2.

Fig. 9 shows an example. There are three tree-like structures (the shaded areas). The sources belongs
to the leftmost one, which is rooted atrs, and the destinationd to the rightmost one, with root atrd. Each
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Algorithm 2: node deg route (G,s,d)
Input : A network G, a sources, a destinationd.
Output : An artificial routev from s to d in G, following the node degree route model.
Functions: reverse(p): returns the path obtained by readingp from the end to the beginning.

climb degrees(G,v): returns the path inG obtained fromv by going to the highest degree neighbor at each hop, until it loops.
begin1

ps ← climb degrees (G,s);2
pd ← climb degrees (G,d);3
if ps and pd meet upthen4

let u be the first node they have in common;5
remove fromps all the nodes afteru;6
remove frompd all the nodes afteru;7
p ← (ps,reverse(pd));8
returnp;9

q ← random shortest path from the last node ofps to the one ofpd;10
p ← (ps,q,reverse(pd));11
remove loops fromp;12
returnp;13

end14

d

rd

s

rs

Fig. 9. The node degree model: an example.

directed link goes from one node to its highest degree neighbor (the dotted lines are links which do not
satisfy this). When one wants to build a route froms to d according to the node degree model, one first
finds the path froms to rs, and the one fromd to rd. One then has to compute a shortest path fromrs

to rd, which has length5 in this example. The final route is obtained by merging these paths, and then
removing the loops (which leads to the removal of a link, in our example). It has length7 (while the
shortest path has length6).

This method has already been proposed [42] as an efficient wayto compute short paths in complex
networks in practice: the obtained paths are very close to shortest ones. Moreover, the computation of
the tree-like structure where each node points to its highest degree neighbor is very simple and only has
to be processed once. Likewise, the shortest paths between asmall number of loops are computed only
once.

V. EVALUATION

This section is devoted to the evaluation of the models we have just proposed, and to the discussion
of their possible use. Our basic methodology to achieve thiswill be to compare the properties of the
obtained artificial routes to the ones of the original routes. One therefore has to choose a graph on which
the routes will be constructed, and then choose sources and destinations. This can be done in various
contexts, from the ones closest to the original conditions to ones significantly different.

We will first generate routes on theskitter graph using the same sources and destinations as in the
original data, and then using random sources and destinations. After this, we will use other maps of the
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internet with random sources and destinations, and finally we will run our models on the most widely
used graph models of the internet. All of these experiments give some information on the behavior of our
models, as well as on the relevance of the underlying graph.

In each case, we will compute a large number of artificial routes and study the same properties as
the ones we studied on real routes. Therefore, the evaluation of each results is done by comparing the
obtained plots to the ones in Sec. III, which we recall in Fig.10.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

 0  5  10  15  20  25  30

P
(X

 =
 x

)

number of hops

delta
shortest paths

routes

 1

 10

 100

 1000

 10000

 0  2  4  6  8  10 12 14
de

gr
ee

distance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  3  5  7  9  11  13  15

pr
op

or
tio

n

traceroute hops

F
S
B

Fig. 10. Originalskitter routes. From left to right: length distributions, degree evolution along routes, and hop directions.

Finally, the evaluation of the random deviation model depends on a parameter, namely the deviation
probabilityp. We took the same value for all the experiments,p = 0.2, which was chosen to give the best
fits when the random deviation model is compared to the original skitter routes on theskitter graph with
the same sources and destinations. Tuning its value to the best fits in the other cases too would also be
relevant, but we observed that the results do not vary significantly as long as the value is not too different.
We therefore kept always the same value in order to make the presentation and the interpretation easier.

A. On theskitter graph

Fig. 11 and 12 show the obtained results with both models on the skitter graph, when one takes the
very same sources and destinations as in the original data, and when one chooses sources and destinations
at random, respectively.
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Fig. 11. Models on theskitter graph with the same sources and destinations as in the original measurement. Top: random deviation model.
Bottom: node degree model. From left to right: length distributions, degreeevolution along routes, and hop directions.

Before entering in more details, let us notice that the results seem very good: the global shape of all
the plots fit quite well the original ones for both models, even when sources and destinations are taken
at random.

The average route lengths are13.6 with the random deviation model and14.7 with the node degree
model, when the sources and destinations are the original ones. They are15.1 and14.9 when sources and
destinations are random. This is to be compared to the average shortest path length in this graph,11.4,
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Fig. 12. Models on theskitter graph with random sources and destinations. Top: random deviation model. Bottom: node degree model.
From left to right: length distributions, degree evolution along routes, and hop directions.

and to the average length of real routes,15.6. We may conclude that the average route length is quite
well captured, though not exactly.

In all the cases the route length distributions are symmetric, average somewhat higher than the shortest
path distribution, and have tails similar to the actual route length distribution shown in Fig. 10. Lengths
of paths generated with the node degree model tail off somewhat quicker than in reality (approaching
zero closer to length20 than length25), but the degree of fidelity is nonetheless remarkable giventhat
the length distributions are not explicitly part of the model. The random deviation model generates more
routes that are shortest paths than in reality (roughly30% compared to roughly20%), whereas the node
degree model generates somewhat fewer (roughly12%).

As one may have expected, the node degree model performs better than the random deviation model
in capturing the evolution of the degree along routes, especially close to the source. This is particularily
true when using the same sources and destinations as in the original measurement. The difference is less
significant with random ones. This indicates that there are more possible choices for routing close to
the source, which is probably a bias due to the measurement itself (the map is more precise close to
the sources than close to the destinations). The fact that the random deviation performs well on average
(random sources and destinations) indicates that the shortest path to the destination generally goes to the
highest degree neighbor. If the source is an original one, however, this is not true anymore and the node
degree model performs better.

Now focusing on the hop directions in15-hop routes, it appears clearly that the random deviation model
behaves much better than the node degree model. Both capture qualitatively the properties of real routes,
but the behavior of the random deviation model is very similar to the original one. Overall proportions
of forward, stable, and backward hops closely match realityin both cases:88%, 8% and 4%, and84%,
9% and 7% for the random deviation model and for the node degree model when we take the original
sources and destinations, and89%, 7% and4%, and82%, 11% and7% for the random deviation model
and for the node degree model when we take random sources and destinations. The proportions for the
original routes were87% forward, 8% stable, and5% backward.

Finally, we conclude that both the random deviation and nodedegree models do a reasonable job of
emulating real routes, though each model captures some aspects better than others, and their strengths are
different. The fits with original data are however surprisingly good, which makes them relevant in this
context.
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B. On other internet graphs

Another context in which our models may be used is when one hasa map of the internet, collected in
a previous work or provided by other researchers, and wants to use it for a simulation where routes are
needed. One may then use our models to generate routes which will be more realistic than shortest paths
usually performed in such cases.

We therefore ran our models on two internet maps provided by other researchers. For one of this map,
both the router and the IP levels were provided. We considered this as an occasion to test the robustness of
our models to a change from the IP level to the router one. Moreover, still for this dataset, the routes were
also provided. Therefore, we computed the statistics on them. The results are presented and discussed in
this section.

1) On theMercatorgraph: The first case we will consider is theMercator graph studied by Govindan
et al. in [19] and provided at [43]. This graph was obtained in1999 usingtraceroute massively from
one source only but withsource routing. Some antialiasing has been done in order to make it closer to
the router graph. See [19] for more details. This data corresponds to the very beginning of the research
on large scale internet topology; it may contain significantbias and errors, but it is still one of the very
few maps publicly available, and it is widely used.

We ran our models on it and obtained the results in Fig. 13. Since the real routes used to construct this
map are not available, we could not compare the artificial routes to them.
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Fig. 13. Models on theMercator graph with random sources and destinations. Top: random deviation model. Bottom: node degree model.
From left to right: length distributions, degree evolution along routes, and hop directions.

The obtained results are in accordance with the properties of skitter routes concerning path lengths and
hop directions. However, the degree evolution along routesis significantly different. We believe that this is
due to the fact that, using only one source (and despitesource routing), the graph has a tree-like structure
with high degree nodes close to the root (i.e. the source of alltraceroute ). The routes therefore go
up this tree, encountering nodes with higher and higher degree, and then go down to the destination. The
non-trivial behaviors of route lengths and hop directions would then be a consequence of the links which
prevent the map to be exactly a tree.

2) On thenec graph: Despite it is also obtained using massivelytraceroute , the measurement
method is quite different for this graph provided by Magoni [44] and studied in [45]: it is based on the
use of looking-glasses, which makes it possible to use several hundreds of sources. However, to avoid an
overload of these sources, the number of destinations also has been reduced to a few hundreds. Moreover,
many destinations are routers, whereas in the other maps they generally are hosts. As we will see, this
has important consequences on route properties.
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This dataset however has the important advantage of being available both at the router level and at the
IP one [44]. Moreover, Magoni provided us with the actual routes he used to contruct it. This gives us
the opportunity to study the statistical properties of these routes, just like we did with theskitter ones. It
also makes it possible to compare the properties of interestat the IP and router levels.

We plot the properties of these real routes at IP level in Fig.14, and at router level in Fig. 15.
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Fig. 14. Originalnec routes at IP level. From left to right: length distributions, degree evolution along routes, and hop directions.
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Fig. 15. Originalnec routes at router level. From left to right: length distributions, degree evolution along routes, and hop directions.

One may be surprised by the fact that the properties of these real routes differ significantly from the
ones ofskitter: the lengths are smaller, the degree does not grow rapidly atthe beginning of the route and
does not decrease rapidly at the end, and, even more strikingly, many (and even most) of the hops are not
forward at the end of the route. This can however be explained simply by two complementary facts. First,
the destinations of these routes often are routers (not hosts), which is equivalent to say that these routes
are only the beginning of host-to-host routes (unlike theskitter ones). Moreover, the neighborhood of the
destinations is much better explored than in theskitter graph because of the large number of sources.
Therefore, it is more dense, and this makes the number offorward hops decrease. These plots are therefore
in reasonable accordance with the ones we obtained forskitter routes.

Moreover, they allow us to check an important assumption we have made at the beginning of the paper:
the fact that the plots at IP and at router levels are very similar tends to confirm that our choice to stay
at the IP level has little influence on our results, which may also be valid at router level.

In order to push further the evaluation of our models, let us now study the properties of artificial routes
generated using them, from random sources and destinations(the use of the same sources and destinations
as in the original data give very similar results, thereforewe do not present them here), both in the IP
and in the routernecgraphs, see Fig.16 and 17.

Again, these plots confirm that, as long as one is concerned with the simple statistics and models we
propose here, there is no significant difference between theIP and the router levels. Moreover, one can
see that the models do their best to simulate host-to-host routes, and therefore produce routes which are
much more similar to theskitter routes than the originalnec routes. This may be considered as a good
point for our models, which may be applied on other graphs than the skitter one and which are able to
use the properties of the underlying graph to producerealistic routes.

C. On synthetic graphs

Until now, we only tested our models on real-world mappings of the internet topology. They proved
to be usable in this context. They would however be even more interesting if one could use them on
synthetic graphs obtained with models of the internet topology. This subsection is devoted to this case.
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Fig. 16. Models on thenec graph at IP level with random sources and destinations. Top: random deviation model. Bottom: node degree
model. From left to right: length distributions, degree evolution along routes, and hop directions.
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Fig. 17. Models on thenecgraph at router level with random sources and destinations. Top: random deviation model. Bottom: node degree
model. From left to right: length distributions, degree evolution along routes, and hop directions.

Since a few years, much effort has been done to propose accurate models of the internet as a graph.
However, the problem is challenging, and there is nowadays no consensus on such a model, or even on
a family of such models. A few basic approaches however appear as building blocks for more intricate
models, and are now widely used. We will focus on them, as theyare sufficiently simple to understand
the behavior of our route models. We will point out some difficulties which will occur with any model
based on these approaches, as we will see with the case ofBRITE.

1) On purely random graphs:We begin the evaluation of our route models with the most simple
model, the classical random graphs from Erdös and Ŕeńıy [46], [47]. Such a graph is constructed from
n disconnected nodes by adding links betweenm randomly chosen pairs of nodes. Here, we took forn

and m the same values as in the originalskitter graph, in order to have a random graph comparable to
this original one.

It is well known that the internet is significantly differentfrom a random graph, in particular concerning
its degree distribution (see for instance [27]). We consider this model as an interesting case however
because it is the simpliest and it is often used as a building block of more intricate models.

Fig. 18 shows the results obtained with our models on such a graph (they are representative of all the
experiments we ran on such graphs). The sources and destinations are chosen at random.

Both the degrees and the shortest path lengths in a random graph are very homogeneous [47], [48]: all
the nodes have a degree close to the average value, and all thepairs of nodes are at a distance close to
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Fig. 18. Models on a purely random graph with random sources and destinations. Top: random deviation model. Bottom: node degree
model. From left to right: length distributions, degree evolution along routes, and hop directions.

the average distance. This is confirmed by the plot of the shortest path length distribution. Moreover, with
each model, the degree along a route is very stable due to the low variability of degrees in the graph: the
first and last nodes have the average degree since they are chosen at random, and all the nodes in between
are chosen with a probability proportional to their degree,which explains that their degree is larger than
the average degree but quite stable.

The random deviation model produce routes with very rare deviations, since most of the time no
deviation at all is possible because of the low average degree of nodes (no deviation at all is possible if
the degree of a node is lower than3, which is often the case as one can check on the plot of the degree
along the routes). Therefore the routes produced by this model are mostly shortest paths, which explains
the statistics.

The node degree model produces routes with properties closer of the ones of real routes: the length
distribution is different from shortest paths, and not all the hops are forward. One can have quite a precise
idea of the structure of the produced routes by noticing that, since all the degrees are close to the mean
value, the route rapidly reaches the place where it becomes ashortest path. Therefore, a route produced by
this model is nothing but very few hops towards higher degreenodes, then a shortest path, and again a few
hops to degrees in decreasing order to the destination. Thisexplains the fact that the length distribution of
these routes is close to the one of shortest paths, it describes precisely the degree evolution along routes,
and finally it explains the observed hop directions.

In both case, the produced routes are quite different from real ones. Since the underlying graph has
properties qualitatively different from the ones of the IP graph, this can not be seen as surprising.

2) On scale-free graphs:We now examine how the models behave on scale-free graphs,i.e. graphs
with a power law degree distribution as obtained using the Albert and Barab́asi model, see [49], [32].
Such a graph is constructed by adding nodes one by one until wehave the wanted number of nodes, each
new nodes being linked at random tok pre-existing nodes with a probability proportional to their degree.
The value ofk is chosen in order to induce the wanted number of links at the end of the construction (it
is half the average degree).

Tangmunarunkit et al. found [7] that power law based generators create topologies that better match the
internet’s topology than do other common sorts of graphs, such as those produced by explicitly hierarchical
topology generators. Despite this model remains very simple, it may therefore capture important features
of the internet topology, and the models we proposed may be relevant on it. Morever, it is very often
used to model the internet, see for instance [34], [37], and as a building block for more accurate models
(see below).

Again, we choosed the parameters to fit the number of nodes andlinks of the originalskitter graph
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(k = 1.4), in order to obtain a comparable graph. We choosed sources and destinations at random, and
obtained the results plotted in Fig. 19. They are representative of all the experiments we ran on such
graphs.
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Fig. 19. Models on a scale-free graph with random sources and destinations. Top: random deviation model. Bottom: node degree model.
From left to right: length distributions, degree evolution along routes, and hop directions.

First notice that scale-free graphs have a very low average shortest path length in general, see for
instance [50], [51], [52], here7.7, as can be seen in the length distributions. The models produce longer
routes, but they remain quite short. This leads us to consider statistics on routes of length8 or 10 depending
on the model, which are the most numerous.

Both models clearly fail in capturing the degree evolution along routes in such a graph. The highest
degree nodes are always reachable, as can be seen on the plot of the degree evolution along routes from
the node degree model. This induces a regular increase in thedegrees along such routes until a very high
degree node, and then a decrease until it reaches the destination. Notice also that a random deviation
tends to go towards high degree nodes (they have more links and thus a randomly chosen links has a
high probability to be connected to such a node), which explains the degree evolution along routes from
the random deviation model.

Finally, let us observe that the random deviation model captures surprisingly well (compared to the
other statistics and to the other model) the hop directions.It might be seen as a consequence of the fact
that at the beginning and at the end of routes one has very few choices for the next hop (low degree
nodes) while in the middle there are many choices. The hop directions in the node degree model show
that going to the highest degree neighbor at each hop may be a very bad strategy in the core of the graph.

3) On BRITE graphs: BRITE [53], [54] is one of the most widely used models in network simulation,
in particular in internet simulation. We therefore used it to generate a variety of graphs supposed to be
good approximations of theskitter graph (in terms of size and degree distribution at least), and ran our
models on them.
Two cases should be considered:

• a flat topology, which is nothing but a scale-free graph as described above.However, sinceBRITE

needs an integer value for the numberk of links added at each step (the original definition of the
model did not specify what to do whenk is non-integer), we had the choice betweenk = 1 and
k = 2. In the first case, one obtains a tree, in which each model produces nothing but shortest paths.
We therefore obtain trivial statistics (length distributions are the same, degree evolutions grow to a
maximal and then decrease, and there are only forward hops).We therefore tookk = 2 and then
obtained results very similar to the ones described above for k = 1.4. Therefore, we do not detail
expermients on flat topologies here.
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• a hierachical topologywith nodes distributed in Autonomous Systems.BRITE first generates the
AS topology with the scale-free model already described, and then the topology inside each AS is
generated using this model again. The obtained degree distribution is a truncated power law, meaning
that the degree are heterogeneous but there is no node with very high degree. We generated such a
topology with n = 900,000 nodes distributed in9,000 Autonomous Systems (100 routers per AS).
At the AS level we choosedk = 10 and inside each ASk = 1. This leads to an average degree
2.2 approximately. One may also use the purely random model at a level or the other, or both. We
present here the parameters which gave the better results, plotted in Fig. 20.
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Fig. 20. Models on a scale-free graph with random sources and destinations. Top: random deviation model. Bottom: node degree model.
From left to right: length distributions, degree evolution along routes, and hop directions.

The performances obtained in these experiments are very poor. The fact thatk = 1 inside each AS
induce that these graphs are trees. Therefore, most routes actually are shortest paths, which explains
the statistics. Larger values ofk should be considered, butBRITE forces them to be integers, and
k = 2 gives an average degree too large for internet modeling. Moreover, one can clearly see on
the plot of the degree evolution that the two-level structure induce a quasi-periodic variations on the
nodes degrees which does not fit the properties met in practice.

VI. CONCLUSION AND DISCUSSION

The first contribution of this paper is to provide a vocabulary for describing routes in the internet,
and to use that vocabulary to describe routes in one of the largest and most complete data sets currently
available.

The characteristics we have used to describe routes are: their lengths, and the differences between
those lengths and the lengths of corresponding shortest paths; the direction of hops along a route; and the
evolution of the degree of nodes along a route. We have chosenthese characteristics based upon graph
theoretic knowledge of the typical properties of real-world complex networks graphs, of which the internet
is an example. Let us notice that these characteristics are very general and may be used (and extended)
with benefit in other complex network studies: until now, no statistical tool had been proposed to describe
large sets of paths in such networks.

Other graph theoretic characteristics may also be studied in the manner we have done here. The evolution
of the clustering coefficient of nodes along a route would be anatural candidate, for instance. One may
also study the link clustering coefficient:

cc(u,v) =
|N(u) ∩ N(v)|

|N(u) ∪ N(v)|
.
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Other interesting perspectives are to consider the routes as directed(from sources to destinations), the
links asweighted(by the measured delay), and to take into account the dynamics of the internet and its
routes. Paxson [2], [3] and, more recently, Amini et al. [55]have characterized the asymmetry of routes
in the internet. Likewise, we have focussed on the topological characteristics of internet routes. Could we
tie this in to the considerable body of knowledge concerningthe delay characteristics of routes? Savage
et al. [56] and Spring et al. [4], for instance, have characterized round-trip time (RTT) inflation. These
works need to be continued, and describing these important characteristics in a way similar to what we
have done here for static unweighted undirected routes would certainly make sense.

The other main contribution of this paper is to propose simple models which make it possible (and
easy) to generate large amounts of artificial routes similarto real ones (in the sense of the statistical
properties we have observed). These models may be used in particular for simulation purpose.

We have shown both that these models capture non-trivial features (the obtained routes are not shortest
paths) and that they fit well real-world data. This last pointhowever depends on the underlying graph
and its properties. If we consider the original graph, then the results are in very good accordance with
the real-world data. If we take other internet maps, then theresults remain very good. If we turn to graph
models, however, the results are very poor. This indicates that the performances of our models rely on
some properties which are not captured by these graph models, thus confirming that there is still much
to do for the accurate modeling of internet topology.

Just like we have done here, it would also probably make senseto model the fact that routes aredirected,
dynamicandweighted. The node degree model is static and undirected by nature: italways produce the
same route from a given node to another (except if there is a choice between several shortest paths in the
middle). The random deviation, on the countrary, already contains an amount of dynamics and even of
direction. The obtained route may vary from one time to another. However, most remains to be done to
model these characteristics.

We have also shown that the properties of the graph used to model the internet has a crucial impact on
the performance of our models. We explained most of the influence of the graphs on the models, which
leads us to conclude that any model would perform poorly because of the fact that graph models are still
not accurate enough to actually contain routes with the properties we captured. This is an important point
which argues for the three following points:

• first, it would make sense to conduct experiments on more intricate models in order to confirm our
conclusion that current models are not accurate enough;

• second, the most relevantmodelsof the internet topology seem to be the real-world maps obtained
by actual measurement. Simulation should therefore be ran on such graphs, but also on models which
have the advantage of being well understood, which in turn makes it possible to interpret the observed
phenomena;

• and finally there is still much to do for the accurate modelingof the internet topology, and much to
understand concerning its precise features.

Finally, this study has restricted itself to the IP graph (though we have made a comparison with the
router graph in the case of thenecgraph). As we mention in the Introduction, measurements of the AS
graph are also available, and it is well known that much of path inflation can be explained by decisions
taken at the inter autonomous system level. Making the same kinds of analysis and modeling as we have
done, but at the AS level, would certainly be interesting. Moreover, relating the results at one level to the
other would improve significantly our understanding of internet routes, and of the internet in general.
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