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Abstract

This contribution deals with actual routes followed by petskon the internet at IP
level. We first propose a set of statistical properties tolyseasuch routes, which
brings detailed information on them. We then use the obtanmesults to suggest and
evaluate methods for generating artificial routes suitétesimulation purposes. This
also makes it possible to evaluate various network moddis Work is based on large
data sets provided mainly byaiDA’s skitter infrastructure.

. INTRODUCTION

Realistic modeling of routes in the internet is a challengenietwork simulation. Until now, one had
to choose one of the three following approaches to simutaiées: (1) use the shortest path model, (2)
explicitly model the internet hierarchy, and separatewate inter- and intra-domain routing, or (3)
replay routes that have been recorded with a tool tileeeroute [1]. All of these methods have
serious drawbacks.

The first method does not reflect reality: routes do not in gErfeave the same properties as shortest
paths, as already pointed out for instance by Paxson [2],d@Jbably because of routing policies [4],
[5] mainly at the autonomous system (AS) level. As descriimedetail recently by Spring et al. [4], and
earlier by Tangmunarunkit et al. [6], [5], this often indsgeth inflation

The second method is limited by our ability to explicitly silate the internet hierarchy. Much work has
been done to model the internet topology (see for instanidd]j, and much progress has been made,
but today’s topology generators are still capable of beiigdplly inaccurate in capturing some parameters
while they strive to adhere to others. (See, for instanaefitidings in Li et al.'s Sigcomm 2004 paper [9].)
Then, even if one is satisfied with the quality of the topologgdel, there is the question of simulating
dynamic inter- and intra-domain routing. A non-negligiple®gramming effort is required if the choice is
made not to use a simulator, suchreg[10], that has these algorithms built in. Even here, the rfioge
issues are challenging.

Finally, the third method is not suitable if routes from agamumber of sources are to be simulated.
Today'’s route tracing systems employ at most a few hundredces.CAIDA’s skitter [11], [12] infras-
tructure, for instance, produces an extensive graph deitab simulations, but it is based on routes from
just around thirty sources. Moreover, such data is in gémerapublicly available, and collecting them
is a difficult task.

Despite its well known drawbacks, and because of the lackatraccurate models, the shortest path
model is generally used. Examples from recent years inclizddina et al.’'s Infocom 2003 paper [13],
Barford et al.'s Sigcomm 2002 paper [8], Riley et al.sABcoTs2000 paper [14], Guillaume et al.'s Info-
com 2005 paper [15], and Clauset et ab80C 2005 paper [16]. Thas network simulator documentation
itself proposes to simulate routes by shortest paths astamative to simulate routing algorithms [10,
Chs. 26, 29].

A reduced conference version of this paper has been published imdbeeglings of the international conferendetworking 2005This
version is much more detailed, contains significantly more results, andwected a few mistakes.
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This paper’s principal contribution is a new approach to eliog) routes in the internet, one that
does not share the drawbacks just described. We suggest arsiactual measured graph of the internet
topology, such as the graph generatedshitter. From that topology, we suggest choosing sources and
destinations as one wishes from the nodes of the graph. Betthiese sources and destinations, we then
generate artificial routes with a model chosen to reflectssitzd! properties of actual routes.

Central to this contribution are two specific models for ani@i route generation: the random deviation
model and the node degree model. These models generate vatherelatively inexpensive calculations,
and the routes that they generate better reflect the statigiroperties of actual routes than does the
shortest path model.

This paper’s other contribution is to update measurememgsme familiar statistical properties of real
routes, notably path length and the hop direction, and todiice and measure a new statistical property:
the evolution of node degree along a route. These propestie® as the standard for evaluating whether
simulated routes resemble real routes. By introducing ttaisdard, this paper lays the groundwork for
going beyond the work described here through the eventtr@duction of yet better models.

The remainder of this paper is organized as follows. Seces$icdbes the data set that we have used
and the context in which our work lies. Sec. Ill proposes #ieos statistical properties to describe routes
in the internet. Sec. IV proposes the models we use to simutattes based on these properties. Sec. V
evaluates those models and the assumptions we made, andlS®ncludes the paper.

[I. THE FRAMEWORK

The ideal perspective from which to characterize routesiénimternet would be from a snapshot of the
routing tables of routers throughout the network. Unfoatighy, such a snapshot is impossible to obtain
on the scale of the entire network. In this section, we dbscilie alternative that we opted for, and the
hypotheses we made.

A. The internet as a graph

Efforts to map the internet graph take place at three level§ig. 1 shows. One is the autonomous
system (AS) connectivity graph, which can be constructeshfBGP announcements (captured for instance
by The Oregon Route Views Project [17] from peering arrangesevith roughly60 network service
providers). The others are the router graph, where the nagethe routers and the links are the physical
connections between them, and the IP graph, where the noglélsealP addresses and the links between
them correspond to logical link$i@psin the routing). Basically, in the IP graph two addresses iaket
together if they belong to two routers with a link betweennthélhe IP graph can be obtained using
traceroute and similar tools from a number of different poin the network. To our knowledgskitter,
which conducts traceroutes from on the order of 30 servemntthe order of a million destinations, is
the most extensive ongoing effort at the IP level. The rolegeel has to be inferred from the IP level.

Fig. 1. Three levels of the internet architecture. Each black dot represeniatarface (.e. an IP address). Several interfaces belong to
each router, and several routers belong to each AS (the shaded)ar€he (plain or dotted) lines correspond to physical links (always
between two interfaces). They induce a graph over the set of interfasegell as graphs at the router level and at the AS level.

Note that this separation into three levels is not exhaeis@ne may consider the logical links between
routers or the physical ones, for instance. One may alsoidemthe physical links between interfaces.



It would also be possible to consider link-layer deviceghsas hubs and bridges. The three-levels view
however is a good approximation of what happens on the nktvayer, and will be sufficient for our
purpose.

Let us insist on the fact that, because of the fully distebubature of the internet, these graphs are
not directly observable. In order to study them, one has tecoa large amount of information from
various sources, and then recompose a (partial and possdsgd) view of the real graph.

Neither level is ideally suited to the task of modeling thédeor of routes at the router level. While
the AS graph is directly based upon routing informationsitoo coarse-grained to capture the details
of path inflation. Moreover, a shortest path at the AS levedsdnot necessarily correspond to a shortest
path at the router or IP levels. As mentioned in the Introdactsimulators that do not explicitly model
the AS hierarchy have been found by Tangmunarunkit et altd7do better at generating graphs with
desirable properties. Since our goal is to help in netwonkugations, we will therefore focus on the IP
and router levels. Similar work should however be done atABdevel, and the comparison of the two
would certainly be very interesting.

The main problem when usirtgaceroute is that what one actually sees is the IP graph, while the
graph of routers would be more relevant. One single nodedrrdter graph appears as several separate
nodes, one or more for each of its interfaces, in the IP gri&fareover,traceroute capturedogical
links, which may miss the presence of tunnelingaAinv or MPLS subnetworks for instance. Ideally, then,
one would construct the router graph using methods to “disgnate” IP addresses, such as the alias
resolution techniques described by Pansiot et al. [18],mn@ovindan et al. [19] foMercator. There are
also techniques, such as those used by Spring et al. [2(],if2Rocketfueland by Teixeira et al. [22],
that take advantage of router and interface naming corventio infer router-level topology from the IP
one. Up to our knowledge, no study deals with the tunnelirabl@m and other sophisticated bias.

Most of these disambiguation techniques, as applied fomelain theiffinder tool from CAIDA [23],
do not work by simple inspection of the IP graph; they regaicgve probing, preferably simultaneously
with graph discovery. This constraint makes extensive ndisguated router-level graphs much harder
to obtain than IP graphs. At best, some core network topetogire available in this form thanks to
Rocketfuel. But Rocketfuel is untested in stub networks. Rndlis very difficult to judge the extent to
which disambiguation is successful, and incomplete orremb disambiguation could introduce unknown
biases.

To avoid these difficulties, we have restricted ourselveth®IP graph as obtained froskitter, and
routes in this graph as obtained directly fraraceroute . The resulting caveat is that the graph may
not be properly representative of the router level graph.

This caveat is however mitigated by the fact that the IP gragietheless resembles the router graph in
one important respect: except if we encounter tunnelingtertengths are preserved. That is to say that a
route that has a given length in the router level graph hasange length in the corresponding IP graph.
Furthermore, as Broido et al. note [24], “interfaces arewiddial devices, with their own individual
processors, memory, buses, and failure modes. It is reboi@ view them as nodes with their own
connections.” Finally, we consider this work as a first stapards the accurate modeling of routes, and
therefore prefer to make choices as simple as possible. Weeei in Sec. V that these assumptions have
little impact, if any, on our results.

B. The data set

This study usesskitter data from July 2 2003. The data was collected from 23 servers targeting
594,262 destinations, leading to 7,075,189 routes (naaaitces probed all destinations) on that day. We



obtained a graph by merging all these routes. We then remiovedid IP addressesthus eliminating
3.95% of the edges and.25% of the nodes. The resulting graph conta#$$,438 nodes and ,266,671
links.

This graph captures well the small-world, clusterized, aodle-free nature of the internet already
pointed out in numerous publications, see for instance JahBestavros [26] and [27], [28], [29], [30],
[31]. In particular, the average distance is approximatdlyl hops, and the degree distribution is well
fitted by a power law of exponeit97, see Fig. 2: the fraction of nodes of degkeis distributed ag 7.
This captures in particular the fact that, though most ndae®& a low degree, there is a non-negligible
number of nodes with very high degree. This graph also etshibhigh average clustering coefficiérf
0.035 (compared td.30 x 10~° for a random graph of the same number of nodes and links). ddtatfat
this graph shares properties common to most complex nesasmkountered in practice, as described for
instance by Albert and Barabi [32] and Newman [33], will be useful for our charactetitsa of internet
routes.
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Fig. 2. Degree distribution in theskitter graph.

Notice that this graph is necessarily incomplete and biasedin particular to probing from a limited
number of sources, to route dynamics, to tunneling and tonegus or absent responses to traceroute
probes. Biases of graphs induced by acquisition through # semaber of traceroute monitors have been
studied for instance by Lakhina et al. [13] and by Clauset efl14].

However, recent studies by Dall’Asta et al. [34] and Guitteuet al. [15] show that one may be quite
confident of the accuracy, using this kind of exploration,daftances and degrees, which are the main
properties that we use here. Moreow&itter data represents the current state of the art in its extent and
accuracy. We therefore consider this graph as a good appatiof the IP graph in this study, and will
call it the skitter graph.

[1l. STATISTICAL PROPERTIES OF ROUTES
This section presents a set of properties for the statistescription of internet routes. These properties

motivate the models of Sec. IV. Several properties havadyrdbeen studied in previous works, and the
work here serves to evaluate, update and complete them.

A. Route lengths

It is well known that routes are not shortest paths: they ateoptimal in general. Fig. 3 shows the
distributions of route lengths in our data set, and of theesponding shortest paths. It also shows the
distribution of the differencedelta) between the length of a route and the corresponding shquétis.

*We consider an address invalid if it belongs to the following subset of theiapuse addresses described in RFC 3330 [25]: the private
IP address blocks 10.0.0.0/8, 172.16.0.0/12, and 192.16B8).€he link-local addresses in 169.254.0.0/16, timsTNET addresses in
192.0.2.0/24, the “this network” block 0.0.0.0/8, the loopback astldock 127.0.0.0/8, the 6to4 relay anycast address block 199.8824,
the benchmark testing block 198.18.0.0/15, the multicast address pRER.0.0/4, and the reserved address block formerly known as the
Class E addresses, 240.0.0.0/4, which included.the broadcast address, 255.255.255.255.

5The clustering coefficient of a node is the probability that two randomiysehaeighbors of this node are linked together.
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Fig. 3. Length distributions of routes and shortest paths, and distribution of tHereliice between the length of each route and the
corresponding shortest path length.

These distributions are compiled as follows. For each routetained bytraceroute , we compute
its length/; and the lengths; of a shortest path between the source of the route and itsdish. We
also compute the difference, = ¢; — s;.

The mean length of5.57 hops for routes in this data set fits closely Paxson’s obtens([3], [2] on
a data set that is older by nine years. The shortest pathsehawean length ot1.4 hops.

The distributions are well centered on their mean value: oder has a length more than twice the
average. However, route lengths vary more around their megin a standard deviation = 3.99, than
do shortest pathsr(= 2.62).

The delta distribution confirms Tangmunarunkit et al’s otaagon [6], [5], mentioned at the beginning
of this paper, that roughlp0% of routes are not shortest paths. In this particular datal9et4% of
routes are shortest paths. Notice that, since the data @sniplete, there are undiscovered links, which
implies that19.34% is an overestimate: at leas0.66% of the considered routes are indeed longer than
shortest paths in the true IP graph.

Route lengths and shortest path lengths are both well fitteghbyma distributions. Shortest paths have
an estimated shape parameterkof 21.18 and an estimated scale parametecf 0.53. Routes have
k = 14.56 andd = 1.07.

Tangmunarunkit et al. also observed tRat:; of routes were at least0% longer than shortest paths.
We find a somewhat larger portioA3.4%. Again, this is a lower bound, and therefore the larger value
may be due to a more accurate exploration.

One might wonder if the value af is correlated to the length of the shortest path, which weealem
natural. For instance, routes between sources and déstisdhat are further apart may have a larger
We examine more closely the shortest path lengths between 9& which represent more thaa% of
the cases. In this range, the mean valué of best fitted by the ling = 0.13x + 1.46 with an asymptotic
standard error for both parameters und€B%, see Fig.4. Given this low slope and this standard error, it
may be seen as almost flat, which contradicts the intuitiomvalue of delta does not depend significantly
on the actual distance between the considered sources atidatiens. Notice however that the mean
hides considerable variations, which can be observed imtaatile plots in Fig. 4.

B. Hop direction

When a packet travels from one router to another, it may mowseclto its destination, but it may
also move further, or even stay at the same distance fromdsindtion. Likewise, the distance from the
source may increase, decrease, or stay constant. We witheak behaviors thieop direction considered
with respect to either the destination or the source. Ingple, a hop should always increase the distance
from the source and decrease the distance to the destinatisnch cases, the route is a shortest path.
Notice that hop directions in the IP graph correspond to tesan the router graph, since distances are
preserved between the two graphs.
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Hop directions with respect to a given source may be compiatedll the routes starting at this source
using a breadth-first search rooted at it. This has a cosarlimgth respect to the size of the graph.
Likewise, it is possible to study hop directions with redpiecthe destinations using a breadth-first search
rooted at each destination. In our case, we have many destiaebut only a few sources. Therefore,
only hop directions with respect to sources can be observedreasonable complexity. We will restrict
ourselves to this case in the followihg

Examining the route traces, we found ti8at3% of hops go forwards4.6% go backwards, and.1%
remain at the same distance from the source (we call thtaddehops). More precisely, Fig. 5 shows the
portion of forward, backward, and stable hops as a functiothe hop distance for routes of 15 hdps
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Fig. 5. Hop directions along 15-hop routes (F: Forward, S: Stable, B: Backijva

As one would expect, the first and last few hops are genematlyard because there are few alternatives,
if any. On the contrary, in the core of the network a signiftcaroportion of the hops (more than one
third) do not go further from the source. This type of behaWias already been described in the literature
as a consequence of policy-based routing in the core of tieeniet. As Tangmunarunkit et al [6], [5]
note, such behaviors may be induced by load balancing, coocntheonsiderations, etc.

C. Degree evolution along a route

Recent work has shown that many real-world complex netwoeksl tto have very heterogeneous
degrees, well fitted by power laws. This is in particular tfae the internet, as observed by Faloutsos
et al. [27] and others. Moreover, most of the short paths éetwpairs of nodes in these networks tend

®Hop directions with respect to the destinations may be studied using only afgdr the destinations. But, since the number of sources
is small, the approximation would be poor in this case.

"We choosed this length because it correspond to the most numerdas, rmughly140,000. The obtained plot is typical of what we
obtained for any length. This will be true everywhere we will choose toaidaan routes of a given length in the following.



to pass through the highest degree nodes. Actually, almlbpaths (not only short ones) tend to pass
through these nodes, which make them essential for networkectivity [35], [36], [37], [38], [39], [40].

These observations lead us to ask how the node degree ewbras a route. If routes tend to pass
through high degree nodes, where do they do so, and whatedegdes do they encounter? Furthermore,
does this tendency to pass through high degree nodes imatlywthen a choice exists between next hops,
the next hop that leads to the highest degree node is generalsen?

Fig. 6 shows how node degrees evolve along routes of leng{mdtice the logarithmic vertical scale
for the quantile plot). There is a significant increase in degrees at the very begining of the plot, as
well as a significant decrease at the end. In between, thasptptite flat. This leads us to the following
interpretation: the hosts have low degree, they are coedeat their first hop router to relatively high
degree nodes which play the role of access points, and thekesaare routed in a core network where
the degreel() on average) does not depend much on the distance from theesoufrom the destination.
Notice that the flatness in the middle of the plot does not ntkah all the nodes in the core have a
similar degree (the degrees in the core follow a power law), Baoce a packet has entered this core,
there is no correlation any longer between the degree of tige mnd the distance from the source or
from the destination.
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Fig. 6. Degree evolution along routes of length 15. Left: quantile plots (daisate the median, vertical lines run from the min to the
first quantile, and from the third to the max, tick marks indicate the1®", 90" and 98" percentiles). The median and lower quantiles do
not appear on this plot for hop 15, as the median at that hop countasanek the vertical scale is logarithmic. Right: the average value.

One may wonder if there is a simple local rule that can be eksefor the degree evolution along
a route. In particular, when there is a choice of next hop glarroute, is there a correlation between
the degree rank of the neighbors and their probability oh@peihosen? For instance, are highest degree
nodes chosen preferentially over lower degree ones? Natestith a rule could be perfectly compatible
with the observed flat degree evolution in the middle of reute

Fig. 7 (left) plots the probability that a packet goes to agieitth ranked neighbor, where the neighbors
are ranked from highest degree to lowest. We show the pldtnaa for degrees 4 to 10, which are the
cases where both the degrees and the number of nodes aravian-t

There is no apparent correlation in this plot, which seemsaualidate our hypothesis. However, if one
considers only the neighbors of a node to which it sometireesls a packet (in other words, we consider
the skitter directed according to the ways the collected routes arelgdy, then one obtains the plot on
the right of Fig. 7. One can then see a clear bias towards siglegree nodes, though this bias is rather
small.

IV. ROUTE MODELS

The previous section provides a set of statistical toolsajoture some non-trivial properties of routes
in the internet. We now propose three simple models (only aivarhich we eventually retain) designed
to capture these features.
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Fig. 7. Choice of next hop node as a function of this node’s degrdengnLeft: on the (undirectedkitter graph. Right: with the directed
vision.

Our approach is as follows: we design a model as simple ashi@sshich focuses on one of the
properties of interest, and then we use the other statistiesaluate the model (in the next section). This
ensures that the models stay very simple, and this makesssilge to study the relations between the
observed properties (are they independant or on the cygntear some of them be seen as consequences
of others?).

A. Path length model

The path length model is the simplest and the most obviouscomeeptually, but it proves to be
unusable in practice. The model aims at producing routeheftame lengths as real ones. As discussed
in Sec. lll, a real route length typically exceeds that of shertest known path by some small integer
valued > 0.

In order to construct a route from a sourc@o a destination/, the path length model first computes
the length? of a shortest path from to d. Then it samples a deviatianfrom a distribution such as the
one shown in Fig. 3, and a route is generated by choosing agpaindom froms to d among the ones
which are loop-free and have length- §. This ensures that the difference between shortest patfthien
and actual route lengths will be captured by the model.

To choose such a path at random implies however that one roastract all the loop-free paths of
length ¢ + § from s to d. In practice, the computation required to generate thisbemof paths may be
prohibitive, since even in simple cases it is exponentiad . For example, in trying to generate all
paths of lengti21 between a pair of nodes in tts&itter graph, we enumerated 1,206,525 possible paths.
Therefore, despite its conceptual simplicity, we will nansider this model further.

B. Random deviation model

The random deviation model is based upon the idea that a teutelly follows a shortest path, but
might occasionally deviate from it. We modeled this using single parametep, the probability at any
point of deviating from the current shortest path to the idasibn, if such a deviation is possible.

A random deviation route from sourceto destinationd is therefore based upon a shortest pafihom
s to d. At each hop, with probability — p, the route continues along But with probability p it will,
if possible, deviate offu to another path. A deviation from current nodeo a neighboring node is
deemed possible only if there is a shortest patitom y to d that does not pass through Should there
be a deviation, the route continues alomgo d (unless another deviation should occur). The model is
precisely described by Algorithm 1.

Fig. 8 shows an example of how a route can be generated usengatidom deviation model. In this
graph, there is a five hop shortest path from sourde destinationd. The route follows this path for
three hops and then deviateswatThis deviation is possible because the shortest path irotm d does
not containv. The resulting route is seven hops long.



Algorithm 1: rand_dev_route (G,s,d,p)

Input : A network G, a sources, a destinatiord, a deviation probability.

Output : An artificial router from s to d in G, following the random deviation model with parameter
1 begin
2 u < a shortest path from to d chosen at random;
3 r «— empty list;
4 v « first element ofy;
5 copy v to the end ofr;
6 remove it fromu;
7 while v # d do
8 if rand[0,1] < p then
9 C — set of all the shortest paths from any neighborwadb d;
10 Remove fromC' the paths containing;
11 if C # 0 then
12 | wu+ random element of’;
13 v « first element ofu;
14 copy v to the end ofr;
15 remove it fromu;
16 returnr;
17 end

Fig. 8. A route (dashed lines) obtained using the random deviation model.

We can use Fig. 8 to illustrate some details of the randomatiewi model. It shows instances in which
no deviation is possible. For example, there can be no dewiat the first node of the shortest path from
s to d, since it has no neighbor that is not already on the short&tt Ipeing followed. Also, there can
be no deviation at the second node, even though there is hbwighat is not on the shortest path. The
reason for this is that the only shortest path from this neigto d passes through the node we come
from. The figure also shows an instance where two deviatioeagassible: at node, deviations tov’
andv” are both possible. The choice of which to take (if any) is cand

Finally, notice that large numbers of routes to a given dasitn d can be efficiently generated with
the random deviation model once a shortest path tree rootéchas been computed.

C. Node degree model

Several previous authors, including [41], [36], [42], hdxed to use the heterogeneity of node degrees
to compute short paths in complex networks. The basic idethas a path which goes preferentially
towards high degree nodes tends to see most nodes veryyrgpidbde is considered to be seen when
the path passes through one of its neighbors).

The node degree model is based upon a similar approach, lawgolTwo paths are computed, one
starting from the source and the other from the destinafibe.next node on the path is always the highest
degree neighbor of the current node. The computation textesnwhen we reach a situation where a node
is the highest degree neighbor of its own highest degreehheig One can show that only this kind of
loop can occur. Then, one of two cases applies: either thepitbs have met at a node, or they have
not. In the first case, the route produced by the model is theodered path (both paths are truncated
at the meet up node, and are merged). In the second case, vpriteoenshortest path between the two
loops, and then obtain the route by merging the two paths hisdshortest path, removing any loops.
The overall model is precisely described in Algorithm 2.

Fig. 9 shows an example. There are three tree-like strigftine shaded areas). The sousdeelongs
to the leftmost one, which is rooted at and the destinatiod to the rightmost one, with root at,. Each
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Algorithm 2: node_deg_route (G,s,d)

Input : A network G, a sources, a destinatiord.
Output : An artificial routev from s to d in G, following the node degree route model.
Functions: reversép): returns the path obtained by readipgrom the end to the beginning.
climb_degree§G,v): returns the path ir? obtained fromw by going to the highest degree neighbor at each hop, untiops.

begin
ps < climb_degrees (G,s);
pq — climb_degrees (G,d);
if ps and pg meet upthen
let v be the first node they have in common;
remove fromp; all the nodes afteu;
remove fromp, all the nodes after;
p — (ps,reverse(pq));
return p;

OCoO~NOOOAWNE

10 q < random shortest path from the last nodepgfto the one ofp;
1 p < (ps,g.reverse(pa));

12 remove loops fromp;

13 returnp;

Fig. 9. The node degree model: an example.

directed link goes from one node to its highest degree neigfthe dotted lines are links which do not
satisfy this). When one wants to build a route frento d according to the node degree model, one first
finds the path frons to r,, and the one froml to r,. One then has to compute a shortest path frgm
to r4, which has lengtlb in this example. The final route is obtained by merging themtdg) and then
removing the loops (which leads to the removal of a link, im eMample). It has lengtfi (while the
shortest path has lengt).

This method has already been proposed [42] as an efficienttavapmpute short paths in complex
networks in practice: the obtained paths are very close tote$t ones. Moreover, the computation of
the tree-like structure where each node points to its higthegree neighbor is very simple and only has
to be processed once. Likewise, the shortest paths betwsaralh number of loops are computed only
once.

V. EVALUATION

This section is devoted to the evaluation of the models wee hiast proposed, and to the discussion
of their possible use. Our basic methodology to achieve whlisbe to compare the properties of the
obtained artificial routes to the ones of the original rou@se therefore has to choose a graph on which
the routes will be constructed, and then choose sources estihations. This can be done in various
contexts, from the ones closest to the original conditiansrtes significantly different.

We will first generate routes on thekitter graph using the same sources and destinations as in the
original data, and then using random sources and destsatifter this, we will use other maps of the
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internet with random sources and destinations, and finabywall run our models on the most widely
used graph models of the internet. All of these experiments gpme information on the behavior of our
models, as well as on the relevance of the underlying graph.

In each case, we will compute a large number of artificial @suind study the same properties as
the ones we studied on real routes. Therefore, the evatuafi@ach results is done by comparing the
obtained plots to the ones in Sec. lll, which we recall in Hi@.
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Fig. 10. Originalskitter routes. From left to right: length distributions, degree evolution along soated hop directions.

Finally, the evaluation of the random deviation model delsean a parameter, namely the deviation
probability p. We took the same value for all the experiments; 0.2, which was chosen to give the best
fits when the random deviation model is compared to the algkitter routes on theskitter graph with
the same sources and destinations. Tuning its value to tefibein the other cases too would also be
relevant, but we observed that the results do not vary sogmfly as long as the value is not too different.
We therefore kept always the same value in order to make #geptation and the interpretation easier.

A. On theskitter graph
Fig. 11 and 12 show the obtained results with both models erskiiter graph, when one takes the

very same sources and destinations as in the original dadaybhen one chooses sources and destinations
at random, respectively.
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Fig. 11. Models on thekitter graph with the same sources and destinations as in the original meastiréope random deviation model.
Bottom: node degree model. From left to right: length distributions, degvekition along routes, and hop directions.

Before entering in more details, let us notice that the ressdem very good: the global shape of all
the plots fit quite well the original ones for both models, rewehen sources and destinations are taken
at random.

The average route lengths ar8.6 with the random deviation model and.7 with the node degree
model, when the sources and destinations are the origirea. drhey ard 5.1 and14.9 when sources and
destinations are random. This is to be compared to the awesiagrtest path length in this graph,.4,
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Fig. 12. Models on theskitter graph with random sources and destinations. Top: random deviatioelni@ottom: node degree model.
From left to right: length distributions, degree evolution along routes, apddirections.

and to the average length of real routés,6. We may conclude that the average route length is quite
well captured, though not exactly.

In all the cases the route length distributions are symmetsierage somewhat higher than the shortest
path distribution, and have tails similar to the actual eolgngth distribution shown in Fig. 10. Lengths
of paths generated with the node degree model tail off soraewthicker than in reality (approaching
zero closer to lengtl0 than length25), but the degree of fidelity is nonetheless remarkable gtham
the length distributions are not explicitly part of the mbdéhe random deviation model generates more
routes that are shortest paths than in reality (rougbly compared to roughl20%), whereas the node
degree model generates somewhat fewer (roug¥).

As one may have expected, the node degree model perfornes benh the random deviation model
in capturing the evolution of the degree along routes, aafpeclose to the source. This is particularily
true when using the same sources and destinations as inigheabmeasurement. The difference is less
significant with random ones. This indicates that there aogenpossible choices for routing close to
the source, which is probably a bias due to the measurens®it (the map is more precise close to
the sources than close to the destinations). The fact tleatathdom deviation performs well on average
(random sources and destinations) indicates that theestqrath to the destination generally goes to the
highest degree neighbor. If the source is an original oneeher, this is not true anymore and the node
degree model performs better.

Now focusing on the hop directions ib-hop routes, it appears clearly that the random deviatiodeho

behaves much better than the node degree model. Both capialiatyely the properties of real routes,
but the behavior of the random deviation model is very simitathe original one. Overall proportions
of forward, stable, and backward hops closely match realitigoth cases88%, 8% and 4%, and 84%,
9% and 7% for the random deviation model and for the node degree motiehwve take the original
sources and destinations, ag@bo, 7% and 4%, and82%, 11% and 7% for the random deviation model
and for the node degree model when we take random sourceseatidadions. The proportions for the
original routes were7% forward, 8% stable, and% backward.

Finally, we conclude that both the random deviation and ndelgree models do a reasonable job of
emulating real routes, though each model captures sometadpetter than others, and their strengths are
different. The fits with original data are however surpmgyngood, which makes them relevant in this
context.
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B. On other internet graphs

Another context in which our models may be used is when onelragp of the internet, collected in
a previous work or provided by other researchers, and wantse it for a simulation where routes are
needed. One may then use our models to generate routes witlitte vinore realistic than shortest paths
usually performed in such cases.

We therefore ran our models on two internet maps providedthgraesearchers. For one of this map,
both the router and the IP levels were provided. We congibignie as an occasion to test the robustness of
our models to a change from the IP level to the router one. Ma@me still for this dataset, the routes were
also provided. Therefore, we computed the statistics omtfée results are presented and discussed in
this section.

1) On theMercatorgraph: The first case we will consider is thdercator graph studied by Govindan
et al. in [19] and provided at [43]. This graph was obtained %99 usingtraceroute massively from
one source only but witlsource routing Some antialiasing has been done in order to make it closer to
the router graph. See [19] for more details. This data cpoeds to the very beginning of the research
on large scale internet topology; it may contain significkiais and errors, but it is still one of the very
few maps publicly available, and it is widely used.

We ran our models on it and obtained the results in Fig. 1XeSihe real routes used to construct this
map are not available, we could not compare the artificiate®to them.
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Fig. 13. Models on théMercator graph with random sources and destinations. Top: random deviatioelnBmttom: node degree model.
From left to right: length distributions, degree evolution along routes, apddirections.

The obtained results are in accordance with the propertisgitier routes concerning path lengths and
hop directions. However, the degree evolution along rostegynificantly different. We believe that this is
due to the fact that, using only one source (and desuaitece routing, the graph has a tree-like structure
with high degree nodes close to the robé.(the source of altraceroute ). The routes therefore go
up this tree, encountering nodes with higher and higheredegnd then go down to the destination. The
non-trivial behaviors of route lengths and hop directiorsild then be a consequence of the links which
prevent the map to be exactly a tree.

2) On thenec graph: Despite it is also obtained using massivétgceroute , the measurement
method is quite different for this graph provided by Magof] and studied in [45]: it is based on the
use of looking-glasses, which makes it possible to use akliendreds of sources. However, to avoid an
overload of these sources, the number of destinations alsdéen reduced to a few hundreds. Moreover,
many destinations are routers, whereas in the other magsgteerally are hosts. As we will see, this
has important consequences on route properties.
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This dataset however has the important advantage of bemifpble both at the router level and at the
IP one [44]. Moreover, Magoni provided us with the actualtesuhe used to contruct it. This gives us
the opportunity to study the statistical properties of ¢hesutes, just like we did with thekitter ones. It
also makes it possible to compare the properties of intettetite IP and router levels.

We plot the properties of these real routes at IP level in Edg.and at router level in Fig. 15.
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Fig. 14. Originalnecroutes at IP level. From left to right: length distributions, degree evolutiongaroutes, and hop directions.
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Fig. 15. Originalnecroutes at router level. From left to right: length distributions, degree &wolalong routes, and hop directions.

One may be surprised by the fact that the properties of themleroutes differ significantly from the
ones ofskitter. the lengths are smaller, the degree does not grow rapidheabeginning of the route and
does not decrease rapidly at the end, and, even more styikimgny (and even most) of the hops are not
forward at the end of the route. This can however be explained simplyyb complementary facts. First,
the destinations of these routes often are routers (noshaghich is equivalent to say that these routes
are only the beginning of host-to-host routes (unlike skitter ones). Moreover, the neighborhood of the
destinations is much better explored than in gkéter graph because of the large number of sources.
Therefore, it is more dense, and this makes the numbfemefird hops decrease. These plots are therefore
in reasonable accordance with the ones we obtainedKitter routes.

Moreover, they allow us to check an important assumption axe hmade at the beginning of the paper:
the fact that the plots at IP and at router levels are verylainbénds to confirm that our choice to stay
at the IP level has little influence on our results, which mksp de valid at router level.

In order to push further the evaluation of our models, let o study the properties of artificial routes
generated using them, from random sources and destingtfensse of the same sources and destinations
as in the original data give very similar results, therefawe do not present them here), both in the IP
and in the routenecgraphs, see Fig.16 and 17.

Again, these plots confirm that, as long as one is concernddthe simple statistics and models we
propose here, there is no significant difference betweerlRhend the router levels. Moreover, one can
see that the models do their best to simulate host-to-hosespand therefore produce routes which are
much more similar to thakitter routes than the originatec routes. This may be considered as a good
point for our models, which may be applied on other graphs thea skitter one and which are able to
use the properties of the underlying graph to prodwedistic routes.

C. On synthetic graphs

Until now, we only tested our models on real-world mappinfigshe internet topology. They proved
to be usable in this context. They would however be even muerasting if one could use them on
synthetic graphs obtained with models of the internet togyl This subsection is devoted to this case.
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Fig. 16. Models on theecgraph at IP level with random sources and destinations. Top: ran@ematidn model. Bottom: node degree
model. From left to right: length distributions, degree evolution along rouated hop directions.
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model. From left to right: length distributions, degree evolution along roated hop directions.

Since a few years, much effort has been done to propose &ecumels of the internet as a graph.
However, the problem is challenging, and there is nowadaysamsensus on such a model, or even on
a family of such models. A few basic approaches however apgeduilding blocks for more intricate
models, and are now widely used. We will focus on them, as #reysufficiently simple to understand
the behavior of our route models. We will point out some diffies which will occur with any model
based on these approaches, as we will see with the casrIOE.

1) On purely random graphsWe begin the evaluation of our route models with the most Bmp
model, the classical random graphs from &dand Ry [46], [47]. Such a graph is constructed from
n disconnected nodes by adding links betweemandomly chosen pairs of nodes. Here, we tookrfor
andm the same values as in the origirgitter graph, in order to have a random graph comparable to
this original one.

It is well known that the internet is significantly differefnbm a random graph, in particular concerning
its degree distribution (see for instance [27]). We consitiés model as an interesting case however
because it is the simpliest and it is often used as a buildiagkbof more intricate models.

Fig. 18 shows the results obtained with our models on suclaphgtthey are representative of all the
experiments we ran on such graphs). The sources and desisare chosen at random.

Both the degrees and the shortest path lengths in a randorh grapvery homogeneous [47], [48]: all
the nodes have a degree close to the average value, and ahhitiseof nodes are at a distance close to
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Fig. 18. Models on a purely random graph with random sources artéhaliens. Top: random deviation model. Bottom: node degree
model. From left to right: length distributions, degree evolution along rouated hop directions.

the average distance. This is confirmed by the plot of thetesiopath length distribution. Moreover, with
each model, the degree along a route is very stable due towhedriability of degrees in the graph: the
first and last nodes have the average degree since they arenchbrandom, and all the nodes in between
are chosen with a probability proportional to their degsebich explains that their degree is larger than
the average degree but quite stable.

The random deviation model produce routes with very rardatiens, since most of the time no
deviation at all is possible because of the low average degra@odes (no deviation at all is possible if
the degree of a node is lower th&nwhich is often the case as one can check on the plot of theedegr
along the routes). Therefore the routes produced by thiseirer@ mostly shortest paths, which explains
the statistics.

The node degree model produces routes with propertiesrctdstie ones of real routes: the length
distribution is different from shortest paths, and not aé hops are forward. One can have quite a precise
idea of the structure of the produced routes by noticing, thiate all the degrees are close to the mean
value, the route rapidly reaches the place where it becorshsréest path. Therefore, a route produced by
this model is nothing but very few hops towards higher degieaes, then a shortest path, and again a few
hops to degrees in decreasing order to the destination.ekpisins the fact that the length distribution of
these routes is close to the one of shortest paths, it descpiecisely the degree evolution along routes,
and finally it explains the observed hop directions.

In both case, the produced routes are quite different fromh saes. Since the underlying graph has
properties qualitatively different from the ones of the liRggh, this can not be seen as surprising.

2) On scale-free graphsWe now examine how the models behave on scale-free graghgraphs
with a power law degree distribution as obtained using thiee&l and Barahsi model, see [49], [32].
Such a graph is constructed by adding nodes one by one untibwe the wanted number of nodes, each
new nodes being linked at random k@re-existing nodes with a probability proportional to theéegree.
The value ofk is chosen in order to induce the wanted number of links at titead the construction (it
is half the average degree).

Tangmunarunkit et al. found [7] that power law based gepesatreate topologies that better match the
internet’s topology than do other common sorts of graphsh s$ those produced by explicitly hierarchical
topology generators. Despite this model remains very s&mpmay therefore capture important features
of the internet topology, and the models we proposed may lewamt on it. Morever, it is very often
used to model the internet, see for instance [34], [37], and auilding block for more accurate models
(see below).

Again, we choosed the parameters to fit the number of nodediracgl of the originalskitter graph
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(kK = 1.4), in order to obtain a comparable graph. We choosed sourmsiestinations at random, and
obtained the results plotted in Fig. 19. They are repretieataf all the experiments we ran on such
graphs.
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Fig. 19. Models on a scale-free graph with random sources and d&simalop: random deviation model. Bottom: node degree model.
From left to right: length distributions, degree evolution along routes, apddirections.

First notice that scale-free graphs have a very low averagetest path length in general, see for
instance [50], [51], [52], her&.7, as can be seen in the length distributions. The models peotiunger
routes, but they remain quite short. This leads us to constdéstics on routes of lengthor 10 depending
on the model, which are the most numerous.

Both models clearly fail in capturing the degree evolutioongl routes in such a graph. The highest
degree nodes are always reachable, as can be seen on thé thietdegree evolution along routes from
the node degree model. This induces a regular increase uetirees along such routes until a very high
degree node, and then a decrease until it reaches the diestindotice also that a random deviation
tends to go towards high degree nodes (they have more lintkshars a randomly chosen links has a
high probability to be connected to such a node), which enplthe degree evolution along routes from
the random deviation model.

Finally, let us observe that the random deviation model wast surprisingly well (compared to the
other statistics and to the other model) the hop directiinsight be seen as a consequence of the fact
that at the beginning and at the end of routes one has very feicas for the next hop (low degree
nodes) while in the middle there are many choices. The hagtiims in the node degree model show
that going to the highest degree neighbor at each hop may beydad strategy in the core of the graph.

3) OnBRITE graphs: BRITE [53], [54] is one of the most widely used models in network wdimtion,
in particular in internet simulation. We therefore usedoitgenerate a variety of graphs supposed to be
good approximations of thekitter graph (in terms of size and degree distribution at least, ran our
models on them.
Two cases should be considered:

. a flat topology which is nothing but a scale-free graph as described alléoeever, SinCEBRITE
needs an integer value for the numbeof links added at each step (the original definition of the
model did not specify what to do when is non-integer), we had the choice betweer- 1 and
k = 2. In the first case, one obtains a tree, in which each modelugexinothing but shortest paths.
We therefore obtain trivial statistics (length distrilauts are the same, degree evolutions grow to a
maximal and then decrease, and there are only forward huyes)therefore tooki = 2 and then
obtained results very similar to the ones described abowvé fe 1.4. Therefore, we do not detail
expermients on flat topologies here.
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« a hierachical topologywith nodes distributed in Autonomous SystemBRITE first generates the
AS topology with the scale-free model already described, #wen the topology inside each AS is
generated using this model again. The obtained degreébdistn is a truncated power law, meaning
that the degree are heterogeneous but there is no node witthigh degree. We generated such a
topology withn = 900,000 nodes distributed i®,000 Autonomous Systemsl({0 routers per AS).
At the AS level we choosed = 10 and inside each A% = 1. This leads to an average degree
2.2 approximately. One may also use the purely random model evel br the other, or both. We
present here the parameters which gave the better reslalttecpin Fig. 20.
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Fig. 20. Models on a scale-free graph with random sources and d@simaTop: random deviation model. Bottom: node degree model.
From left to right: length distributions, degree evolution along routes, apddirections.

The performances obtained in these experiments are veny pbe fact thatt = 1 inside each AS
induce that these graphs are trees. Therefore, most roctiesllg are shortest paths, which explains
the statistics. Larger values &f should be considered, bsRITE forces them to be integers, and

= 2 gives an average degree too large for internet modeling.eda@r, one can clearly see on
the plot of the degree evolution that the two-level struetinduce a quasi-periodic variations on the
nodes degrees which does not fit the properties met in peactic

VI. CONCLUSION AND DISCUSSION

The first contribution of this paper is to provide a vocabyléor describing routes in the internet,
and to use that vocabulary to describe routes in one of tigedarand most complete data sets currently
available.

The characteristics we have used to describe routes are:l¢ngths, and the differences between
those lengths and the lengths of corresponding shortdss;piie direction of hops along a route; and the
evolution of the degree of nodes along a route. We have chibesme characteristics based upon graph
theoretic knowledge of the typical properties of real-wlartbmplex networks graphs, of which the internet
is an example. Let us notice that these characteristicsanegeneral and may be used (and extended)
with benefit in other complex network studies: until now, matistical tool had been proposed to describe
large sets of paths in such networks.

Other graph theoretic characteristics may also be studidteimanner we have done here. The evolution
of the clustering coefficient of nodes along a route would bwtaral candidate, for instance. One may
also study the link clustering coefficient:

cc(u,w) =



19

Other interesting perspectives are to consider the rotelirected (from sources to destinations), the
links asweighted(by the measured delay), and to take into account the dyrsaafithe internet and its
routes. Paxson [2], [3] and, more recently, Amini et al. [B8le characterized the asymmetry of routes
in the internet. Likewise, we have focussed on the topoligibaracteristics of internet routes. Could we
tie this in to the considerable body of knowledge concerrimgdelay characteristics of routes? Savage
et al. [56] and Spring et al. [4], for instance, have chamde round-trip time (RTT) inflation. These
works need to be continued, and describing these importaariacteristics in a way similar to what we
have done here for static unweighted undirected routesdvoeritainly make sense.

The other main contribution of this paper is to propose sémpbdels which make it possible (and
easy) to generate large amounts of artificial routes simdareal ones (in the sense of the statistical
properties we have observed). These models may be usedticugarfor simulation purpose.

We have shown both that these models capture non-trividdifes (the obtained routes are not shortest
paths) and that they fit well real-world data. This last pdiotvever depends on the underlying graph
and its properties. If we consider the original graph, thes results are in very good accordance with
the real-world data. If we take other internet maps, therrdéiselts remain very good. If we turn to graph
models, however, the results are very poor. This indicdtas the performances of our models rely on
some properties which are not captured by these graph mdteks confirming that there is still much
to do for the accurate modeling of internet topology.

Just like we have done here, it would also probably make sense@del the fact that routes adeected
dynamicand weighted The node degree model is static and undirected by natuadwiys produce the
same route from a given node to another (except if there iaetbetween several shortest paths in the
middle). The random deviation, on the countrary, alreadytaios an amount of dynamics and even of
direction. The obtained route may vary from one time to aeothlowever, most remains to be done to
model these characteristics.

We have also shown that the properties of the graph used telrtioelinternet has a crucial impact on
the performance of our models. We explained most of the infleeof the graphs on the models, which
leads us to conclude that any model would perform poorly bseaf the fact that graph models are still
not accurate enough to actually contain routes with the gntegs we captured. This is an important point
which argues for the three following points:

« first, it would make sense to conduct experiments on moreated models in order to confirm our

conclusion that current models are not accurate enough;

« second, the most relevantodelsof the internet topology seem to be the real-world maps nbthi
by actual measurement. Simulation should therefore bemasuoh graphs, but also on models which
have the advantage of being well understood, which in turkes& possible to interpret the observed
phenomena;

. and finally there is still much to do for the accurate modelighe internet topology, and much to
understand concerning its precise features.

Finally, this study has restricted itself to the IP grapho(thh we have made a comparison with the
router graph in the case of theecgraph). As we mention in the Introduction, measurementhefAS
graph are also available, and it is well known that much ohpaflation can be explained by decisions
taken at the inter autonomous system level. Making the sanus lof analysis and modeling as we have
done, but at the AS level, would certainly be interesting.rédbwer, relating the results at one level to the
other would improve significantly our understanding of inet routes, and of the internet in general.
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