
Efficient and simple generation of random simple connected graphs

with prescribed degree sequence

Fabien Viger1,2 and Matthieu Latapy2

{fabien,latapy}@liafa.jussieu.fr

Abstract

We address here the problem of generating random graphs uniformly from the set of simple connected
graphs having a prescribed degree sequence. Our goal is to provide an algorithm suitable for practical use
both because of its ability to generate very large graphs (efficiency) and because it is easy to implement
(simplicity).

We focus on a family of heuristics for which we introduce optimality conditions, and show how this
optimality can be reached in practice. We then propose a different approach, specifically designed for
real-world degree distributions, which outperforms the first one. Based on a conjecture which we discuss
rigorously and study empirically, we finally reduce the best asymptotic complexity bound known so far.

1 Introduction

In the context of large complex networks, the generation of random3 graphs is intensively used for
simulations of various kinds. Until recently, the main model was the Erdös and Renyi [8, 5] one. Many
recent studies however gave evidence of the fact that most real-world networks have several properties in
common [21, 3, 6, 22] which make them very different from random graphs. Among those, it appeared
that the degree distribution of most real-world complex networks is well approximated by a power law,
and that this unexpected feature has a crucial impact on many phenomena of interest [1, 22, 21, 9].
Since then, many models have been introduced to capture this feature. In particular, the configuration
model [5, 4], on which we will focus, generates a random graph with prescribed degree sequence in
linear time. However, this model produces graphs that are neither simple4 nor connected. To bypass
this problem, one generally simply removes multiple edges and loops, and then keeps only the largest
connected component. Apart from the expected size of this component [20, 2], very little is known about
the impact of these removals on the obtained graphs, which is usually either neglected or even forgotten.
However, we gained confidence through numerous experiments that, in most cases corresponding to real-
world heterogeneous degree distributions, this process induces a significant skew on the degree sequence
itself. A quantitative insight into the consequences of such biases is provided in the appendix.

The problem we address here is the following: given a degree sequence, we want to generate a random
simple connected graph having exactly this degree sequence. Moreover, we want to be able to generate
very large such graphs, typically with more than one million vertices, as often needed in simulations.

Although it has been widely investigated, it is still an open problem to directly generate such a
random graph, or even to enumerate them in polynomial time, even without the connectivity requirement
[23, 17, 18].

In this paper, we will first present the best solution proposed so far [11, 18], discussing both theoretical
and practical considerations. We will then deepen the study of this algorithm, which will lead us
to an improvement that makes it optimal among its family. Furthermore, we will propose a new
approach solving the problem at much lower cost, and being very simple to implement. We provide
implementations of these algorithms at [27]

1LIP6, CNRS and University Pierre and Marie Curie, 4 place Jussieu, 75005 Paris
2LIAFA, CNRS and University Denis Diderot, 2 place Jussieu, 75005 Paris
3 In all the paper and unless otherwise specified, random means uniformly at random: each graph in the considered class

is sampled with the same probability.
4 A simple graph has neither multiple edges, i.e. several edges binding the same pair of vertices, nor loops, i.e. edges

binding a vertex to itself.

1



Conventions and Notations

Throughout this paper, we use the following conventions :

• Graphs are undirected; n denotes the number of vertices of a graph, and m denotes its number of
edges.

• If a and b are vertices, (a− b) denotes the edge binding them.

• Given four vertices a, b, c, d such that both edges (a − b) and (c − d) exist, the edge swap (a −
b), (c− d)→ (a− d), (b− c) consists in replacing these edges by the edges (a− d) and (b− c) (see
Figure 1).

• Considering an edge swap (a− b), (c−d)→ (a−d), (b− c) , its dual edge swap is (b−a), (c−d)→
(b− d), (a− c) (see Figure 1).

• Considering an edge swap (a−b), (c−d)→ (a−d), (b−c) , its reverse edge swap is (b−c), (d−a)→
(b− a), (c− d) . Applying one edge swap and its reverse subsequently leaves the graph unchanged.

Complexity requirements and implementation

We assume that graphs are encoded such that the following complexities are ensured:

1. The existence of an edge between any pair (a, b) of vertices is determined in O(1) average time.

2. Given any four vertices a, b, c, d, the edge swap (a − b), (c − d) → (a − d), (b − c) is done in O(1)
average time.

3. For any vertex v, obtaining the set of neighbors of v is done in O(d(v)) time, where d(v) is the
number of such neighbors.

4. Picking a random edge (i.e. a pair (a,b) of vertices selected uniformly at random among all pairs
of linked vertices) isx done in O(1) average time.

5. The memory space required by the graph structure is linear in n + m.

B

A

B

D

C

AD

C B

A

B

D

C

AD

C

Figure 1: An edge swap and its dual.

A sketch of such an implementation5 is described here. First, the vertices are identified by integers
from 0 to n−1, and their degrees are stored in a separate array Deg[·]. We assume that the architecture
we use needs O(1) time for elementary arithmetic operations on integers. For each vertex i, an adjacency
list Li is maintained, which is implemented as a hash table containing the Deg[i] neighbors of i, which
address and size (in bytes) are respectively stored as Addr[i] and Size[i] in the arrays Addr[·] and Size[·].
Basic hash table properties then ensure that the conditions 1 and 2 above are satisfied. We also make
sure that for some fixed K, all hash tables are K-linear, i.e. ∀i, Deg[i] ≤ Size[i] ≤ K ·Deg[i], so that
point 3 is simply achieved by scanning entirely the hash table Lv, and removing the O((K − 1) ·Deg[i])
gaps.

Point 4 is more subtle. To pick a random edge, we proceed in two steps: first, we pick a random
vertex v so that the probability for each vertex to be elected is proportional to its degree. This can be
done in O(1) time if we list each vertex i exactly Deg[i] times in an array Prob[i] of size 2m. Then,
we pick a random element w uniformly among all elements of Lv, which can be done in O(K) = O(1)
average time thanks to the K-linearity of the hash tables. At this point, the edge v, w has been picked
uniformly at random among all edges.

Notice that all the structures needed to reach such complexities, i.e. the arrays Deg[·], Prob[·],
Addr[·] and Size[·] are not modified by any of the operations listed above. In particular, an edge swap

5The implementation we actually used and made available online is slightly different, as it was further optimized for both
time and memory issues. For more information, see the source code available at [27]

2



does not change the degrees of the concerned vertices, and thus does not change the size of the concerned
adjacency lists. They also meet the linear space requirement cited in point 5.

2 Context

Several techniques have been proposed to solve the problem we address. We will focus here on the
Markov chain Monte-Carlo algorithm [11], pointed out recently by an extensive study [18] as the most
efficient one.

2.1 The Markov chain Monte-Carlo algorithm

The algorithm is composed of three main steps:

1. Realize the sequence: generate a simple graph that matches the degree sequence,

2. Connect this graph, without changing its vertex degrees, and

3. Shuffle the edges to make it random, while keeping it connected and simple.

The Havel-Hakimi algorithm [13, 12] solves the first step in linear time and space: first, each vertex
is assigned Deg[i] “stubs”, or partial edges. Then, the algorithm selects any vertex that has at least
one stub left, and binds all its stubs to other vertices’ stubs to form edges. The choice of the vertices to
bind to is crucial here: the algorithm chooses the vertices having the most stubs left. A result of Erdös
and Gallai [7] shows that this algorithm succeeds if the degree sequence is realizable, i.e. if there exists
a simple graph matching the degree sequence.

The second step starts by checking that m ≥ n−1 and also that no vertex has degree zero, since the
graph cannot be connected otherwise. Then, we use edge swaps to merge all the connected components
into a single connected component. More precisely, given any two distinct connected components Cx and
Cy such that Cx is not a tree, we pick an edge (a−b) from Cx that can be removed without disconnecting
Cx, and we also pick any edge (c−d) from Cy. Now, the edge swap (a−b), (c−d)→ (a−d), (b−c) clearly
merges Cx and Cy into a single connected component, and does not create multiple edges since Cx and
Cy were not connected to each other. See Figure 2 for an example of such operation. Thus, we can
repeat this operation until the only components that are left are either a single connected component,
or several trees, the latter being impossible as it would imply m < n− 1. The linear complexity of this
algorithm is easy to prove.

C
C

y

x

Figure 2: Using an edge swap to merge two separated components.

Finally, the third step is achieved through random edge swaps. Given the graph Gt at some step t,
we pick two edges uniformly at random and we swap them, obtaining another graph G′ with the same
degrees. If G′ is simple and connected, we consider the swap as valid : Gt+1 = G′. Otherwise, we reject
the swap: Gt+1 = Gt

This algorithm is a Markov chain where the space SCS is the set of all simple connected graphs
with the given degree sequence, the initial state G0 is the graph obtained by the first two steps, and
the transition Gx → Gy has probability 1/m(m−1) if there exists an edge swap that transforms Gx in
Gy. If there are no such swap, this transition has probability 0. The latter comes from the two following
observations:

1. If there exists at least one valid edge swap transforming Gx into Gy, this edge swap is unique.

3



2. There are exactly m · (m − 1) possible edge swaps (valid or invalid), since there are m(m − 1)/2
possible unordered pair of edges, each unordered pair corresponding to exactly two edge swaps
(see Figure 1).

Moreover, for any graph Gx ∈ SCS , the probability of the self-transition Gx → Gx is given by the
number of invalid edge swaps on Gx, divided by m(m− 1). Now, let us assume in the rest of this paper
that n ≥ 3. Thus, Gx must contain at least one subgraph of the form a, b, c where both edges (a − b)
and (b− c) exist. It is easy to see that the edge swap (a− b), (b− c)→ (a− c), (b− b) is invalid, since it
creates the edge (b − b). Therefore, for every Gx ∈ SCS , the probability PGx→Gx

of the self-transition
is greater or equal to 1/m(m− 1) > 0.

Theorem 1. This Markov chain is irreducible [25], symmetric, and aperiodic.

Corollary 2. The Markov chain converges to the uniform distribution on every states of its space, i.e.
all graphs having the wanted properties.

Proof. The corollary is a well-known consequence of the standard Markov chain theory.

• The irreducibility, i.e. the reachability of any state Gy ∈ SCS from any other state Gx ∈ SCS , has
been proved by Taylor [25].

• The aperiodicity comes from the fact that for any state Gx ∈ SCS , the self-transition Gx → Gx

has a strictly positive probability. Standard Markov chain theory then ensures the aperiodicity.

• The symmetry comes from the reversibility of any edge swap: as discussed in the preliminary, if
the edge swap (a− b), (c− d)→ (a− d), (b − c) changes Gx into Gy, then the reverse edge swap
(a−d), (c−b)→ (a−b), (d−c) changes Gy into Gx. Therefore, ∀Gx, Gy ∈ SCS, PGx→Gy

= PGy→Gx

These results show that, in order to generate a random graph, it is sufficient to do enough transitions.
However, no formal result has yet proved the existence of polynomial bounds in n + m for the number
of transitions needed to reach the convergence, even if recent work [16] tend to indicate that a quadratic
bound might be established in the future, and if a currently submitted paper [10] shows the existence
of polynomial theoretical bounds when the degree sequence satisfies specific constraints. Since our
contribution aims at reducing the average cost of the shuffle, regardless of its duration in terms of
number of required edge swaps, we left further discussion about the convergence speed to future work,
and used the following convention to evaluate the cost of our algorithms. Notice that we did not consider
the average cost per transition: this is because we will not always use Markov chains in this paper, and
because we felt that the edge swap is a better quantifier of the progress of the shuffle.

Convention 1 (Algorithmic Cost). The cost of our shuffle algorithms is defined as the average
cost per edge swap. In the rest of the paper, we use the terms unit cost to avoid misunderstanding.
In other words, if the shuffle ends after x edge swaps have been performed and validated – edge swaps
being canceled during the algorithm are not counted –, with a total cost of Ctotal, the unit cost will be
Ctotal/x.

Nevertheless, to be able to display complexity measures concerning the global algorithm, we assumed
the following convention, based on thorough empirical studies [11, 18] and on our own experience.

Convention 2. [18, 11] The Markov chain converges after O(m) edge swaps.

This result was found in massive experiments where, even when using extremely biased initial graphs,
O(m) edge swaps were always sufficient to make the graph appear to be “really” random. More precisely,
the distributions of a large set of non-trivial metrics (such as the diameter, the flow, and so on) over
the sampled graphs were not different from the distributions obtained with random graphs. Notice that
we tried, unsuccessfully, to find a metric that would prove this assertion false. Notice also that Ω(m)
is a trivial lower bound for the convergence of the Markov chain, since every transition only involves 2
edges among a total of m edges.

4



2.2 Equivalence between swaps and transitions

According to our definitions, a transition does not always imply an edge swap: whenever the edge swap
attempt leads to an invalid graph, the transition has no effect, despite its computational cost. In the
past literature, the ratio of invalid edge swaps, though unknown, has either been considered as negligible
or simply ignored. We provide here a short proof that this ratio is bounded in most cases, which will
allow us to use indifferently the number of edge swaps or the number of transitions of the Markov chain
to quantify the progress of the shuffle, modulo a factor bounded by some positive constant. Let us
consider a simple connected graph G, and two edges (a − b), (c − d) ∈ G, as shown in Figure 1. Now,
let us remove these two edges to obtain G∗. Since G was connected, it is easy to see that either a or b
is still connected to c or d in G∗. Now, if the edge swap (a − b), (c− d)→ (a− d), (b − c) disconnects
G, then in G∗ it is clear that a is not connected to c, neither is b to d. Therefore, either a and d are
connected or b and c are connected (in G∗), so that the dual edge swap (b− a), (c− d)→ (b− d), (a− c)
does not disconnect G. Moreover, it does not create multiple edges, since a was not connected to c, nor
b was to d. Therefore, it is straightforward that at most 50% of the edge swaps disconnect the graph.

Unfortunately, the existence of worst-case graphs where any edge swap creates loops or multiple
edges (the star graphs, the clique graphs, · · · ) makes it impossible to bound the ratio of swaps that
create multiple edges. In order to assert such a bound, one has to assume additional properties on G.
Among numerous solutions, we finally settled to the following, which seems the most natural for the
class of graphs under concern.

Theorem 3. For any simple connected graph, let us denote by ρ the fraction of all possible pairs of
vertices which have distance greater than or equal to 3. The probability that a random edge swap is valid
is at least ρ

2z(z+1) , where z is the average degree.

Proof. If ρ = 0 the result is trivial. If ρ > 0, consider a pair (v, w) of vertices having distance d(v, w) ≥ 3
(i.e. there exist no path of length lower than 3 between v and w). Since the graph is connected, there
exists a path of length l ≥ 3 (v, v1, · · · , vl−1, w) connecting v and w. The edge swap (v, v1)(w, vl−1)→
(v, vl−1)(w, v1) is valid: it does not disconnect the graph, and since the edges it creates could not
pre-exist (else we would have d(v, w) ≤ 2), it keeps it simple.

Now, the ρ · n(n − 1) ordered pairs of vertices define at least ρ·n(n−1)
8 edges swaps, since an edge

swap corresponds to at most 8 ordered pairs. Therefore, a random edge swap is valid with probability

at least ρ·n(n−1)
8m(m−1) . The fact that m = n·z

2 ends the proof.

In practice, ρ > 0 (the connected graphs such that ρ = 0 are very particular, somewhere between a
clique and a star), and its value tends to grow with the size of the graph, for a fixed degree distribution.

This will allow us, in the rest of the paper, to assert that for a given degree sequence, the ratio of
valid edge swaps is greater than some positive constant, which is independent of the graph. In particular,
this ensures that the cost of ’useless’ transitions, i.e. transitions that do not modify the graph, does not
affect the asymptotic complexity of the shuffle.

2.3 Complexity

As we have already seen, the first two steps of the random generation (realization of the degree sequence
and connection of the graph) are done in O(m) time. We saw that the last step requires at least Ω(m)
transitions. We will naturally focus on the unit cost of the shuffle, i.e. the average cost of the shuffle per
validated edge swap. The discussion presented in Section 2.2 ensures that this definition is equivalent
to the average cost per transition. Now, in a first naive implementation of the shuffle algorithm, each
of them consists in an edge swap, a simplicity test, a connectivity test, and possibly the cancellation of
the swap (i.e. one more edge swap). Using the graph implementation described in the preliminaries,
the cost of an edge swap, a simplicity test, and a connectivity test are respectively Cswaps = O(1),
Csimp = O(1) and Cconn = O(m), which leads to a linear unit cost:

Cnaive = O(m)

One can however improve significantly this time complexity using the structures described in [14, 15,
26] to maintain connectivity information in dynamic graphs. Each connectivity test can be performed

5



in time O(log n/ log log log n) and each simplicity test in O(log n) time. An edge swap then has cost
O(log n(log log n)3). Thus, the unit cost per transition becomes:

Cdynamic = O
(
log n(log log n)3

)
(1)

Notice however that these structures are quite intricate, and that the constant factors are large for
both time and space complexities (the latter being still linear, though). The naive algorithm, despite
the fact that it runs in O(m) time per transition, is therefore generally used in practice, since it has the
advantage of being extremely easy to implement. Our main contribution in this paper will be to show
how it can be significantly improved while keeping it very simple, and that it can even outperform the
dynamical approach.

2.4 Speed-up and the Gkantsidis et al. heuristic

Gkantsidis et al. proposed a simple way to speed-up the shuffle process [11] in the case of the naive
implementation: instead of running a connectivity test for each transition, they do it every T transitions,
for an integer T called the speed-up window. If the connectivity test fails, T transitions have to be
canceled, which considerably slows down the shuffle process, but in case of a success, T − 1 connectivity
tests have been spared. The shuffle process can no longer be considered as a simple Markov chain;
however, it has been proved [24, 11] that Corollary 2 still holds, i.e. that this process converges to the
uniform distribution, although it is now composed of a concatenation of Markov chains [11], and even
if the graph may actually get disconnected and connected again between two connectivity test.

In this context, the unit cost of connectivity tests is reduced by a factor T , but at the same time
the swaps are more likely to get canceled: with T swaps in a row, the graph has more chances to get
disconnected than with a single one. Thus, we have to distinguish between post-validated edge swaps –
that represent a real step forward in the shuffle process – and the edge swaps that get canceled because
the subsequent connectivity test fails. In other words, the equivalence between transitions and validated
edge swaps is no longer valid, at least not as discussed in Section 2.2. This gives another reason to follow
Convention 1: the terms unit cost stand for the average cost per post-validated edge swap. Thus, the
unit cost of some operation Q still represents the actual cost in regard to the progress of the global
shuffle process. To quantify the ratio of post-validated edge swaps, and evaluate the unit cost of the
Gkantsidis et al. algorthm, we introduce the following quantity:

Definition 1 (Success ratio). The success ratio ri = r(Ti) at a given step is the probability that the
graph obtained from Gi after the Ti edge swap attempts is still connected.

Now, let us consider the unit cost of all operations: the speed-up divides the cost of the connectivity
tests by T and leaves the cost of the simplicity tests and the edge swaps unchanged, but in the end the
unit cost is multiplied by 1/r(T ) because of the lower success ratio. We obtain

CGkan(T ) =
Cattempt +

Cconn

T
r(T )

= a
b +

m

T
r(T )

(2)

where Cattempt represents the average cost of one edge swap attempt with its simplicity test and the
optional cancellation of the swap: Csimp + Cswaps ≤ Cattempt ≤ Csimp + 2Cswaps, and where a = Cconn

m

and b = m
Cattempt

Cconn
are constant factors depending on the implementation.

For T = 1, we obtain the unit cost of the naive algorithm:

CGkan(1) = O
(
(1 + m) · r(T )−1

)
= O

(
1 + m

1− p

)
= O (m) = Cnaive

Defining a good value for T is not easy, since the behavior of the success ratio r(T ) is not known.
Intuitively, if T is too large, the graph will get disconnected too often, and r(T ) will be too small. If
on the contrary T is too small, then r(T ) will be large but the complexity improvement is reduced. To
bypass this problem, Gkantsidis et al. used the following heuristic (see Figure 3).

Heuristics 1 (Gkantsidis et al. heuristic).
IF the graph got disconnected after T swaps
THEN T ← T/2
ELSE T ← T + 1

6



the swaps
Cancelno

yes

Connected ?Do  T  transitions

T+1

T T/2

T

Figure 3: Heuristic 1 (Gkantsidis et al. heuristic).

They expect T to automatically adjust itself so that it reaches a compromise between a large window
T and good success ratio r(T ). Because the window T dynamically varies along the shuffle process, we
had to arrange our notations. We divide the shuffle process into steps as follows:

Definition 2 (Steps of the shuffle process). In the shuffle process of Gkantsidis et al., a step is
composed of the following operations:

1. Create a backup copy of the graph.

2. Perform T edge swap attempts (each of them consists in one edge swap, one simplicity test and
the reverse edge swap if the test failed).

3. Test the connectivity of the new graph, and restore the graph to its original state if the test fails.

4. Modify T according to the specification of the heuristic.

We will use the notation Gi to refer to the graph at the beginning of step i. Thus, G0 is the graph
obtained right before the shuffle process starts. Similarly, we will respectively use Ti, Ci = CGkan(Ti)
and ri = r(Ti) instead of T , CGkan(T ) and r(T ), and so on for any quantity related to the graph.

3 More from the Gkantsidis et al. heuristic

The problem we address now is to estimate the efficiency of the Gkantsidis heuristic. First, we introduce a
framework to evaluate the ideal value for the window T . Then, we analyze the behavior of the Gkantsidis
et al. heuristic, and get an estimation of the difference between the speed-up factor it obtains and the
optimal one. We finally propose an improvement of this heuristic which reaches the optimal. We also
give experimental evidences for the obtained performance.

3.1 The optimal window problem

We introduce the following quantity:

Definition 3 (Disconnection probability). Given a graph G, the disconnection probability p is the
probability that the graph gets disconnected after a random edge swap.

Now, let us assume the two following hypotheses:

Hypothesis 1. At any step i, the disconnection probability p remains constant for at least the duration
of the step, i.e. during the T consecutive transitions. This probability is designated by pi.

Hypothesis 2. The probability that a disconnected graph gets reconnected with a random swap, called
the reconnection probability, is equal to zero.

Notice that these hypotheses are not true in general. They are however reasonable approximations in our
context and will actually be confirmed in the following. The first hypothesis is discussed more thoroughly
in Appendix B. Moreover, the second hypothesis is just a worst-case scenario that we introduced only
to simplify the computations. Empirically, we found it to be very close to the truth (the reconnection
probability was lower than, or of the order of 1/m) for all our scale-free network topologies.

7



0 50 100 150 200 250 300
10

2

10
3

10
4

T

C
G

ka
n

0 0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

10
5

r(T)

C
G

ka
n

Figure 4: Evolution of the theoretical CGkan(T ) as a function of either T (left) or r(T ) (right). We used
a = b = 1, m = 104 and p = 10−2.

Assuming these hypotheses, the success ratio ri, which is the probability that Gi stays connected
after Ti swaps, is given by:

ri = (1− p)Ti (3)

Now, let us eliminate a first trivial case where p is so small that CGkan can be as low as O(Cattempt):
if p is lower than or of the order of 1

m , one can simply set T = m and still obtain a good success ratio
r(T ) = (1 − p)m = Ω(1). Thus, Eq. 2 gives us CGkan = O(1), which is asymptotically optimal. In the
following, and for more simplicity, we will therefore eliminate this trivial case and assume that p≫ 1

m .
This will make the formulas much more understandable, without harming the nature of our arguments.

The optimal window T opt
i at step i is the one that minimizes CGkan(Ti). Using Eq.2 and after a bit

of algebra, we obtain:

T opt
i ·

(
b · T opt

i

m
+ 1

)
= −log(1− pi)

−1

which immediately implies T opt
i < −log(1− pi)

−1 < 1
pi

, and therefore T opt
i ≪ m and

bT opt

i

m + 1 ≈ 1 from
the discussion stated above. This leads to:

T opt
i ≈ −log(1− pi)

−1 (4)

Since the success ratio r(T ) is a bijective function of the window T , the optimality condition may also
be considered as depending on ri, which gives us an optimal success ratio at step i:

ropt
i ≈ e−1 (5)

The approximation actually neglects the cost Cattempt in regard to Cconn

T , and is legitimate as long as

p ≫ 1
m . Notice that when pi ≪ 1 we obtain the much simpler expression T opt

i ∼ 1
pi

. We show in

Figure 4 the evolution of CGkan(T ) as a function of either T or r(T ), for a graph having a disconnection
probability p = 1%.

3.2 Analysis of the heuristic

Knowing the optimality condition, we tried to estimate the performance of the Gkantsidis et al. heuristic.
Let us denote by EGkan[∆Ti] the expected value of ∆Ti = Ti+1 − Ti. The evolution of the window T
under the Gkantsidis et al. heuristic leads to:

EGkan[∆Ti] = ri − (1− ri) ·
Ti

2
= ri

(
1 +

Ti

2

)
− Ti

2

8



where ri is still given by ri = (1 − pi)
Ti . Now, if we consider EGkan[∆Ti] as a function of Ti, a simple

study shows that this function is strictly decreasing with Ti, allowing us to introduce the following
quantity.

Definition 4 (Characteristic window). At some step i of the Gkantsidis heuristic, we consider the

graph Gi and its disconnection probability pi as given. The characteristic window T̂Gkan(pi) is the
positive real number that verifies:

Ti < T̂Gkan(pi) ⇐⇒ EGkan[∆Ti] > 0

Intuitively, during the Gkantsidis heuristic, if pi varies slowly enough, the window Ti will stay close

to T̂Gkan(pi). Suppose for example that the disconnection probability pi remains constant during the

shuffle, so that one can define a single characteristic window T̂Gkan. Then it is clear that during the

shuffle, when Ti is lower than T̂Gkan, it tends to increase : E[Ti+1] > Ti, and conversely when Ti is greater

than T̂Gkan it tends to decrease. Because of the stochastic nature of this heuristic, the variability of pi

during the shuffle, and the complexity of the dynamics ruling Ti, providing a formal, rigorous argument

showing that the windows Ti obtained by the Gkantsidis heuristics remains close to T̂Gkan(pi) is still
out of reach. However, all our experiments confirmed this fact, and the characteristic window appeared
to be a very good estimator of the expected value of the window during the shuffle.

Now, to evaluate the quality of this heuristic, one can simply, for a supposedly constant disconnection

probability p, compare T̂Gkan(p) with the optimal window T opt(p). The latter has already been studied
above, and for the former we obtain the following bound.

Theorem 4. The characteristic window of the Gkantsidis et al. heuristic is bounded by:

T̂Gkan(p) <

√
2

p
(6)

Proof. Recall that

EGkan[∆T ] = r(T )

(
1 +

T

2

)
− T

2

Since r(T ) = (1 − p)T = eT log(1−p) and log(1 − p) < −p, we have:

E[∆T ] < e−pT (1 +
T

2
)− T

2

The convexity of the exponential function gives:

e−pT (1 + pT ) < 1

And finally, the fact that:
T/2 + 1

1 + pT
<

T

2
⇐⇒ T >

√
2

p

shows that T <
√

2
p ⇒ E[∆T ] < 0, which ends the proof

When p is small, the value
√

2
p is much smaller than the optimal T opt(p) ∼ 1

p . This shows that the

Gkantsidis et al. heuristic is too pessimistic: when the graph gets disconnected, the decrease of T is too
strong; conversely, when the graph stays connected, T grows too slowly. By doing so, one obtains a very
high success rate (asymptotically close to 1 when p is small), which is not the optimal (see Figure 4).

3.3 An optimal dynamics

To improve the Gkantsidis et al. heuristic we propose the following one (with two parameters q− and
q+):

9



Heuristics 2. At the end of step i:
IF the graph got disconnected after the Ti edge swaps attempts
THEN Ti+1 ← Ti · (1− q−)
ELSE Ti+1 ← Ti · (1 + q+)
IF Ti+1 > Tlimit

THEN Ti+1 ← Tlimit

The constant Tlimit represents a limit value where T does not need to be increased any further, even
if Topt > Tlimit. In practice, we used Tlimit = 10 Cconn

Cattempt
: at this point, using Eq. 2 and the fact that

r(T ) is decreasing with T , we can show that the unit cost is at most 10% over the optimal unit cost.
Now, for the evolution of T , the main idea was to avoid the linear increase in T , which is too slow,

and to allow more flexibility thanks to the two factors 1− q− and 1 + q+.
If we restrict ourselves to the domain where the boundary condition T ≤ Tlimit does not apply, the

expected value of ∆Ti becomes:

Enew [∆Ti] = q+ri − q−(1− ri) = ri(q
+ + q−)− q− (7)

Similarly as in Section 3.2, this new heuristic has a characteristic window T̂new(p). Since r(T ) is a
bijective function of T , we may also use the term characteristic success ratio r̂new , which is the success
ratio where Enew [∆Ti] = 0. Eq. 7 gives:

r̂new =
1

1 + q+

q−

(8)

The discussion we developed about the Gkantsidis heuristic can be adapted here as well. Intuitively, the
characteristic success ratio is an estimator of the success ratio obtained by our new heuristic. From the
optimality condition found in Eq. 5, and still assuming that p≫ 1/m, we obtain the following result.

Theorem 5. Assuming that the disconnection probability p is constant during the shuffle, and that it
verifies p≫ 1/m, the characteristic window of the new heuristic is approximately optimal iff:

q+

q−
= e− 1 . (9)

The relative error between the characteristic window and the optimal window T opt(p) is given by
b·T opt

i

m .

This result shows that our heuristic is optimal as long as p ≫ 1/m. For a deeper insight into the
quality of our approximation, i.e. the value of the relative error, see Section 3.1. We hasten to note that
the cases where our approximation is not legitimate correspond to the domains where the graph may be
shuffled at asymptotic optimal cost without the use of any heuristic, as already discussed in Section 3.1.

Notice that only the ratio q+

q−
is constrained by the optimality condition. The magnitude

√
q+q−

can be adjusted freely. With a large magnitude, the window T becomes very unstable, and with a too
small magnitude, T evolves too slowly to follow the variations of p during the shuffle. Naturally, these
considerations need further investigations, which we conduced through the following empirical analysis.

3.4 Experimental evaluation of the new heuristics

To evaluate the relevance of our formal results, based on Hypotheses 1 and 2 (which are only approx-
imations, since the graph continuously changes during the shuffle) we compared empirically the three
following algorithms for the adjustment of the window during the shuffle:

1. The Gkantsidis et al. heuristics (Figure 3, Heuristics 1)

2. Our new heuristics (Heuristics 2), using the magnitude
√

q+q− = 1
10 . The choice of the magnitude

is difficult, but we found that this value produced the best results overall, for a wide scope of graph
topologies.

3. The optimal algorithm: at every step i, we compute the window Ti giving the minimal expected
value of the unit cost for step i. In practice, we try every possible value of Ti a certain number of
times and evaluate their respective performance.6

6Note that the heavy cost of this operation prohibits its use as a heuristics, out of this context. It only serves as a reference.

10



The third algorithm is really the optimal version of the speed-up, in the sense that the window T could
not behave better, regardless of the liability of Hypothesis 1 and 2. We compared the average unit
costs obtained with these three heuristics (respectively CGkan, Cnew and Cmin) for the generation of
graphs with various heavy tailed7 degree sequences. For the third algorithm, we ignored the cost of the
computation of the optimal windows Ti during the shuffle. We used a wide set of parameters, and all
the results were consistent with our analysis. The average window TGkan obtained with the Gkantsidis
et al. heuristics behaved asymptotically like the square root of the optimal window, leading to a much
greater unit cost, especially for topologies with low disconnection probability. On the other hand, the
unit cost obtained with our heuristics always remained at most 10% above the optimal cost.

Binomial distribution

z CGkan Cnew Cmin

2.5 2606.12 1277.69 1272.13
3 1082.64 287.119 281.259
4 259.024 16.6066 17.6311
5 56.7544 2.21975 1.51243

Heavy tailed distr. α = 2.1

z CGkan Cnew Cmin

2.1 16673.8 14787.7 14453.2
3 8587.56 5424.38 5271.7
6 4523.61 1143.4 1097.5
12 2576.22 242.293 239.42

Table 1: Average costs of the operations performed during the shuffle for one post-validated edge swap.
The benchmark is shown here for 8 graph topologies, 4 of them are homogeneous (left table) and the
others are heterogeneous (right table). From left to right: with the Gkantsidis et al. heuristic, with our
heuristic, and with the ideal heuristic. We limited ourselves to n = 104 because the computations are
quite expensive, in particular concerning θGkan and θmax.

Some typical results on binomial (homogeneous) degree distributions and heavy tailed (heteroge-
neous) distributions with power-law shape of exponent α = 2.1 are shown in Table 1. These experiments
show that our new heuristics is very close to the optimal. Essentially, it proves that Hypothesis 1 and 2
are legitimate in the scope of our formal analysis, or at least that their inaccuracies do not harm the
behavior of our heuristics. Based on this, and from Equations 2,4,5,6, we may provide a good estimate
of the unit costs of the shuffle algorithms, for both the Gkantsidis heuristics and ours:

CGkan = O
(
1 +
√

< p > ·m
)

(10)

Cnew = O (1+ < p > ·m) (11)

(where < p > is the average value of p during the shuffle). Further empirical comparisons of the two
heuristics will be provided in the next section, see Table 2.

Our complexity Cnew, despite the fact that it is asymptotically still outperformed by the complexity
of the dynamic connectivity algorithm Cdynamic (see Eq. 1), may be smaller in practice if p is small
enough. For many graph topologies corresponding to real-world networks, especially graphs having a
quite high density (social relations, word co-occurrences, WWW), and therefore a low disconnection
probability, our algorithm represents an alternative that may behave faster, and which implementation
is much easier. For regular graph topologies where the low-degree vertices are rare, such as the Erdös-
Reyni model [8] with high average degree z, our experiences showed that the disconnection probability
p is often extremely small, sometimes even lower than 1/m. Still, this method does not allow the
generation of very large graphs in reasonable time when p is not small, which is the case of many
network topologies met in practice.

4 Detecting disconnections at logarithmic cost

We will now show a very simple way to detect the disconnection at low cost, thus reducing dramatically
the complexity of the connectivity tests. We first outline the main idea underlying our disconnection

7 To obtain heavy tailed distributions, we used power-law like distributions: P (X = k) = (k + µ)−α, where α represents
the “heavy tail” behavior, while µ can be tuned to obtain the wanted average z.

11



test, then we present a modification of the naive shuffle algorithm seen in Section 2.1. We analyze the
complexity of this new algorithm, and provide empirical results for a large span of graph topologies.
Finally, to show that the unit cost we obtain is logarithmic, we introduce a conjecture, strongly supported
by both intuition and experiment.

4.1 Guiding principle

This paragraph has no intent to provide formal, rigorous argument, but outlines the intuitive idea that
gave birth to the forthcoming study.

In realistic graph topologies, trees are unlikely: the graphs often have a significant number of super-
fluous edges, i.e. edges that can be removed without disconnecting the graph. In other words, the ratio
m
n is often strictly greater than 1. Let us restrict ourselves to degree sequences satisfying m

n > 1 + µ,
for some positive constant µ.

We observed that, during the shuffle, disconnections were mostly caused when small components get
separated from the main connected component. This can be intuitively explained from our hypothesis
m
n > 1+µ. Let CK = v1, · · · , vK be a set of K connected vertices. Since m

n > 1+µ, each vertex has an
expected degree greater than 2 + 2µ. Now, if we suppose that the graph is random in the sense that an
outgoing arc from vertex v may be linked to any vertex, independently on the other neighbors of v, and
if we isolate K − 1 edges forming a tree core in CK , we can expect at least 2µK superfluous outgoing
arcs from vertices in CK . If we suppose that the giant component of our graph has a size grater than
n/2, it seems natural to assume that each of the superfluous arcs in CK have a probability at least 1/2
to branch to some vertex in the giant component. Therefore, the probability that CK does not belong
to the giant component is smaller than 2−2µK . In other words, a set of connected vertices of size K
is K-exponentially unlikely to be disconnected from the giant component. The greater K is, the more
likely a graph having no components of size lower than K is connected.

4.2 A new shuffle space

We introduce the following operation.

Definition 5. For any integer K ≤ n, a K-isolation test on vertex v succeeds if and only if the
connected component containing v has a size greater than or equal to K.

Implementing a K-isolation test is straightforward and has cost O(K): we only need to perform
a partial breadth-first search from v which will stop as soon as K vertices have been discovered – or
sooner if the connected component containing v is too small.

Now, recall that the naive shuffle algorithm was a Markov chain on the set SCS of the simple
connected graphs having the prescribed degree sequence. The transitions of this Markov chain were
algorithmically described as follows:

1. Perform a random edge swap chosen uniformly among the m(m− 1) possible edge swaps.

2. Test: is the graph simple?

3. Test: is the graph connected?

4. If any of the two tests fails, cancel the edge swap.

We propose to replace the full connectivity test by two K-isolation tests on the vertices concerned by
the edge swap, for some integer K. For instance, if the edge swap was (a− b), (c− d)→ (a− d), (b− c)
, one K-isolation test will be run on either a or d (since they belong to the same component) and an
other one on either b or c. It is easy to see that the graphs obtained with this algorithm never have
components smaller than K. In other words this algorithm is – like the naive algorithm – a Markov
chain, but the space has changed from SCS to the set SK of simple graphs with the prescribed degrees
and having no component of size lower than K. Note that the graph obtained at the end is in SK , but
has no guarantee to be connected. To solve this problem, we propose a simple accept/reject approach:
if the graph obtained at the end is not connected, we start over with a larger value of K, in the hope
that the greater K is, the more likely the graph obtained at the end of the shuffle will be connected. The
global algorithm is sketched in Figure 5. The Markov chain on SK is still symmetric and aperiodic, and
from the reducibility of its restriction to SCS , it is clear that every state in SCS is reachable (since the

12



initial state also is in SCS). Thus, the distribution of the graphs obtained at the end of the algorithm
is still uniform on SCS .

1. Create a simple connected graph having the prescribed de-
gree sequence

2. Make a backup copy of the initial graph G0

3. Set K to 1

4. Set Ntransitions to the desired number of transitions to per-
form

5. REPEAT

. Restore the graph to its original state G0

. DO Ntransitions times:

. Perform a random edge swap chosen uniformly
among the m(m− 1) possible ones

. Run a simplicity test

. Run a K-isolation test

. IF at least one of the test failed
THEN cancel the edge swap

. Double the value of K: K ← 2K

UNTIL the graph is connected

Figure 5: Final shuffle algorithm.

We can show that this algorithm ends. When K > n
2 , it is easy to see that a graph having no

component of size lower than K cannot have more than one component, which means that it is connected.
Therefore, the algorithm must stop when K becomes greater than n

2 , which happens after at most
⌊log2 n⌋ iterations of the main REPEAT loop. Note that this is the most pessimistic case: since (SK)K∈N

is a decreasing sequence that converges to SCS , i.e. S0 = S1 ⊃ S2 ⊃ · · · ⊃ S⌊n/2⌋+1i = SCS , we may
expect that for a sufficiently large K, SK becomes close enough to SCS to ensure a short number of
iterations. In other words, we hope that K will not reach such high values as n/2. The study of the
expected number of iterations is made in the next section.

4.3 Complexity

We will try here to analyze the complexity of the algorithm described above. The initial operations
(steps 1,2,3,4) have a linear cost O(m) (see Section 2.1). At each iteration of the main REPEAT loop
(step 5), a connectivity test and a copy of the initial graph are made: these operations also have a linear
cost O(m). The cost of the edge swaps, simplicity tests and K-isolation tests is O((K + 1)Ntransitions)
per loop.

Let X be the total number of iterations of the main loop. The isolation test width follows the
simple geometric sequence 1, 2, 4, · · · , 2X . The total cost of the algorithm is the sum of the costs of all
iterations, which is:

O(m) + X ·O(m) +

X∑

x=1

O ((2x + 1)Ntransitions) = O
(
m(X + 1) + 2X+1Ntransitions

)

We saw in Section 2.1 that the number Ntransitions of transitions to perform must be at least linear:
Ntransitions = Ω(m). Moreover, as discussed in Section 2.2, the expected number of validated edge

13



swaps will be Ω(Ntransitions), which leads to the global unit cost:

Cfinal = O(2X)

We will now study the expected number X of iterations of our algorithm. Recall that the set SK is
decreasing with K, with a limit SCS reached for K > n/2.

Definition 6 (Relative error). For a given degree sequence and a given isolation test width K, let us
define the relative error ǫ(K) as the proportion of graphs in SK that are not connected:

ǫ(K) =
|SK \ SCS|
|SK |

In other words, if the relative error ǫ(K) is small, most graphs in SK also are in SCS , and a random
graph of SK will have a high probability of being connected. It is clear that ǫ(K) is decreasing with K.
Now, let us consider the main algorithm at the end of the xth iteration, when the Ntransitions transitions
have been performed with the isolation test width K = 2x, leading to a graph G ∈ S2x . If we assume
that Ntransitions is large enough to ensure that G is a random element of S2x , then the probability that
G is disconnected is simply P (G /∈ SCS), which is exactly ǫ(2x).

Now, let us define an isolation test width that ensures a significant success ratio for the main iteration,
i.e. a sufficiently low ǫ(K).

Definition 7. The characteristic isolation test width K̄ of a degree sequence is the lowest integer
K such that ǫ(K) < 1

3 .

The value 1
3 is arbitrary: any real number lower than 1

2 could have been chosen. Now, let Pend(x)
be the probability that our algorithm ends after exactly x iterations of the main REPEAT loop. Since
ǫ(K) is decreasing with K and 1 − ǫ(2x) represents the probability that the xth iteration of the main
loop ends the algorithm, we obtain:

∀x | 2x ≥ K̄, Pend(x + 1) <
1

3
Pend(x)

Let us call x̄ the lowest integer x such that 2x ≥ K̄. Considering the expected unit cost E[Cfinal] of
our algorithm, since Cfinal = O(2X), we obtain:

E[Cfinal] =
∞∑

x=1

2x · Pend(x) ≤
∞∑

x=x̄

2x

(
1

3

)x−x̄

which gives:
E[Cfinal] ≤ 3 · 2x̄ ≤ 6K̄ = O(K̄)

4.4 Characteristic isolation test width

The only bounds we obtained so far for K̄ are 1 ≤ K̄ ≤ 1 + ⌊n/2⌋. Following the ideas described in
Section 4.1, and based on empirical evidence, we have strong reasons to believe that K̄ is actually much
lower than n

2 , at least for non-tree topologies like the ones described in Section 4.1 that verify m
n > 1+µ.

Nevertheless, providing a good upper bound is not easy: we observed that K̄ depends strongly on the
degree sequence, and that among graphs having similar degree distributions, the larger graphs have
larger K̄.

Empirical results are presented in Figure 6, for a set of different graph topologies. On the left, we
used regular degree distributions where degrees are sampled from binomial distribution with various
averages z. A random graph generated with such a degree distribution mimics the classical Erdös-Renyi
topology [8] which generates random graph with a given size N and average degree z by choosing z N

2
edges among the N(N − 1)/2 pairs of vertices. On the right, we used heavy-tailed degree distributions,
as described before, that have an asymptotic power-law-like behavior, with various average degrees as
well. We actually found this topology to be the worst topology for our algorithm: for a fixed average
degree, we could not find other degree sequences that led to larger characteristic isolation test width,
even among ill-posed topologies that were designed for this particular purpose.

14



 2

 4

 6

 8

 10

 12

 14

 16

 100  1000  10000  100000

K
 (

C
ha

r.
 is

ol
at

io
n 

te
st

 w
id

th
)

N (size of the graph)

z=2.1
z=3
z=6

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 100  1000  10000  100000

K
 (

C
ha

r.
 is

ol
at

io
n 

te
st

 w
id

th
)

N (size of the graph)

z=2.1
z=2.4

z=3
z=6

Figure 6: Characteristic isolation test width for various degree sequences. Left: Binomial degree distribu-
tions. Right: Heavy-tailed degree distribution with power-law asymptotic behavior of exponent α = 2.5.

The strong coherence of the empirical results we obtained, combined with the intuition described in
Section 4.1 that a random graph with components of size greater than K should be K-exponentially
unlikely to be disconnected, led us to the following conjecture:

Conjecture 1. There exists a real function η such that, for any degree sequence of size n and mean z,
the characteristic isolation width K̄ verifies:

K̄ ≤ η(z) log n

According to this conjecture, and if we restrict ourselves – as discussed before – to graph topologies
verifying the hypothesis m

n > 1 + µ, our algorithm has a logarithmic unit cost O(log n). It outperforms
the shuffle based on the best dynamic connectivity algorithms known so far (see Eq. 1).

Binomial distributions

z CGkan Cnew Cfinal

2.5 2606.12 1277.69 16.4915
3 1082.64 287.119 10.3997
4 259.024 16.6066 5.81104
5 56.7544 2.21975 4.23551

Heavy-tailed distr. α = 2.1

z CGkan Cnew Cfinal

2.1 16673.8 14787.7 87.7122
3 8587.56 5424.38 19.837
6 4523.61 1143.4 14.185
12 2576.22 242.293 12.1312

Table 2: Empirical costs of the methods presented in this paper, for homogeneous and heterogeneous
degree distributions. In each table, from left to right: the Gkantsidis et al. heuristic, our new heuristic,
and the final algorithm. We used the following conventions: an edge swap has cost 1, a connectivity test
has cost m and an isolation test of width K has cost K. We limited ourselves to the size N = 104 because
of the long computation times concerning CGkan.

5 Conclusion

Focusing on the speed-up method introduced by Gkantsidis et al. for the Markov chain Monte Carlo
algorithm, we introduced a formal background allowing us to show that this heuristic is not optimal in
its own family. We improved it in order to reach the optimal, and empirically confirmed the results. Our
heuristic may also be used for other problems based on Markov chain Monte Carlo algorithms, without
losing its optimal properties.

15



Going further, and focusing on the generation of random connected graphs, we then introduced an
original method allowing to shuffle non-tree connected graphs (i.e. connected graphs having an average
degree strictly greater than 2) in logarithmic time per edge swaps, or per transition. It outperforms the
previous best known methods, and has the advantage of being extremely easy to implement. Moreover,
the asymptotic complexity constants remain extremely low on most graph topologies. Note however
that the last result relies on a conjecture that we were unable to prove, but for which we provided strong
empirical evidence. We provide an implementation of this last algorithm [27], which made possible the
generation of graphs with several millions of vertices in a couple of minutes on any standard workstation,
instead of the months that were necessary for such an operation with previous algorithms.

References

[1] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. On the bias of traceroute sampling or,
powerlaw degree distributions in regular graphs. Proc. of the 37th ACM STOC, 2005.

[2] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. Proc. of the 32nd
ACM STOC, pages 171–180, 2000.

[3] R. Albert and A. Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics,
74:47, 2002.

[4] E.A. Bender and E.R. Canfield. The asymptotic number of labeled graphs with given degree
sequences. J. Combin. Theory Ser. A, 24:296–307, 1978.

[5] B. Bollobas. Random Graphs. Academic Press, London - New York, 1985.

[6] S.N. Dorogovtsev and J.F.F. Mendes. Evolution of networks. Adv. Phys., 51:1079, 2002.

[7] P. Erdos and T. Gallai. Graphs with prescribed degree of vertices. Mat. Lapok, 11:264–274, 1960.

[8] P. Erdös and A. Rényi. On random graphs. Publ. Math. Debrecen, 6:290–291, 1959.

[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology.
Proc. ACM SIGCOMM, 29:251–262, 1999.

[10] Tomás Feder, Adam Guetz, Milena Mihail, and Amin Saberi. A local switch markov chain on given
degree graphs with application in connectivity of peer-to-peer networks. preprint, 2006.

[11] C. Gkantsidis, M. Mihail, and E. Zegura. The markov chain simulation method for generating
connected power law random graphs. Proc. of ALENEX’03, LNCS, pages 16–25, 2003.

[12] S. L. Hakimi. On the realizability of a set of integers as degrees of the vertices of a linear graph.
SIAM Journal, 10(3):496–506, 1962.

[13] V. Havel. A remark on the existence of finite graphs. Caposis Pest. Mat., 80:496–506, 1955.

[14] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with polylogarithmic
time per operation. Journal of the ACM, 46(4):502–516, 1999.

[15] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic algo-
rithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Proc. of the 30th ACM
STOC, pages 79–89, 1998.

[16] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM J. Comput, 18(6):1149–1178,
1989.

[17] J. M. Roberts Jr. Simple methods for simulating sociomatrices with given marginal totals. Social
Networks, 22:273–283, 2000.

[18] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. Uniform generation of random
graphs with arbitrary degree sequences. arxiv:cond-mat/0312028, 2003.

[19] M. Molloy and B. Reed. A critical point for random graphs with a given degree sequence. Random
Structures and Algorithms, pages 161–179, 1995.

[20] M. Molloy and B. Reed. The size of the giant component of a random graph with a given degree
sequence. Combinatorics, Probability and Computing, 7:295, 1998.

16

http://www.liafa.jussieu.fr/~fabien/generation


[21] M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167–256,
2003.

[22] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distri-
butions and their applications. Phys. Rev. E, 64(026118), 2001.

[23] A. R. Rao, R. Jana, and S. Bandyopadhyay. A markov chain monte carlo method for generating
random (0,1)-matrices with given marginals. Indian Journal of Statistics, 58(A):225–242, 1996.

[24] Alexandre O. Stauffer and Valmir C. Barbosa. A study of the edge-switching markov-chain method
for the generation of random graphs. arxiv:cs.DM/0512105, 2006.

[25] R. Taylor. Constrained switchings in graphs. Combinatorial Mathematics, 8:314–336, 1980.

[26] Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. Proc. of the 32nd ACM STOC,
pages 343–350, 2000.

[27] www.liafa.jussieu.fr/∼fabien/generation.

17

http://www.liafa.jussieu.fr/~fabien/generation


A Evaluation of the bias of the common method

The “common method” to generate random simple connected graphs with a prescribed degree sequence
is the following :

1. Generate a graph G with the Molloy and Reed model [19].

2. Remove the multiple edges and loops, obtaining a simple graph GS .

3. Keep only the largest connected component, obtaining a simple connected subgraph GCS

In the following, we also call GC the subgraph obtained by step 3 without step 2 (GC is the non-simple
giant connected component of G). It is clear that GS , GC and GCS are different from G. We provide
here experimental evidences that this difference is significant. Since our model does not suffer of any
such bias, as it is simple and connected from the beginning, we recommend its use for anyone who needs
to generate random simple connected graphs with a prescribed degree sequence.

Notations

We call N the number of vertices in G, M the number of edges and Z the average degree. Likewise,
NC , NS , NCS , MC , MS, MCS, ZC , ZS and ZCS refer respectively to GC , GS and GCS .

2 10 100
0.6

0.7

0.8

0.9

1

Z

N
C

=N
CS

2 10 100

0.75

0.8

0.85

0.9

0.95

1

Z

M
S

M
C

M
CS

2 10 100

0.8

0.9

1

1.1

1.2

1.3

Z

Z
S

Z
C

Z
CS

2 10 100

0.6

0.7

0.8

0.9

1

Z

N
C

=N
CS

2 10 100

0.75

0.8

0.85

0.9

0.95

1

Z

M
S

M
C

M
CS

2 10 100

0.8

0.9

1

1.1

1.2

1.3

Z

Z
S

Z
C

Z
CS

2 10 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Z

N
C

=N
CS

2 10 100
0.8

0.85

0.9

0.95

1

Z

M
S

M
C

M
CS

2 10 100
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Z

Z
S

Z
C

Z
CS

Figure 7: Comparison of the number of vertices (left), the number of edges (center)
and the average degree (right) in the graphs GS , GC and GCS , for various
values of the average degree Z of the original graph G. We used heavy-
tailed degree distributions with N = 104, α = 2.1 (top), N = 105, α = 2.1
(middle) and N = 104, α = 2.5 (bottom).

18



Plots

To quantify the modifications caused by the removal of multiple edges and/or the restriction to the giant
connected component, we plotted the number of vertices, the number of edges and the average degrees
of the concerned subgraphs GC , GS and GCS against the average degree of G. In each plot, the three
curves refer to GC (red circles), GS (green plus) and GCS(blue stars). The quantities are normalized
so that a value of 1 represents the value of the concerned quantity in G.

Notice that, since NS is always equal to N (the removal of edges by itself does not change the number
of vertices), we only plotted NC , which is also equal to NCS.

Discussion

Many things can be observed from those plots. In particular :

• The left and middle plots show clearly that one loses a significant part of the graph when performing
multiple edge removal, restricting to the giant component, or both.

• The similarity between the plots at the top and in the middle show that the size N has very little,
if any, influence on this loss. The only noticeable difference comes from the fact that the top plots,
due to their lower computation costs, were averaged on more instances than the middle ones.

• The bottom plots are closer to 1, meaning that the bias is less significant. This is due to the
greater exponent α, causing the heavy-tailed degree distribution to be less heterogeneous. Thus,
less vertices have very low degree (these ones get more likely removed in GC) or very high degree
(these ones are more likely to get many edges removed in GS).

• The left part of the plots (low average degree Z) show a significant loss of vertices in GC . This is
of course because the more edges we have, the bigger the giant connected component is. On the
other hand, the right part of the plots (high average degree Z) show an increasing loss of edges
due to the removal of more multiple edges.

• The plots on the right-hand side show that two opposite biases act on the average degree ZCS

of GCS : the multiple edges removals tends to lower it, while the removal of vertices that do not
belong to the giant component tends to raise it (since these vertices more likely have a low degree).

Conclusions

We showed that the bias caused by the two last steps of the “common method” is significant, not only
on the size of the graph but also on its properties, like the average degree. These biases should therefore
cause the deviation of many other properties. Our model, which respect exactly the degree sequence
given at the beginning, represents a reference that may be used to better quantify these deviations.
Its simplicity and efficiency should also convince users to implement it (or to use our implementation,
available at [27]). Notably, it provides an easy way to separate the properties of the known models, like
the Barabàsi-Albert one, in two groups: the ones that come from the degree distribution only, and the
ones that come from the model itself.

19

http://www.liafa.jussieu.fr/~fabien/generation


B Disconnection probability

For a given connected graph G, the disconnection probability pG is the probability, that a random edge
swap separates G in two components. One key hypothesis for the formal study of the optimal window
problem is that p remains constant during the shuffle. We will show here that this hypothesis is only an
approximation, but that the error induced by the variations of p have a small impact on the performance
of our heuristics.

To estimate pG, we used a brute force method: we perform a random edge swap on G, test whether
G is still connected, and start over until our estimation of pG converges. As we write these lines, a
very recent paper [24] just proposed an original way to directly measure p in linear time, thus reducing
dramatically the cost of measuring p; however, the simulations we made so far seemed accurate enough
for our purpose.

0 2000 4000 6000 8000 10000
0.01

0.02

0.03

0.05

0.1

Number of edge swaps performed

D
is

co
nn

ec
tio

n 
pr

ob
ab

ili
ty

1 1.5 2 2.5 3 3.5 4

x 10
4

0.01

0.02

0.03

0.05

0.1

Number of edge swaps performed

D
is

co
nn

ec
tio

n 
pr

ob
ab

ili
ty

Figure 8: Evolution of the disconnection probability during the shuffle.

We measured p during the whole shuffle process. Some typical results are shown in Figure 8, the
graph used here had n = 1000 vertices, an average degree z = 6, and a heavy-tail degree distribution of
exponent α = 2.5. We observe two different phenomenons:

1. At the beginning of the shuffle, we observe a slow decrease of the p (in average) until it reaches
its average value, here pavg ≈ 0.02. This is because of the second step of the generation process
(see Section 2), where we connect the graph by joining each of its component to the giant one.
These components, being attached to the rest of the graph with only one edge, are likely to get
disconnected. Thus, the initial state of the graph is strongly biased, and the shuffle slowly decreases
p as G becomes more and more random.

2. After this initial decrease (which lasts during roughly m edge swaps), the disconnection probability
does not converge, but oscillate around its average value pavg. The amplitude of these oscillations
are not negligible, but they stay within a factor 2 from the average value.

Now, let us estimate the impact of the variability of the disconnection probability on the efficiency
of our heuristics. Let us place at some step of the shuffle process. Say the graph G has a disconnection
probability p, and say that our estimate of p is pest. Let C(pest) be the theoretical unit cost of the
shuffle when the window is set to the estimated optimal T opt(pest) = − log(1 − pest)

−1, as given in
Eq. 4. From our discussion about the optimal window in Section 3.1, it is clear that C(p) is minimal
when the estimate is perfect: pest = p. We plotted in Figure 9 the ratio between the cost obtained with
a perfect estimate and the cost obtained with a bad estimate, as a function of the deviation pest/p of the
estimate. We also plotted two vertical lines that correspond to two worst-case deviations, inspired by the
empirical evolution of p we showed above: say that pmin and pmax are respectively the all-time minimum
and maximum of p during the shuffle, the vertical lines correspond to pest

p = pmin

pmax
and to pest

p = pmax

pmin
.

Even in those very pessimistic cases, the efficiency loss is less than 20%. This explains the good results

20



we obtained with our heuristics, although many formal analysis were based on approximations. Let us
add that the case shown here is representative of the general case: we observed a similar – if not better
– behavior when working on other graph topologies.

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
est

 / p

E
ffi

ci
en

cy
 (

1 
is

 o
pt

im
al

)

p=0.1
p=0.001

Figure 9: Relation between efficiency loss and error made when estimating p.

21


	Introduction
	Context
	The Markov chain Monte-Carlo algorithm
	Equivalence between swaps and transitions
	Complexity
	Speed-up and the Gkantsidis et al. heuristic

	More from the Gkantsidis et al. heuristic
	The optimal window problem
	Analysis of the heuristic
	An optimal dynamics
	Experimental evaluation of the new heuristics

	Detecting disconnections at logarithmic cost
	Guiding principle
	A new shuffle space
	Complexity
	Characteristic isolation test width

	Conclusion
	Evaluation of the bias of the common method
	Disconnection probability

