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CNRS UPR 640
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71 Bd Ed. Vaillant, F-92774 Boulogne-Billancourt cedex. France

Abstract

The influence of the network topology on the dynamics of systems of coupled ex-
citable units is studied numerically and demonstrates a lower dynamical variability
for power-law networks than for Poisson ones. This effect which reflects a robust
collective excitable behavior is however lower than that observed for diffusion pro-
cesses or network robustness.Instead, the presence (and number) of triangles and
larger loops in the networks appears as a parameter with strong influence on the
considered dynamics.
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1 Introduction

It has been known for only a few years that most real-world networks (like
for instance the internet, social networks, biological networks, and presum-
ably neural networks) have common topological properties, which shows that
they are very different from both regular and random networks. In particu-
lar, their degree distributions, i.e. for each integer k the fraction pk of nodes
with exactly k links, are very heterogeneous. See [32, 49, 26, 20, 42] for exper-
imental evidence based on network reconstruction from extensive data, and
[2, 44, 17, 48, 16, 8] for theoretical surveys. Quite often, this qualitative het-
erogeneity can be turned into a quantitative feature: the degree distribution
exhibits a power-law decay pk ∼ k−α with exponent α between 2 and 3.5.
This is in sharp contrast with regular lattices (having a constant degree, i.e.
single-valued distributions) and random networks (exhibiting Poisson degree
distributions) [7, 18]. Since then, much work has been done to understand the
impact of this property on various phenomena of interest, for instance diffusion
phenomena [6, 46, 43, 13] and robustness of networks [3, 11, 12, 9, 40, 45]. All
these studies conclude that there is a strong influence of the network’s degree
distribution on its behavior: power-law networks are more prone to infections,
more vulnerable to targeted attacks, and less sensitive to random failure.

Comparatively very few works have tackled the influence of network topology
on the dynamics of units located at the network nodes and coupled along
the network links. As a matter of fact, dynamics of coupled units have been
mostly studied on regular topologies (and then termed “coupled map lat-
tices”): units are placed on lattices and are coupled either with their neigh-
bors (local coupling) or with all the other units (global coupling) [27]. But
the far-from-regular topology of real interaction networks, in particular their
heterogeneous degree distribution, strongly suggest these studies’ extension to
power-law networks [48]. The challenge, for instance in the context of biolog-
ical networks, e.g. neural networks, is to understand the ways of regulation,
optimization, adaptation and control of their dynamics.

In this spirit, we investigated the influence of the topology on the dynamics
of a system of very simple excitable units, modeled as a 3-state deterministic
automaton. The present contribution thus stands at the crossroads between
complex network studies and cellular automata [52, 53, 19, 10] and as such, it
relies on systematic numerical experiments. Among the possible determinant
topological features, we here focused on the one which has been proved to be
central in many contexts, namly the degree distribution.

We chose on purpose a minimal dynamic model, to better evidence the role
of network topology, with no side effects due to some peculiar detail of the
model. Moreover, in order to focus on differences in the dynamics caused by
different topological features, the dynamics’ rules will remain constant for all
the simulations. In such a setting, the complexity originates from the interplay
between global statistical features of the network (mainly its degree distribu-
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tion), local deterministic updating rules, and initial conditions. In consequence
the following alternatives are central in our analysis, and will be detailed and
discussed all along the exposure: Poisson vs power-law degree distributions,
microscopic vs macroscopic features, transients vs asymptotic regimes, typical
vs special instances for the networks and for the initial states.

Similar studies have already been conducted with 2-state units, with two dif-
ferent classes of models for the dynamics: either 2-state cellular automata
[51, 34], or random Boolean networks [21, 4]. In the first class, the state of a
node at time t + 1 is 1 if a sufficiently large number of its neighbors are in
state 1 at time t, and 0 otherwise. In the second class, the updating rule is not
built on a criterion involving the neighborhood state, but chosen at random
(for each node) among all the possible rule tables mapping each configuration
of the node neighborhood to the node output state; a rationale for using such
a fully random choice is to account for the presence of both excitatory and
inhibitory connections [28, 29]. Let us also mention a recent seminal study
addressing the same issue of the influence of network topology in the context
of evolutionary dynamics on networks modeling population structure [33].

Although a two-state model has proved to be relevant for modeling associative
memory in neural networks [25], it is not sufficient to model typical excitable
dynamics, mainly the refractory phase and associated delay in the reactivation.
On the contrary, it has been acknowledged for many years that 3-state models
are paradigmatic examples of excitable units, see for instance [37, 35, 15].
Among the very few papers investigating the influence of the neural network
topology on its dynamics, we may cite a study considering sparse networks
[36]. More recently, [41] has adressed this question with a model of epileptic
seizure as a topologically-induced dynamic transition. But this work relies on
a topology which lacks realism, namely an alternative between regular one-
dimensional and small-world networks [51].

Experimental investigations of the exact network topology are out of reach
at the neural level. At an upper level, evidence for heterogeneity in the de-
gree distribution has been obtained for the network connecting cortical areas
in mammalian brains [24]; the authors suggest among other functional impli-
cations that such heterogeneous structure and associated degree distribution
reflected on cortical activation patterns. This is also discussed in [47], which
motivates further the issues addressed on theoretical grounds in the present
paper.

The presentation is articulated as follows. We define our model, notations and
investigated properties in Sec. 2; we also give the details and rationale for the
methodological choices involved in the simulations. We present in Sec. 3 our
first observations on the model. This provides guidelines for a more detailed
and systematic numerical exploration, namely a comparative study, for various
network topologies, of the influence of initial state (Sec. 4), the convergence
time (Sec. 5) and the period (Sec. 6). Sec. 7 summarizes our results in terms of
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the influence of topology on the dynamics and presents directions for further
research.

2 Preliminaries

Let us first define our dynamic model, namely a deterministic 3-state cellu-
lar automaton, and contrast it with two seemingly close models of epidemic
spreading, the so-called SIS and SIR models. Concerning investigated proper-
ties, we distinguish between microscopic features, at the level of phase space
trajectories, and macroscopic order parameters. We will also discuss this be-
low. Finally, we will detail methodological issues.

2.1 The model

Any model accounting for the dynamic behavior of coupled units is defined by
two basic ingredients: the network G of coupling interactions and the individ-
ual dynamics. The network is described as a pair G = (V,E) where V is the set
of units, identified with the nodes of the network, and E ⊆ V ×V is the set of
links mediating their interactions. We here considered undirected links, making
no distinction between (u, v) ∈ E and (v, u) ∈ E. The two main parameters
are the number N of nodes and the number M of links. The network topology
is locally characterized by the neighborhood V (v) = {u ∈ V, (u, v) ∈ E} of each
node v ∈ V . The number of nodes in V (v), i.e. the number of nodes directly
connected to v, is called the degree of v. The associated global, statistical fea-
ture is the degree distribution (pk)k≥0 giving for each integer k the fraction pk
of nodes of degree k.

The response of an excitable element (for instance a neuron, a heart cell or
certain artificial devices) to a finite stimulus begins with a nonlinear burst of
activity: the excited stage. It is followed by a decrease of the activity below its
reference level, during which the element is insensitive to stimuli, hence the
name of refractory stage for this phase. The element then returns to its stable
reference state, and remains in this quiescent state until it experiences another
stimulus. The remarkable fact about real excitable units is that the duration,
shape and amplitude of the stimulated dynamic sequence is almost insensitive
to the stimulus, provided it is strong enough. This all-or-none, invariant feature
leads to the description of the excitable behavior by a deterministic, discrete
time and symbolic dynamics. Each node v ∈ V can be in three different states:
quiescent (q), excited (e) and refractory (r). We denote by st(v) ∈ S = {q, e, r}
the state of v at discrete time t.

In a network, the stimulus experienced by the unit v comes from the excitable
units coupled to v, namely u ∈ V (v). We here consider the case when the exci-
tation of one neighbor u ∈ V (v) is enough to excite v. The behavior of v will be
the same if a larger number of its neighbors are simultaneously excited. Such
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all-or-none output obviously smoothes out fluctuations in the inputs received
by v as well as superimposed noise, further supporting the consideration of a
deterministic dynamic framework. Accordingly, the evolution of the system is
achieved through a synchronous updating at discrete times (with a constant
time step ∆t = 1) according to the following rules:

• a quiescent node becomes excited if at least one of its neighbors was excited
at the previous step: if st(v) = q and there exists u ∈ V (v) such that
st(u) = e, then st+1(v) = e; otherwise st+1(v) = st(v);
• an excited node becomes refractory at the next step: if st(v) = e then
st+1(v) = r;
• a refractory node becomes quiescent at the next step: if st(v) = r then
st+1(v) = q.

Note that these dynamic rules are applicable to any topology. This model sat-
isfies the “quiescent condition” [52]: the state where all nodes are quiescent
is an equilibrium state (and is the only one). Since it is a deterministic dy-
namics, we can easily compute any state st′(V ) for t′ ≥ t if we know st(V )
(and of course G). An instance of the model is then entirely defined by a pair
(G, s0(V )) where G is a network, V its set of nodes and s0(V ) its initial state.
The dynamics’ rules prevent self-inputs, since only excited nodes influence qui-
escent states, hence a node never influences itself; in consequence, (v, v) 6∈ E
by convention.

The choice of a threshold equal to 1 implies that excitation of a node is trans-
mitted to all its quiescent neighbors: the neighborhood size will thus presum-
ably act as an amplifier (around hubs, i.e. nodes of high degree) or a suppressor
(around nodes of low degree, e.g. in a linear chain). Excitation locally propa-
gates into quiescent regions, followed by an edge of refractory states, then by
quiescent states. The existence of refractory states prevents back propagation:
excitation transmitted from v to u at time t cannot be transmitted back to
v at time t + 1. Re-entrance of excitation in v might occur only if there ex-
ists closed paths (named cycles) allowing to bypass the refractory line. These
qualitative properties, associated with a local excitability threshold equal to
1, hint at an influence of the topology on the collective dynamics (beyond the
mere global threshold effect that would arise with values larger than 1 for the
local threshold). This supports our choice of this model as presumably the
best-suited to the issue addressed here.

2.2 Comparison with SIS/SIR models

Two models seemingly very close to the above one, namely SIS and SIR,
have been widely studied in the literature, in particular in what concerns the
influence of the network topology (e.g. the difference in behavior on Poisson
and power-law networks).

In the SIS model, see for instance [14, 30], the unit is either susceptible or
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infected; its state thus belongs to S = {s, i} and evolves according to the
following dynamic rules:

• if st(v) = s and there exists u ∈ V (v) such that st(u) = i, then st+1(v) = i;
otherwise st+1(v) = st(v);
• if st(v) = i, then st+1(v) = s.

The main difference with our model lies in the absence of a delay in the
recovery (no refractory state). Backward propagation is then possible and it
has crucial consequences on the results as we shall see in the following.

In the SIR model [14, 1, 54], the state space is S = {s, i, r}, for susceptible,
infected and removed respectively. These names reflect the updating rules:

• if st(v) = s and there exists u ∈ V (v) such that st(u) = i, then st+1(v) = i;
• if st(v) = i then st+1(v) = r;
• in the other cases st+1(v) = st(v).

Therefore, a node reaching the removed state does not evolve anymore and has
no influence on its neighbors; it might be ignored. In consequence, infection
dies out in a finite network or runs away from its source in an infinite one.
This model thus captures only propagating front waves of infection starting
from the initially infected nodes.

Let us finally underline that, in our model, investigating the influence of the
local excitability threshold value (fixed to 1 in the present study) would have
been very close to studies conducted on SIR/SIS models [46, 6]. These studies
evidence a critical value (quite analogous to a percolation threshold) above
which infection or equivalently excitation transmission is so hampered that
it fades away to 0 (recall that it is short-lived at a given site). This issue,
mentioned in our perspectives, is nevertheless out of our present focus.

2.3 Microscopic observables

Given an instance (G, s0(V )) of our model, its dynamics is nothing but a
trajectory in the phase space SN containing the 3N possible configurations of
the N node states (this is the viewpoint of dynamical system theory). The
phase space SN being finite, any trajectory [st(V )]t≥0 is eventually periodic.
We define the period p(G, s0(V )) of the system as the smallest integer p > 0
such that st(V ) = st+p(V ) for a time t. Since the dynamics is discrete in
time, trajectories originating from different initial conditions could merge. In
particular, before reaching its asymptotic periodic regime, a trajectory will in
general exhibit a transient, non periodic regime, whose duration will be called
the (microscopic) convergence time. More precisely, we define the convergence
time c(G, s0(V )) of the system as the smallest integer t such that st(V ) =
st+p(V ) for an integer p.
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2.4 Macroscopic observables

Given the state st(V ) of the system at a given moment t, one may also observe
the macroscopic state St(V ) = (ft(q), ft(e), ft(r)) where ft(q), ft(e), and ft(r)
denote the fractions of quiescent, excited, and refractory nodes at time t,
respectively. This is a viewpoint in the spirit of statistical mechanics, and the
fractions are termed the “order parameters” of the system in this context.
These global statistics, providing macroscopic summary of the system state,
will be of great importance in the following. At this macroscopic level, the
dynamics of an instance of our model is a trajectory in the macroscopic state
space [0, 1]3. This trajectory might have a period, denoted by P (G, s0(V ))
but we cannot define it using the first time the same macroscopic state is
reached twice. Indeed, this does not mean that it will be reached again, since
it may stand for different microscopic states. We therefore define it as the
smallest integer p > 0 such that there exists a time t such that for all integer
i: St(V ) = St+ip(V ). The smallest such t is called the macroscopic convergence
time C(G, s0(V )) of the system.

Notice that we always have C(G, s0(V )) ≤ c(G, s0(V )) and P (G, s0(V )) ≤
p(G, s0(V )). We can even notice that p(G, s0(V )) is a multiple of P (G, s0(V ))
and that there may be many instances such that P (G, s0(V )) = 1, whereas
the only cases where p(G, s0(V )) = 1 is when there exists a time t at which
st(v) = q for all v ∈ V , i.e. if the trajectory reaches the unique (microscopic)
equilibrium state of the dynamics.

2.5 Random networks

There is a huge variety of networks on which the dynamics may be stud-
ied (the updating rules define a consistent evolution whatever the underlying
topology). We however have specific questions in mind, mainly the impact of
the underlying degree distribution on the system behavior. Accordingly, we
look for possible differences between the dynamics on qualitatively different
topologies, spanned by the paradigmatic Poisson and power-law degree distri-
butions. We used the two following models (implementations of these models
are available at [22], see also methodological details at the end of the present
section).

• The first one is the classical Erdös-Rényi model [7, 18], which samples uni-
formly at random networks among all the ones with a given number N of
nodes and a given number M of links by choosing M pairs at random. At
the infinite limit, this random network model is equivalent to the model
where the network is constructed from a given number N of nodes, each
possible link being added with a probability p (independently of the other
links).
• The second one is the configuration model [38], which samples uniformly at

random networks among all the ones with a given number N of nodes and a
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given degree distribution (pk)k≥0. One first samples the degree of each node
according to the degree distribution, and then links random pairs of nodes
as long as they do not have as many links as this degree.

Note that in both models the connections are symmetric: the excitation might
propagate both ways. The presence of a refractory step nevertheless prevents
from immediate backward propagation, as noticed above.

The Erdös-Rényi model gives networks with Poisson degree distributions, pk ∼
e−λλk/k!; it thus exhibits a typical degree λ (coinciding with the average
degree) and an exponential decrease pk ∼ e−k ln(1/λ) for large k values. These
networks therefore do not fit the heterogeneous degree distributions met in
practice.

To generate more realistic model networks, we shall use the configuration
model, able to produce networks with power-law degree distributions pk ∼ k−α

(also termed “scale-free networks” since a power-law degree distribution does
not put forward any characteristic degree value, i.e. there is no typical scale for
the degree). Notice that it is not the classical Albert-Barabási model [5] often
used to generate power law networks. The configuration model has the ad-
vantage of producing networks with any prescribed degree distribution, which
is crucial here. The exponent of the law should satisfy α > 1 so that the
distribution can be normalized to 1. Power-law networks have a high fraction
of small-degree nodes, but also a non negligible number of very-high degree
nodes. In consequence, the statistical average degree 〈k〉 no longer coincides
with any typical degree value. It is besides well-defined only for α > 2. It is
possible to compute the exact expression of 〈k〉 as a function of α, but for
qualitative discussion, the rough estimate 〈k〉 ≈ (α − 1)/(α − 2) obtained in
the continuous approximation for k will be more useful. Average degree is then
larger than 3 for α < 2.5.

2.6 Random initial states

As there are many ways to choose a network G = (V,E) to define an instance
of our model, there are many ways to choose an initial state s0(V ). In order
to keep things simple and to focus on the influence of the topology on the
dynamics, with the least possible non-topological sources of bias, we used
random initial states. This will prove to be sufficient in the following.

More precisely, given three positive numbers pq, pe and pr with pq+pe+pr = 1,
we sample independently the state of each node, this state being quiescent,
excited or refractory with probability pq, pe and pr respectively. We call an
initial state obtained in this way a (pq, pe, pr)-initial state. Accordingly, the
fractions [f0(q), f0(e), f0(r)] of nodes in each state are random variables. Only
their statistical mean are prescribed, respectively equal to (pq, pe, pr), with a
fluctuation of order O(1/

√
N) where N is the total number of nodes.
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2.7 Mean-field approach

Given the model and its dynamics, analytical studies rely on a mean-field-like
approach [34]. Let us sketch its basic principles, features and flaws, motivating
our numerical approach.

For any node v ∈ V and state σ ∈ S, let us denote by ct(σ, v) the Boolean
function equal to 1 if st(v) = σ and 0 otherwise. We then have for all v,∑
σ∈S ct(σ, v) = 1 and for all σ, ft(σ) = (1/N)

∑
v∈V ct(σ, v). Denoting Y () the

Heaviside function (Y (x) equals 1 if x ≥ 0 and 0 otherwise), the dynamics is
described by the three following equations, for all t ≥ 0 and v ∈ V :

ct+1(r, v) = ct(e, v)

ct+1(e, v) = ct(q, v) . Y [
∑
u∈V l(u, v)ct(e, u)− 1]

ct+1(q, v) = 1− ct+1(r, v)− ct+1(e, v)

where l(u, v) is 1 if the link (u, v) exists and 0 otherwise.

In the mean-field framework, one approximates the average of products (1/N)
∑
u∈V l(u, v)ct(e, u)

by the product of averages (1/N)
∑
u′∈V l(u

′, v) (1/N)
∑
u∈V ct(e, u). But

∑
u∈V l(u, v)

is nothing but the degree kv of v and
∑
u∈V ce(t, u) can be approximed by

Nft(e). The main equation above then becomes

ct+1(e, v) = ct(q, v) . Y (kvft(e)− 1)

At this stage, we can obtain an interesting conclusion concerning our model.
Consider an instance (G, s0(V )) with period p(G, s0(V )) = 3. One can easily
show (we will provide a proof below) that this implies that no node stays in
the same state (including the quiescent one) more than one time step in a row.
In the mean-field framework, this requires that kvft(e) ≥ 1 for all v ∈ V , i.e.
kv ≥ 1/ft(e): a mean-field approach could be valid only if the average degree
is large enough, which will be confirmed by experiments in the following.

We see from the above equations that this mean-field approach has turned the
original cellular automata into a coupled map lattice, composed of N units
with two variables [ct(q), ct(e)] each. Such coupled map lattices do not faith-
fully account for all the correlations present in the original system. Moreover,
to get analytically tractable equations, one has to further reduce the descrip-
tion and work at the level of fractions ft(σ), σ ∈ S (or at best at the level
of pair correlation functions describing the joint statistics of the states of a
pair of neighbors). Further decoupling approximations are then required to
get closed evolution equations. Notwithstanding the questionable validity of
the involved approximations, the resulting framework is obviously not a rele-
vant approach to study dynamic properties at the level of trajectories, since
it cannot capture notions like period, convergence time, etc. on which this
paper focuses. It can neither fully account for the spatial heterogeneity and
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correlations. In consequence, the issues addressed in this paper are entirely out
of reach in a mean-field approach, motivating our empirical, though rigorous,
approach based on numerical simulations.

2.8 Methodology

The networks obtained with the models presented above are not always con-
nected, i.e. there does not exist a path between all pairs of nodes. The dy-
namics then runs independently on the various connected components, hence
what really makes sense is to consider only the largest connected component.
The ensuing flaw in comparative studies is the possibly varying size Ncc ≤ N
of this connected component. Generating random connected networks with
prescribed degree distribution is possible but it is a difficult task [50] and it
has important drawbacks in our context. Moreover, whenever the average de-
gree is not too low (basically larger than 2), the largest connected component
contains most (if not all) nodes [7, 38, 39]. Finally we decided not to include
the connectedness constraint in the generating procedure, but rather to keep
a posteriori the largest connected component. This is very classical in complex
network studies.

We call a λ-Poisson network any network obtained by generating a Poisson
network of average degree λ with the Erdös-Rényi model and then keeping
only its largest connected component. This restriction slightly modifies the
degree distribution, e.g. the probability that a node has degree k = 0 now
vanishes, which implies that the normalization of the initial Poisson distri-
bution is modified accordingly; in consequence, λ-Poisson networks have an
average degree larger than λ, roughly by a factor of 1/(1− e−λ). If λ is larger
than 2 however, the two networks are almost identical (since p0 = e−λ � 1),
and the larger λ the more identical they are. Likewise, we call an α-power-law
network any network obtained by generating a random network with degree
distribution pk ∼ k−α with the configuration model and then keeping only its
largest connected component. The largest connected component is small (less
than 10% of the network) only for α > 3.5 (then 〈k〉 < 2) whereas it almost,
if not exactly, coincides with the whole network for 〈k〉 > 2 (i.e. smaller α
values). Like in λ-Poisson networks, restriction to the connected component
implies that α-power-law networks have an average degree slightly larger than
the average degree of the original network. Likewise, their degree distribution
may differ significantly from a power law with exponent α at low values of k.
But in most cases the connected networks are almost identical to the original
ones, and most importantly, their degree heterogeneity, which is the relevant
feature in the present study, are comparable. In conclusion, the restriction
to the largest connected component has no impact in most practical cases,
since the original network is connected whenever the average degree is not too
close to 2. In some limited cases, however, it may have an influence on the
interpretation of our results, which will then be discussed accordingly.
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All the networks considered in the simulations will be λ-Poisson or α-power-
law networks, as described above. The parameters of interest, quantifying the
network topology, are the average degree in the first case, and the power-law
exponent in the second case. To compare these different classes of networks,
we shall often express the results on power-law networks in terms of their av-
erage degree (empirical average computed in each sample), in addition to their
exponent. In numerical studies, in order to minimize sampling and finite-size
effects, we shall always consider the empirical average degree, computed in
each configuration as an average over all the nodes of the connected compo-
nent. Parameter ranges considered here will cover the values met in practice,
namely λ from 1 to 20 and exponents α from 1.5 to 5. The parameters leading
to average degrees close to 2, basically λ between 1 and 2.5 and α larger than
3 generate extremal cases as explained below 1 .

The initial states considered in all the simulations will be random initial states,
inducing some variability from one sample to another. Due to the strong cou-
pling between neighboring units and the ensuing collective behavior of the
network, it is a priori possible that changing only one node’s initial state has
significant consequences on the overall dynamics. However, the investigations
conducted on this possible sensitivity showed that it does not affect the observ-
ables considered in the present paper (convergence time, period and average
excitation), thus validating a plain random sampling of the initial state.

From a probabilistic point of view, network configurations where the average
degree k is close to 2 or (pq, pe, pr)-initial states with at least one very low pσ
(with σ ∈ S = {e, q, r}), are very rare; moreover, the variability is high in
these extreme cases. We shall therefore call them non-typical cases whereas
the other cases will be called typical cases. We expect, and our results will
confirm this, that the observed behaviors are very robust in typical cases,
whereas they are less reproducible, i.e. more sensitive to minute variations of
network configuration or initial state, in non-typical cases.

Let us end this section with a few technical points. All the networks considered
in the paper have N = 1 000 nodes. This is large enough to avoid small-size
effects (which we checked on larger networks), to capture a representative
view of the dynamics and to get a good statistical behavior. For instance,
when performing the random initialization with probabilities pe, pr and pq,
the associated fluctuations of, say, f(q) is one or two percents (more precisely,

δf(q) ≈
√
pq(1− pq)/N , i.e. δf(q) ≈ 0.015 for pq = 1/3). Moreover, consid-

ering larger networks would make some of our experiments computationally
intractable.

Our simulations have been performed on networks with average degree up to
〈k〉 = 20: indeed, preliminary tests have shown no significant differences in

1 The average degree cannot be significantly lower than 2 in a connected component,
the worst case being that of trees, where it is equal to 2(N−1)

N .
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observable properties between this maximal value and higher values of the av-
erage degree. Finally, for all investigated quantities x (the fractions f(α), the
convergence time, the period), we chose to visualize the statistical dispersion
over a sample by plotting the ensemble average x̄, together with this value plus
(resp. minus) the average difference ∆x+ (resp. ∆x−) between values larger
than x̄ (resp. smaller) and x̄. The rationale for considering such differences
∆x±, rather than the standard deviation, is to visualize separately the dis-
persion of x towards larger (resp. smaller) values than the ensemble average
x̄. Moreover, the interval [x̄ − ∆x−, x̄ + ∆x+] gives a better estimate of the
typical range of values of x in case of non Gaussian statistics.

3 Basic properties of the dynamics

We here present some general properties of the dynamics, providing hints
and guidelines in devising the systematic numerical studies presented in the
following sections.

As already discussed, any trajectory of our model always reaches a periodic
regime with period p, whatever the network topology and the initial state.
This implies a periodic behavior at the macroscopic level too. Moreover, the
relations ft+1(r) = ft(e) and ft(q) = 1−ft(e)−ft(r) imply that if one fraction
ft(σ) is periodic, the two other are also periodic with the same period, denoted
by P .

The series of fractions (ft(σ))t≥0 for each σ ∈ S = {q, e, r} therefore are all
periodic with the same period P . We insist however on the fact that there is
no other obvious relation (with or without delay) between these fractions, and
that the microscopic period p cannot be deduced from them: we can only state
that p is an integral multiple of the macroscopic period P . The full dynamics in
the phase space SN deeply depends on the underlying topology (and possibly
on its initial state). We elaborate further on this fact below, first by showing
what can (and cannot) occur with our model, then by examining representative
instances, and finally by studying average and extremal behaviors in typical
and non-typical cases.

3.1 Possible and impossible behaviors

From the very definition of the model, one can easily notice that the smallest
non-trivial period is p = 3 (whereas p = 2 is possible in the SIS model, for
instance). It is in particular observed in any elementary pattern of 3 nodes
connected into a triangle and initially in the state (e, q, r), then evolving by
a mere circular permutation of the individual states (namely (r, e, q), then
(q, r, e) and back to (e, q, r)). A remarkable fact concerning such a triangle is
that its periodic behavior is preserved upon embedding into a larger network,
whatever its topology and initial state: when the initial state contains such a
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triangle, the period p of any trajectory will necessarily be an integral multiple
of 3, and excitation never dies out. The only state in which the period is 1 is the
one where all the nodes are in the quiescent state. This state can be reached
from many initial states (with the above-mentioned necessary condition that
they do not contain a triangle in the state (e, q, r)). Therefore, we expect
that excitation dies out less frequently in power-law networks, due to the
higher probability of finding triangles (e, q, r) in the initial state (there are
significantly more triangles in power-law networks than in Poisson ones [44]).

There is clearly no upper limit for the microscopic period p. Consider for
instance a ring of n links: G = (V,E) with V = {0, . . . , n − 1} and E =
{(i, i+ 1 mod n), i ∈ V }, and an initial state in which all nodes are quiescent
except two adjacent ones, one in excited state and the other in refractory state,
i.e. s0(v) = q for all v > 1, s0(0) = r and s0(1) = e. At each time step, the
excitation and the following refractory state jump one node forward, hence
the period is p(G, s0(V )) = n.

At the macroscopic level too, the smallest non-trivial period cannot be lower
than P = 3. But many microscopic evolutions may underly a macroscopic
period of 1. They include of course the equilibrium state (st(v) = q for any time
t and any node v ∈ V ) but also many non equilibrium regimes, as illustrated by
the above ring configuration for which ft(q) = (n− 2)/n, ft(e) = ft(r) = 1/n
all along the time, and thus P = 1.

Here again we can build examples with arbitrarily large period P . Consider for
instance a network made of two linear branches (u1, . . . , un−1) and (v1, . . . , vn−1),
stemming from the same node u0 and joining in a node un, then closed with
an additional link from un to u0. Starting from an initial state in which
s0(u0) = e, s0(un) = r, and all other nodes are in the quiescent state leads
to a periodic trajectory of macroscopic period P = n + 1 (which happens
to be equal to the microscopic period p in this particular case). Another
meaningful example is provided by a “decorated ring”: a network composed
of a ring of n links and an additional node connected to one node on the
ring (a “dangling end”, see below): G = (V,E) with V = {0, . . . , n} and
E = {(i, i + 1 mod n), 0 ≤ i ≤ n − 2} ∪ {(n − 1, 0)} ∪ {(0, n)}. Then
again consider an initial state where all the nodes are quiescent except two
adjacent ones, one in the excited state and the other in the refractory state,
i.e. s0(v) = q for all v > 1, s0(0) = r and s0(1) = e. Then the macroscopic pe-
riod is P (G, s0(V )) = n (here equal to the microscopic period). Actually, the
presence of the dangling end affects only the macroscopic period (it would be
P ′ = 1 in a plain ring, whereas the microscopic period would still be p′ = n).

The same kind of remarks can be done concerning the convergence time. One
can for instance consider a chain of length n: G = (V,E) with V = {0, . . . , n}
and E = {(i, i+ 1), 0 ≤ i < n} with all nodes initially in the quiescent state,
except node 0 in excited state: s0(v) = q for all v > 0 and s0(0) = e. Then the
system will reach the equilibrium state where all the nodes are quiescent (with
period 1) only after n+2 time steps. This example also stands for macroscopic
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convergence time, which is equal to the microscopic one in this case.

These examples show that both period and convergence time are nontrivial
features of the model and deserve more attention. Moreover, they underline
the importance of carefully distinguishing between the two levels, termed mi-
croscopic and macroscopic, at which one may observe the model.

Before entering in the first details of our numerical experiments, let us make
a last remark: if a system is in a non-trivial periodic regime then all its nodes
contribute to the dynamics in the sense that no node stays in the same state
forever. This is obvious for all states but the quiescent one. Suppose therefore
that there is a node remaining forever in the quiescent state. This implies that
none of its neighbors passes through the excited state (else it would force it to
change its state). Hence after at most one step (some of the node’s neighbors
may be in the state r), all its neighbors are in the q-state. By repeating this
reasoning, we see that all nodes must ultimately be in the quiescent state,
which is in contradiction with our hypothesis. This proves the claim. Notice
however that the state of some nodes may change only once per period and
that the period can be arbitrarily large, as explained above. If the period is
3 (its minimal non-trivial value), however, these remarks imply that no node
stays in the same state more than one time step in a row.

The discussion above gave intuition on what can happen in the dynamics we
observe. We gave some instances which show that some particular behaviors
are possible, which will be useful to understand the experiments below. These
behaviors may however be very rare and may never occur in typical instances
following from a random sampling. To explore this, we present now numerical
experiments aimed at observing what happens in typical and special cases.

3.2 Representative examples of the dynamics

We shall here observe and discuss the typical behaviors obtained on a given
network with given initial states. Since the behaviors discussed here are the
same for Poisson and power-law networks, we shall only present the Poisson
cases.

We plot in Fig. 1 the evolution of ft(σ) for each α ∈ S = {q, e, r}, in two
different cases: a typical Poisson network (large value λ = 10, Fig. 1a) and a
non-typical one (small value λ = 1, Fig. 1b), both with typical initial states.

The typical case (Fig. 1a) is representative of what is observed on most such
instances: the system reaches a macroscopic periodic regime of period P = 3
after a short macroscopic convergence time (generally C ≤ 4 time steps). In
such cases, we generally observe that both the period and the convergence
time are equal at the microscopic and macroscopic levels, i.e. p = P and
c = C (which is by no means neither obvious nor necessary, as illustrated in
the previous subsection).

For non-typical Poisson networks (Fig. 1b), a significant macroscopic conver-
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Figure 1. Examples of evolutions observed on the fractions ft(σ) with
σ ∈ S = {q, e, r} (i.e. at the macroscopic level) for λ-Poisson networks with typ-
ical (0.3, 0.3, 0.4)-initial states. (a) for a (typical) 10-Poisson network. (b) for a
(non-typical) 1-Poisson network.

gence time (larger than 40 time steps in the example) is observed, with high
variability. Recall that it provides a lower bound for the microscopic conver-
gence time (c ≥ C), which therefore is large too. Likewise, the period (which
is too large to be observed on the figure) can be large and has an important
variability.

These observations are only a qualitative preliminary step, leading to the
quantitative investigations presented in the following sections, which supports
their representativity.

3.3 Average and extremal behaviors

To enlighten the macroscopic behavior we may expect, we sample 1 000 net-
works with the same average degree and macroscopic initial states. The ob-
tained ensemble average, minimum and maximum values of the fraction of
quiescent nodes at each time step are plotted in Fig. 2 (the fractions concern-
ing other states are observed to behave similarly). The fact that the ensemble
average and extremal behaviors in typical cases (Fig. 2a) is very similar to
the behavior of any individual sample (Fig. 1b) confirms that both the con-
vergence time and the period are very robust, with respect to the microscopic
details of both the underlying topology and the initial state. In other words,
in typical cases, the average degree and the initial fractions of nodes in each
state prescribe both the period and the convergence time. Otherwise, averag-
ing over 1 000 network instances would smooth out the oscillations and the
ensemble average would be constant.

This latter behavior is actually that observed for non-typical Poisson networks
(still with typical initial states), where the ensemble average fraction of qui-
escent nodes collapses to a constant (Fig. 2b). In fact, such systems can reach
the state where all the nodes are quiescent ft(q) = 1, thus corresponding
to the microscopic equilibrium state and not only to a macroscopic station-
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Figure 2. Ensemble average, minimal and maximal values (resp. f̄t, f
min
t and

fmax
t ) for the fraction ft(q) of quiescent nodes in λ-Poisson networks with typi-

cal (0.3, 0.3, 0.4)-initial states. (a) over 1 000 instances of 10-Poisson networks. (b)
over 1 000 instances of 1-Poisson networks.

ary regime. This extinction happens quite often, which noticeably increases
the ensemble average value f̄t(q). This point is discussed further in the next
section.

4 Influence of initial states

In the previous section we compared basic macroscopic properties of the dy-
namics on typical vs non-typical networks while the initial states were always
typical ones: concerning these coarse dynamic features, Poisson and power-
law networks behave similarly. We now explore the influence of initial states,
either typical or non-typical, on the dynamics observed at the macroscopic
level.

Let (α, β, γ) denote a permutation of (q, e, r). To quantify the influence of
the initial state (characterized by any two fractions f0(β) and f0(γ)), we ob-
served, in the periodic regime, the mean (i.e. time-averaged over a period) and
extremal fractions of nodes in state α as a function of f0(β), for a given frac-
tion f0(γ). Numerical experiments were conducted for a wide range of initial
fractions and general classes of behaviors were observed. These representative
situations are illustrated here using a constant initial fraction of refractory
nodes f0(r) = 0.3 (γ = r) and an initial fraction of excited nodes (β = e)
varying from 0 to 1 − f0(r) = 0.7. The results are plotted in Fig. 3 for both
typical and non-typical Poisson and power-law networks.

These numerical experiments show that, for typical networks, notwithstand-
ing their topology, the observed behaviors are very robust with respect to the
initial state; the variability is larger in case of non-typical initial states. As
already discussed, non-typical initial states (say, f0(e) < 0.03 or f0(q) < 0.03)
on non-typical networks tend to give trivial asymptotic dynamics; this is con-
firmed here as all the nodes are eventually in the quiescent state.

Fig. 4 displays another feature of interest: that there exists symmetry relations
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Figure 3. Ensemble average of the mean fraction (time average over a period)
of quiescent nodes 〈f̄t(q)〉 and its statistical dispersion in the asymptotic pe-
riodic regime as a function of the initial fraction f0(e) of excited nodes, with
(1−0.3−f0(e), f0(e), 0.3)-initial states. (a) for 10-Poisson networks; (b) for 1-Poisson
networks. (c) for 2.5-power-law networks; (d) for 3.5-power-law networks. For each
value of f0(e), we plot the ensemble average over a set of 1 000 instances of the
time-averaged value of ft(q); its statistical, possibly asymmetric, dispersion is visu-
alized by plotting the average plus (resp. minus) the average difference between it
and values larger (resp. smaller) than it. See the end of Sec. 2.8 for details on our
notations.

between initial states, leading to exactly identical dynamic plots as shown here
on typical Poisson networks; similar symmetry properties are observed with
other average degrees and with power-law networks. It is important to notice
that these symmetries are statistical by nature, and are not a mere consequence
of the dynamics and the ensuing relation ft+1(r) = ft(e). Indeed, Fig. 5 dis-
plays an instance designed especially to give a counter-example. The leftmost
evolution starts from a (0.5, 0.3, 0.2)-initial state and the rightmost from a
(0.2, 0.5, 0.3)-initial state; they should therefore lead to similar macroscopic
states according to the symmetries depicted in Fig. 4. And yet, in the first
case one obtains a steady macroscopic state where the fraction of nodes in each
state are f(q) = 0.6, f(r) = 0.2, and f(e) = 0.2, while they are f(q) = 0.8,
f(r) = 0.1, and f(e) = 0.1 in the second case. This counter-example reveals
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Figure 4. Symmetry properties with respect to the macroscopic initial state
[f0(e), f0(q), f0(r)]. Identical plots are obtained displaying the minimal, maximal
and average fractions of quiescent nodes in the periodic regime as a function, of f0(q)
with f0(r) = 0.3 (a), of f0(e) with f0(q) = 0.3 (b), and of f0(r) with f0(e) = 0.3 (c)
(in all plots, we used 1 000 instances of 10-Poisson networks). See the end of Sec. 2.8
for details on our notations.
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Figure 5. A specially designed instance for which the generic identities pointed out
in Fig. 4 should lead to the same fraction of quiescent nodes in the asymptotic
regime if they were reflecting an exact symmetry of the dynamics.

that we do not face a symmetry of the dynamics in all the cases but a sta-
tistical feature of the evolution and/or of the topology, as observed at the
macroscopic level: the observed symmetries generically hold true but fail to
be satisfied in some particular cases. One may wonder if there exists typical
such instances, but this is out of the scope of this paper.

5 Convergence time

The results stated in Sec. 3 and 4 involved fractions of nodes in each state,
i.e. spatially averaged quantities, what is called “order parameters” in the
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language of statistical mechanics. Let us now turn to microscopic features,
i.e. properties observed at the level of individual trajectories, in the phase
space SN . In the present section, we focus on the convergence time, namely
the number of steps required to reach from a given initial condition the corre-
sponding asymptotic periodic trajectory. We shall compare Poisson networks
with power-law ones, for wide ranges of average degrees and exponents. In
each case, we shall consider two initial states, one typical and the other one
representative of what we termed non-typical initial states, i.e. with at least
one very low fraction of nodes in one of the three states.
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Figure 6. Convergence time c as a function of the average degree for Poisson (a–b)
and power-law networks (c–d). For k-Poisson networks, 1 000 instances of networks
are sampled for each integer value of k from 2 to 20. For power-law networks, 1 000
instances of α-power-law networks are sampled for each value of the exponent α
from 1.5 to 5 with step 0.25. In each case, their convergence time (starting from a
typical initial state) is plotted (+). Moreover, the ensemble average c̄ of the conver-
gence time over each such sample, and its statistical dispersion, as visualized by c̄,
∆c− and ∆c+ are plotted with lines. (a) with (0.3, 0.3, 0.4)-initial states for Pois-
son networks. (b) with (0.69, 0.3, 0.01)-initial states for Poisson networks. (c) with
(0.3, 0.3, 0.4)-initial states for power-law networks. (d) with (0.69, 0.3, 0.01)-initial
states for power-law networks.
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5.1 Poisson networks

The convergence time for Poisson networks is plotted in Fig. 6a–b as a function
of the average degree (empirical average computed in each sample), with both
typical initial conditions (Fig. 6a) and non-typical ones (Fig. 6b). This figure
illustrates that the initial states and the topology play a somewhat similar
role: whereas in typical cases the convergence time is very robust (almost
constant), non-typical initial states or non-typical networks exhibit a stronger
variability of the convergence time. Nevertheless, a remarkable fact is the small
statistical dispersion here observed. For both non-typical networks and non-
typical initial states, the convergence time is surprisingly less scattered than
when only one of them is non-typical. This may be due to the fact that, in
these cases, the effective network, i.e. the largest connected component of a
random network of 1 000 nodes, may actually be much smaller than the whole
network thus finite-size effects take place (e.g. non-typical initial states may
lead to a null number of initially excited nodes).

5.2 Power-law networks

We display in Fig. 6c–d similar plots for power-law networks. Despite they are
obtained by varying the exponent α, which is the relevant control parameter
for such networks, we present plots as a function of the average degrees (em-
pirical average computed in each sample), and at the same scale as for Poisson
networks (Fig. 6a–b), in order to make the comparison easier. We shall present
and discuss the same results plotted as a function of the exponent below.

The general behavior is the same as for Poisson networks: the convergence
time is very robust for typical networks and initial states, but varies signifi-
cantly and may be very large with non-typical networks or non-typical initial
states. However, it is clear from these plots that the convergence time is much
less scattered on power-law than on Poisson networks. This may be viewed as
a quantitative consequence of the fact, discussed in the preliminaries (Sec. 2),
that the average distance in such networks is significantly lower than in Poisson
networks; therefore, the dynamics runs faster, reflecting in a shorter conver-
gence time.

The natural control parameter for power-law networks being the exponent α
of the power-law degree distribution, let us now describe the influence of α
on the convergence time (Fig. 7). The convergence time reaches its maximum
value for exponents between 3 and 3.5, for which the average degree is close to
2. It also has its maximal variability for these exponent values, but remarkably,
this variability remains moderate in all cases. Smaller exponents yield a result
similar to Poisson networks with large average degrees: the convergence time is
small and very robust. For larger values of the exponents, the convergence time
remains short and not very scattered. This can be traced back to finite-size
effects, since for α > 3.5, the effective network, i.e. the connected component,
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is strongly reduced (typically smaller than 10% of the initial set of nodes). In
the case of non-typical initial states, these finite-size effects are still stronger,
since very few nodes, if any, are initially in the excited state, and so the
dynamics is trivial. Like in the case of Poisson networks, the conclusion is
that non-typical initial states increase the variability for typical networks, but
decreases it for non-typical ones.
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Figure 7. Convergence time c as a function of the exponent α for power-law networks.
For each value of α from 1.5 to 5 with step 0.25, 1 000 instances of an α-power-law
network and its initial state are sampled, and the associated convergence times are
plotted. Moreover, the average c̄ over each such sample, and ∆c− and ∆c+ are
plotted with lines. (a) with typical (0.3, 0.3, 0.4)-initial states. (b) with non-typical
(0.69, 0.3, 0.01)-initial states.

6 Period

Our aim is now to study the period p of the dynamics, along similar lines
as those we followed for the convergence time (Sec. 5). Since the dynamics is
deterministic, the system will always reach a periodic regime. But the number
of possible states is huge (3N) and this periodicity might a priori be irrelevant
(undetectable) in a finite observation time. The striking result we shall present
here is that it is not the case in typical situations: a finite, even small, period
p is observed. This periodicity means that many initial conditions will evolve
towards the same periodic trajectory. We plot this (microscopic) period p as a
function of the average degree for Poisson networks in Fig. 8a–b, for power-law
networks in Fig. 8c–d, and finally as a function of the exponent α of power-law
networks in Fig. 9.

The results confirm what was observed for the convergence time. First, the
period is very robust for typical networks and typical initial states. In other
cases, quite different values may be obtained, but most of them are very close
to the average. Taking non-typical initial states on typical networks and non-
typical networks with typical initial states increases the variability. Finally,
non-typical initial states on non-typical networks lead to less variability than
these two last cases, due to the reduced size of the effective (connected) net-
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Figure 8. Period p as a function of the average degree for Poisson (a–b) and
power-law (c–d) networks. For each network category, 1 000 instances are sampled
(together with inital conditions). The observed period for each instance is plotted
(+) for each integer value of k from 2 to 20, for k-Poisson network and for each value
of the exponent α from 1.5 to 5 with step 0.25 for α-power-law networks. Moreover,
the sample average p̄ and ∆p− and ∆p+ are plotted with lines. (a) with typical
(0.3, 0.3, 0.4)-initial states. (b) with non-typical (0.69, 0.3, 0.01)-initial states. (c)
with typical (0.3, 0.3, 0.4)-initial states; (d) with non-typical (0.69, 0.3, 0.01)-initial
states.

work underlying the dynamics.

These observations are valid on both Poisson and power-law networks, but
again the results are less scattered for power-law networks than for Poisson
ones. This can be viewed as a consequence of the existence of longer cycles
(i.e. closed paths) in Poisson networks than in power-law ones.

Let us notice that the period often takes its minimal value p = 3. It indicates
that no node remains in the same state several time steps in a row. In these
cases, the macroscopic evolution may be described very easily since ft(e) =
ft−1(q) = ft+1(r). Notice however that this does not imply that these fractions
are equal to 1

3
; only the time averages over a period are equal to 1/3 (since

ft−1(q)+ft(q)+ft+1(q) = 1). At the microscopic level, each e becomes r, each
r becomes q, hence necessarily each q becomes e. Hence in the asymptotic
periodic regime with p = 3, the evolution reduces to synchronized flips q →
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Figure 9. Period as a function of the exponent for power-law networks. For each value
of the exponent α from 1.5 to 5 with step 0.25, 1 000 instances of a α-power-law
networks and its initial state are sampled and the associated periods p are plotted.
Moreover, the sample average p̄ and p̄ plus (resp. minus) the average difference
between p̄ and values larger (resp. smaller) than p̄ are plotted with lines. (a) with
typical (0.3, 0.3, 0.4)-initial states. (b) with non-typical (0.69, 0.3, 0.01)-initial states.

e → r → q with no latency in state q. The excitable dynamics thus exhibits
a kind of synchronization, but with a phase shift between neighbors, hence
associated with a very complicated and heterogeneous spatial structure.

In case of non-typical networks, the fact that the asymptotic regime reduces to
an equilibrium state where all the nodes are quiescent can be explained easily.
Indeed, in such cases, as explained in the preliminaries (Sec. 2), the network
is often a tree, and one can prove by a simple recursion that the dynamics
vanishes in this case. Instead, as we have seen in Sec. 3, large cycles in the
network may induce large periods and convergence times. Such cycles exist
only in non-typical networks. These two points together explain the irregular
behaviors observed for non-typical networks.

7 Conclusion and perspectives

In this contribution, we proposed a simple framework to study the dynamic
behavior of coupled excitable units. Analytic approaches, relying on mean-
field or pair-correlation approximations, are insufficient to faithfully capture
the influence of network topology and initial state on phase-space trajectories.
We thus conducted a wide set of simulations. We focused on both macroscopic
features, namely the average, minimal, and maximal fractions of nodes in a
given state in the periodic regime, and microscopic features, namely the period
of the asymptotic regime and the convergence time, at the level of phase-space
trajectories. Our investigations led us to introduce, as major determinants of
the observed dynamic behavior, a notion of typical networks vs non-typical
ones (those of low average degree, close to 2) and a notion of typical initial
states vs non-typical ones (those with at least one very low fraction, say f <
0.03).
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Our first conclusion is that the behavior is very robust on typical networks
and with typical initial states: both the convergence time and the period are
almost independent of the sample. When one turns to non-typical networks
and non-typical initial states, the variability increases. This may be seen as a
consequence of the fact that non-typical networks have large tree-like struc-
tures and cycles, which we have shown play an important role in the dynamics:
they make it possible to design topologies with arbitrarily large convergence
time and period.

Our second conclusion is that the dynamics is more robust on power-law net-
works than on Poisson ones, which may basically be a consequence of the
existence of shorter paths in power-law networks than in Poisson ones.

However, the behaviors of the dynamics on the two kinds of networks are quite
similar: they do not vary qualitatively like in the cases of network tolerance to
failures and attacks [3, 11, 12, 9, 40, 45] or diffusion processes [6, 46, 43, 13].
This leads us to our main conclusion: the dynamics studied here is only slightly
sensitive to variations in the degree distribution of the underlying topology;
instead, it is highly related to the presence (and number) of triangles and
larger loops. It would therefore be highly relevant to now turn to studies
adressing the influence of the number of triangles and loops in the underlying
topology on the dynamics. It appears clearly from our study that this influence
is central, and interesting behaviors would certainly be observed if we focus
on this parameter.

Let us however note that such a study is challenging, since one would have
to use models of topologies with triangles. The ones we used here, which are
among the most classical ones in complex network studies, have a number
of triangles which vanishes for large network sizes (though more slowly for
power-law networks than for Poisson ones [44]). They have the advantage of
uniformly sampling random graphs in a given class, and are widely accepted
as reference models. On the countrary, there is currently no known method to
sample uniformly a random graph with a given number of triangles. One would
therefore have to use one of the many models proposed to generate specific
networks with many triangles, see for instance [23, 17]. But each such model
has its own advantages and drawbacks, and there is currently no consensus on
which model to use in experiments like the ones we conducted here. Although
much progress has been done in this direction, there is still much to do.

Finally, we therefore consider the study of the influence of the number of tri-
angles in the network as one of the most promising, but challenging, directions
for further research.

There are of course many other directions which may be explored to extend
our work. Let us begin with the precise study of size effects. We conducted ex-
periments on networks with up to 100 000 nodes, and the results were similar
in most cases, but some computations are intractable for such sizes. Also, mod-
eling dynamics on directed and/or weighted networks remains to be done, but
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most of our framework and methodology can be extended straightforwardly to
these cases. By contrast, the issue of pattern formation, ubiquitous in cellular
automata studies, is here very complex since there is no simple underlying
space. Finally, one may study the impact of variations in the dynamic rules:
the refractory stage may last several time steps, one may associate an activa-
tion threshold to each node (thus prescribing the number of excited neighbors
required to become excited), one may consider stochastic rules to model inter-
nal noise or exernal influences (such variants have been studied for SIS/SIR
models), etc. An approach similar to the one presented here is relevant in all
such instances.

Conversely, the influence of the topology on dynamics may be used to infer
topological properties (which could not be directly measured) from the ob-
served evolution. Such an inverse problem could be tackled successfully only if
different topologies discriminate clear-cut dynamic features, which seems not
to be the case for excitable dynamics (but the path has been traveled with
some success for random Boolean networks [31]).

Finally, we would like to emphasize the fact that analytic approaches would
be of high interest to describe dynamics of the kind we discussed here. Ex-
act solutions seem presently unreachable but mean-field approximations and
higher-order correlation equations may provide reference points with which to
compare simulation results. However, using such approaches in this context
remains a challenging task.

Acknowledgments

We thank anonymous referees for their helpful comments. This work was supported
in part by the GAP (Graphs, Algorithms and Probabilities) project.

References

[1] G. Abramson and M. Kuperman. Small world effect in an epidemiological
model. Physical Review Letters, 86:2909–2912, 2001.

[2] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks.
Reviews of Modern Physics, 74:47–97, 2002.

[3] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance in
complex networks. Nature, 406:378–382, 2000.

[4] M. Aldana. Boolean dynamics with scale-free topology. Physica D,
185:45–66, 2003.

[5] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks.
Science, 286:509–512, 1999.
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