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Crossing the Chasm

Diffusion of innovations theory of Everett

Roger.
e Th '
T e re IS a Geoffrey Moore’s ‘Crossing the Chasm'diagram
Circa 1991

chasm between
the early adopters

and the early majority.

(Moore 2002) “Am
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Explaining the chasm

» Standard epidemic models (SIR/S) do not

capture the chasm...

e ... at least on uniform random graphs.

chasm due to clustering?

* Different idea: add neighborhood effects.

Disposition towards adoption:
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Game-theoretic diffusion model...

sicq. ic
e v | &Wq * Both receive payoff qg.
—8
ta kQ ta kQ * Both receive payoff
1-g>q.
ic )
ﬁmq ta kg’ * Both receive nothing.

Morris (2000)



...on a hetwork.
e Everybody start with

icq

everybody, everywhere:

* Total payoff = sum of
the payoffs with each
neighbor.

* A fraction of the
population is forced

to tall’
e If 2(1-9)>3q, i.e.
2>5Q




Threshold Model

e State of agent i is represented by

v, = [0 if®lcq
— )1 if tak’
 Switch from ﬁl&q to ta kQ
> X, >0(d;)
%)

* |In previous

case: 0(d) = dq



(1) Model

(2) Results

(3) Proofs



(1) Random networks.

« Random graphs with given degree sequence
introduced by Molloy and Reed (1995).

* |n this talk:

— Random regular graphs. d; =d

— Erdos-Réyni graphs, G(n,p/n). d; = Poi(p)
 We are interested in large population

asymptotics. n= number of vertices tends to
infinity.



(1) Percolated Threshold Model

* Bond percolation
with proba.1 — 7

* Symmetric
threshold
epidemic:

Yy X, > K;(d;)

jovi

 Seed of active
nodes




(1) Versatile model for epidemics

Null threshold = contact process
No bond percolation = bootstrap percolation

Some easy general results:
— Monotonicity: only transition passive to active.

— In a finite graph, there is only one possible final
state for the epidemic.

| will concentrate on properties of the final
state, for large random graphs.



(1) Model

(2) Results

(3) Proofs



(2) Sanity check!

* Take 8(d) = O and we obtain a simple
exploration of the connected components of

the graph.

E-R model with
p=0.5;
p=1;
p=1,5.

In accordance with
Molloy and Reed!
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(2) Cascade capacity

* Definition: maximum g for which a single
individual can trigger a global cascade.

* Low g = high quality
0(d) = dq

In accordance
with Watts (2002)
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(2) Phase transition

 What happens when q is bigger than the

cascade capacity?
-
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(2) Back to the chasm

* ais the proportion of early adopters
* g quantifies the impact of marketing

0.30

There is a threshold

_ phenomenon:

- - for g>s, the early adopters
| do not contaminate the

0.15—: majority.
f / -for g<s, they do!
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(2”) Vaccination

2 W Glenbow Archives NA-5600-7434a




(2’) Vaccination and Attack

e Perfect vaccine: remove vaccinated
population from the graph (site percolation).

* Acquaintance vaccination: Sample each node
uniformly and inoculate a neighbor of this
node taken at random.

 Degree based attack: randomly attack a node
with a probability depending on its degree.



(2”) Cascade Condition

 Random graph with degree distribution: D

(configuration model: Molloy-Reed 95)

* Bond percolation: = and threshold: K(d) .

 When can a single active node have a global

impact?

~E[D(D — 1)1 (K(D) = 0)] >

* K =0 Epidemic contagion threshold.

1[D)
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(2”) Vaccination for the contact
process

s g
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Borc

* Epidemic threshold as a
function of vaccinated
population.

e If E[D?] = oo, uniform
vaccination is useless.
Acquaintance

vaccination can stop
epidemic!



(2”) Vaccination for threshold

model
* Threshold K(d) = qd

_ -> become active when
0.08 - fraction of active
| neighbors > ¢

0.10 A

0.06
C

* Contagion threshold as
0044 / "< .
[ a function of mean
~--_._ _ degree.
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Configuration Model

* Vertices = bins and half-edges = balls
Bollobas (80)
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Coupling

. TypeAifd;4 < d; — K;
Janson-Luczak (07)
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Deletion in continuous time

e Each white ball has an exponential life time.
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Percolated threshold model

* Bond percolation: immortal balls
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Death processes

e Rate 1 death process (Glivenko-Cantelli):

sup \N(n)(t)/n — e_t\ — 0
t>0

* Death process with immortal balls:

Usﬁ,r(t)
n

~J psﬁbST‘(l — 7T _I_ 7T€_t)



Death Processes for white balls

 For the white A and B balls:
A(t) + B(t)

n
 For the white A balls:

~Xxe Y1 -7+ me ).

& ~ Z fr(]_ — Ofs)pgﬁbsr(]- — T+ 7T€_t).

n s,r>s—¥k



Epidemic Spread

e Z largest solution in [0,1] of:

Az(l—m+7m2)— > r(l—as)pgbsr(l—m+mz) = 0.
s, r>s—¥

hl(z) — Z (1 — Oés)PsﬁbS'r(l — 7+ 7TZ)-
s,r>s—¥
e If 2= 0 then final outbreak: 1 — 1;(0)

e If Zz= 0, and not local minimum, outbreak:
1 —h1(2)



(3) Branching Process
Approximation

e Local structure of G = random tree
* Recursive Distributional Equation:

Y, =1-(1-o0y)1 (Z By Yy < K(di))

{—1



(3) Solving the RDE

z =P(Y = 0)

M (1l -7+ 7z) = h(z2)

h(z) = )  7(1— as)pgybsr(l — 7+ 72)

s, r>s—¥



Conclusion

The locally tree-like structure gives the
intuition for the solution...

... but not the proof!

Configuration model + results of Janson and
Luczak.

Generic epidemic model which allows to
retrieve basic results for random graphs...

.... and new ones: contagion threshold, phase
transitions.



