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Crossing the Chasm

• Diffusion of innovations theory of Everett 
Roger.

• There is a 

chasm between

the early adopters 

and the early majority.

(Moore 2002)



Explaining the chasm

• Standard epidemic models (SIR/S) do not 
capture the chasm…

• … at least on uniform random graphs.

chasm due to clustering?

• Different idea: add neighborhood effects.

Disposition towards adoption:



Game-theoretic diffusion model…

• Both receive payoff q.

• Both receive payoff 

1-q>q.

• Both receive nothing.

Morris (2000)



…on a network.
• Everybody start with 

ICQ.

• Total payoff = sum of 
the payoffs with each 
neighbor.

• A fraction of the 
population is forced 
to 

• If 2(1-q)>3q, i.e.

2>5q



Threshold Model

• State of agent i is represented by

• Switch from                 to             if:

• In previous case: 



(1) Model

(2) Results

(3) Proofs



(1) Random networks.

• Random graphs with given degree sequence  
introduced by Molloy and Reed (1995).

• In this talk:

– Random regular graphs.

– Erdös-Réyni graphs, G(n,p/n).

• We are interested in large population 
asymptotics. n= number of vertices tends to 
infinity.



(1) Percolated Threshold Model 

• Bond percolation 
with proba. 

• Symmetric 
threshold 
epidemic:

• Seed of active 
nodes



(1) Versatile model for epidemics

• Null threshold = contact process

• No bond percolation = bootstrap percolation

• Some easy general results:

– Monotonicity: only transition passive to active.

– In a finite graph, there is only one possible final 
state for the epidemic.

• I will concentrate on properties of the final 
state, for large random graphs.



(1) Model

(2) Results

(3) Proofs



(2) Sanity check!

• Take                      and we obtain a simple 
exploration of the connected components of 
the graph. 

E-R model with

p=0.5;

p=1;

p=1,5.

In accordance with 

Molloy and Reed!



(2) Cascade capacity

• Definition: maximum q for which a single 
individual can trigger a global cascade.

• Low q = high quality

In accordance 

with Watts (2002)

Poor quality:

No cascade

High quality: cascade



(2) Phase transition

• What happens when q is bigger than the 
cascade capacity?



(2) Back to the chasm

• α is the proportion of early adopters

• q quantifies the impact of marketing

There is a threshold 

phenomenon:

- for q>s, the early adopters 

do not contaminate the 

majority.

-for q<s, they do!

s quantifies the size of the 

chasm.



(2’) Vaccination



(2’) Vaccination and Attack

• Perfect vaccine: remove vaccinated 
population from the graph (site percolation).

• Acquaintance vaccination: Sample each node 
uniformly and inoculate a neighbor of this 
node taken at random.

• Degree based attack: randomly attack a node 
with a probability depending on its degree.



(2’) Cascade Condition

• Random graph with degree distribution: 

(configuration model: Molloy-Reed 95)

• Bond percolation:     and threshold:           .

• When can a single active node have a global 
impact? 

• Epidemic contagion threshold.



(2’) Vaccination for the contact 
process

• Epidemic threshold as a 
function of vaccinated 
population.

• If                     , uniform 
vaccination is useless.
Acquaintance
vaccination can stop 
epidemic!



(2’) Vaccination for threshold 
model

• Threshold

-> become active when 
fraction  of active 
neighbors 

• Contagion threshold as 
a function of mean 
degree.



(1) Model

(2) Results

(3) Proofs



Configuration Model

• Vertices = bins and half-edges = balls

Bollobás (80) 



Coupling

• Type A if 

Janson-Luczak (07)

A B



Deletion in continuous time

• Each white ball has an exponential life time.

A B



Percolated threshold model

• Bond percolation: immortal balls

A B

A



Death processes

• Rate 1 death process (Glivenko-Cantelli):

• Death process with immortal balls:



Death Processes for white balls 

• For the white A and B balls:

• For the white A balls:



• largest solution in [0,1] of:

• If            , then final outbreak: 

• If           , and not local minimum, outbreak: 

Epidemic Spread



(3) Branching Process 
Approximation

• Local structure of G = random tree

• Recursive Distributional Equation:



(3) Solving the RDE



Conclusion

• The locally tree-like structure gives the 
intuition for the solution…

• … but not the proof!

• Configuration model + results of Janson and 
Luczak.

• Generic epidemic model which allows to 
retrieve basic results for random graphs…

• …. and new ones: contagion threshold, phase 
transitions. 


