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Abstract— We propose here an analysis of a rich dataset
which gives an exhaustive and dynamic view of the ex-
changes processed in a running eDonkey system. We focus
on correlation in term of data exchanged by peers having
provided or queried at least one data in common. We in-
troduce a method to capture these correlations (namely the
data clustering), and study it in detail. We then use it to
propose a very simple and efficient way to group data into
clusters and show the impact of this underlying structure
on search in typical P2P systems. Finally, we use these re-
sults to evaluate the relevance and limitations of a model
proposed in a previous publication. We indicate some re-
alistic values for the parameters of this model, and discuss
some possible improvements.

I. PRELIMINARIES

P2P networks such as KaZaA [19], eDonkey [18],
Gnutella [12] and more recently BitTorrent [17] are nowa-
days the most bandwidth consuming applications on the
Internet, ahead of Web traffic [13], [8]. Their analysis and
optimisation therefore appears as a key issue for computer
science research. However, the fully distributed nature of
most of these protocols makes it difficult to obtain relevant
information on their actual behavior, and little is known
on it [9], [10], [2]. The fact that these behavior have some
crucial consequences on the performance of the underly-
ing protocol (both in terms of answer speed and in term
of used bandwidth) makes it a challenge of prime interest
to collect and analyze such data. The observed properties
may be used for the design of efficient protocols, taking
benefit of these properties.

Context

In the last few years both active and passive measure-
ments have been used to gather information on peer be-
haviors in running P2P networks. These studies gave ev-
idence for a variety of properties which appear as funda-
mental characteristics of such systems. Among them, let
us notice the high ratio of free-riders [1], [4], the heteroge-
neous distribution (often approximed by a power law) of
the number of queries by peer [8], [14], and recently the
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presence of semantic clustering in file sharing networks
[4], [15].

This last property captures the fact that the data ex-
changed by peers may overlap significantly: if two peers
are interested in a given data, then they probably are in
some other data in common. By connecting directly such
peers, it is possible to take benefit from this semantic clus-
tering to improve search algorithms and scalability of the
system.

In [4], the authors propose a protocol based on this idea,
which reaches very high performances. It however relies
on a static classification which can hardly be maintained
up to date.

Another approach using the same underlying idea is to
add a link in a P2P overlay between peers exchanging files
[15], [16]. This has the advantage of being very simple
and permits significant improvement of the search pro-
cess.

In [4], [7] the authors use traces of a running eDonkey
network, obtained by crawling caches of a large number of
peers. They study some statistical properties like replica-
tion patterns, various distributions, and clustering based
on file types and geography. They then use these data
to simulate protocols and to evaluate their performances
in real-world cases. The use of actual P2P traces where
previous works used models (whose relevance is hard to
evaluate) is an important step. However, the large num-
ber of free-riders, as well as other measurements prob-
lems, make it difficult to evaluate the relevance of the data.
Moreover, such measurements miss the dynamic aspects
of the exchanges and the fact that fragment of files are
made available by peersduring the download of the files.

Framework and contribution

Our work lies in this context and proposes a new step
in the direction opened by previous works. We collected
some traces using a modified eDonkey server [11], which
made it possible to grab accurate information onall the
exchanges processed by a large number of peers through
this server during a significant portion of time. The server
handled up to 50 000 users simultaneously and we col-
lected 24 hour traces. The size of a typical trace at various
times is given in Figure 1. See [2], [5], [6], for details

6h 12h 18h 24h
peers 26187 29667 43106 47245
data 187731 244721 323226 383163

links inQ 811042 1081915 1571859 1804330
links inD 12238038 20364268 31522713 38399705

Fig. 1. Time-evolution of the basic statistics forQ andD
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on the measurement procedure, on the protocol and on the
basic properties of our traces.
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Fig. 2. A query graph (left) and the associated (weighted) data graph
(right).

A natural way to encode the gathered data is to define
a bipartite graphQ = (P, D, E), calledquery graph, as
follows (see Figure 2, left):

• P is the set of peers in the network,D is the set of
data,

• E ⊆ P × D is a set of undirected edges, where
{p, d} ∈ E if and only if the peerp is active for
the datad, which means thatp was interested for the
datad or was a provider ofd.

Notice that this graph evolves during time, and we will
indeed consider it at various dates.

In order to analyze our data, we will also consider the
(weighted)data graph D = (D, E, w) obtained from the
query graphQ as follows (see Figure 2, right):

• D is the set of data,
• E ⊆ D × D is a set of undirected edges, where
{d1, d2} ∈ E if and only if there exists a peer ac-
tive for bothd1 andd2 in Q,

• w is a weight function over the nodes and the edges
such thatw(d) is the number of data having been ex-
changed by peers active ford in Q andw(d1, d2) is
the number of data exchanged by peers in bothd1

andd2 in Q.

The sizes of query graphs and data graphs obtained
from a typical trace at various times are given in Figure 1.
We use these graphs, which have properties representative
of what we observed of this kind of graphs, throughout
this paper.

In the following, we use these graphs and tools from
the recent field of complex network analysis to deepen the
study of the dynamic traces. We focus in particular on the
data clustering, which captures how much the exchanges
proceed by two sets of peers are similar. In other words,
it is a measure of how much peers active for at least one
common data will exchange the same other data. We then
show that these properties have significant impact on the
efficiency of searches in the network, and therefore may
be used in the design of efficient P2P protocols. Finally,

we will use this analysis to study the relevance of a previ-
ously proposed model.

II. DATA CLUSTERING ANALYSIS

Our aim now is to analyze similarities between data in
terms of exchanges proceed by peers active for them. In
particular, given two datau andv exchanged by a given
peerp we are interested in the number of other common
data exchanged by peers actives foru or v. This can be
measured using the following parameter over the edges in
D:

c(u, v) =
w(u, v)

w(u) + w(v) − w(u, v)

Indeed, the two datau andv induce an edge{u, v} in D,
the weightw(u, v) is nothing but the number of common
data exchanged by peers active inu or v, and the expres-
sion w(u) + w(v) − w(u, v) gives the total number of
data exchanged by peers active foru or v. Finally, c(u, v)
therefore measures how much these exchanges overlap.
Notice that its value is between0 and1.

The value ofc(u, v) may however be strongly biased if
one of the two nodes has a high weight and the other a low
one: the value would then be very low. For example, if a
data with an high popularity3 is connected to an unpopu-
lar one, then the clustering will probably be low, even if
the few data exchanged by the lowest population are com-
pletely included in the large set of data exchanged by the
highest one.

In order to capture these cases, we will also consider
the following statistical parameter:

c̄(u, v) =
w(u, v)

min(w(u), w(v))

which is still in [0; 1] but is always larger thanc(u, v) and
does not have this drawback. For instance, in the case
described above the obtained value is1.

We will call c(u, v) theclustering of {u, v} andc̄(u, v)
its min-clustering. In summary, the clustering captures
the overlap between data exchanged by two sets of peers
with no consideration of the heterogeneity between the
number of data exchanged, whereas min-clustering takes
into account and captures particularily well the fact that a
small set of exchanged data can actually be a subset of a
another much larger one.

Figure 3 and 4 show the time-evolution of the distri-
butions4 of c(u, v) and c̄(u, v), respectively. First notice

3The popularity of a data is the number of peers active for that data.
4The distribution of a parameterx is, for each possible value ofx, the

ratio between the number of instances of this value and the total num-
ber of instances. Here we will directly plot the number of instances of
each value, which makes it possible to visualize traces of various sizes
(i.e. at various dates) in a same plot.
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Fig. 3. Time evolution of thec(u, v) distribution
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Fig. 4. Time evolution of thēc(u, v) distribution

that the general shape of these distributions is very stable
along time, which indicates that the observations we will
derive are not biased by the timescale or date considered.

Now let us observe (Figure 3) that around60% of the
edges always have a clustering lower than0.2. This may
indicate that the overlap of exchanges is not as high as
expected. However, this may be a consequence of the fact
that both the peer activity and the data popularity are very
heterogeneous: there are very active peers while most of
them are not, and there are very popular data while most
are not. This induces inD many links between data of
very different popularity and a low clustering.

This can be corrected using the distribution of min-
clustering (Figure 4): only15% of the edges have a min-
clustering lower than0.2 while for nearly60% higher or
equal to0.5. This indicates that the overlap is indeed high;
for instance,30% of the overlaps between all exchanges
actually are a complete inclusion.

Such results may indicate the presence of a hierarchy
among exchanges: while few popular data form the core
of D, a large number of less popular ones have their ex-
changes mostly included into the ones of the core. If this
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Fig. 5. Time evolution of the hit % using the one hop protocol
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Fig. 6. Correlation between the % of peers, the associated % of
queries they generated, the % of replication of the queried data and the
% of hits they obtained after 24h using the one hop protocol

sructure indeed exists, it may be used to dynamicaly build
a multicast tree from a P2P overlay. We will discuss the
presence of such a hierarchy and its implications later in
this contribution.

III. C ONSEQUENCES ON SEARCHING

Following several previous works (e.g. [4], [15], [16],
[7]), one may wonder if the properties highlighted in pre-
vious section may be used to improve search in P2P sys-
tems. To answer this question, we will process the follow-
ing experiment. We suppose that each peer has a knowl-
edge of the peers active for the same data as itself. Then,
when a peerp sends a query for a datad, it first looks at
the other peers already active for a datap is active for. If
one of them providesd, then it sends it directly top. In
this case, the clustering has been used and the data was
found using only one hop search.

The time-evolution of this hit ratio is plotted in Fig-
ure 5. Despite it is quite low in the first few minutes (due
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to the server bootstrap), the ratio quickly converges to a
value close to50%.

To deepen our understanding of what happens, let us
consider Figure 6, in which we plotted the percentage of
all the peers, the percentage of all the queries, and the
replication of each data5 corresponding to the percentage
of hits using a one hop search.

The first thing to notice is that nearly25% of the peers
do not findany data using the proposed approach. This is
quite surprising, since we observed in Figure 5 that50%
of all the queries are routed with success using the same
approach. This can be understood by observing that this
’null hit’ population generated only7% of the queries and
so only slighly influenced the high hit rate previously ob-
served. Additionaly, the queried data appear to be very
rare at the time they were asked. This low volume of
queries together with the low replication explaino the null
hit rate; these peers are not active for enough data nor
enough replicated ones to find them using the one hop
search.

On the other hand, more than10% of the peers have a
perfect success rate. One could think that such a result
would imply a prohibitive amount of queries; Figure 6 in-
dicates that it is not the case: the percentage of queries
is close to the number of peers who proceed them. No-
tice however that data found this way appear to be highly
replicated (the population being active for these data at the
time they were asked represents15% of the peers active
for other queried data) which explains the high success
rate. Finally, notice that the average peer’s success rate
increases from40% to nearly60% if the ’null hit’ popula-
tion is removed from the calculus.

IV. M ODELING PEER AND DATA CLUSTERS

In [16] the authors propose a model to represent the se-
mantic structure of P2P file sharing networks and use it to
improve searching. They assume the existence of seman-
tic types labelled byn ∈ {1, . . . , N} with N denoting the
number of such types. They assume that each data and
each peer in the system has exactly one type. A data of
typen is called an-data, and a peer of typen is called a
n-peer. They denote respectively bydn andun the num-
ber ofn-data and the number ofn-peer (u for user).

They denote bypn(m) the probability that a query sent
by an-user is for am-data.

Clearly, a classification of peers and users captures
clustering if, for alln and m, eitherpn(m) is close to
0 (n-peers almost never seekm-data) or it is quite large

5Thereplication of a data is the percentage of all the peers active for
a given data.

(n-peers often seekm-data). If it is either0 or 1 then the
clustering is perfect:n-peers only seekm-data for that
value ofm such thatpn(m) = 1.

This formalism is usefull in helping to consider the hi-
erarchical organisation induced by clustering, for the pur-
pose of simulations for instance. We will see here that the
statistical properties observed in previous section may be
used to compute clusters of data, which make it possible
to validate the model describe above. Moreover, we will
give some information on parameters which may be used
with the model to make its use realistic.

Cluster computation

Notice that computation of relevant clusters in general
is a challenging task, computationnaly extensive and un-
tractable in practice on large graphs such as the one we
consider. We can however propose a simple procedure
based on the statistical properties ofD observed in previ-
ous section: for two given integers1 < ⊥ < > < |D|,

• sort edges by increasing values of their clustering
• for each edge taken in this order:

– if its removal does not induce a connected com-
ponent with less than⊥ vertices then remove it

– if the size of the largest connected component if
lower than> then terminate

We define the data clusters as the connected components
finally obtained. The integers⊥ and> are respectively
the minimal and the maximal sizes of these clusters.

The idea behind this cluster definition is that edges be-
tween data of different clusters should have a low clus-
tering, indicating that the clusters put together data with
similar sets of exchanges.

In our case, we observed that> = 1000 and⊥ = 10
give good results, and that changing their values does
not change significantly the results. We will illustrate
this in the following by using> = 1000 and ⊥ ∈
{10, 30, 60, 90}. Notice that these values ensure both that
the clusters will not be too small (they contain at least⊥
data) and not too large (their size is bounded by>).

Cluster properties

Figure 7 shows that the size distribution of clusters,i.e.
the distribution ofdn, is well fitted by a power law (for all
considered⊥). Notice however that the average clusters
sizes are highly influenced by⊥, for instance, for⊥ ∈
{10, 30, 60, 90}, the average clusters sizes are30, 60, 100
and150 respectively. There is indeed a natural correlation
between⊥ and the average size of clusters since, despite
some contain up to1 000 data, most clusters are small,
with size close to⊥ This indicates that, when using the
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model proposed in [16], one may suppose a power law
distribution fordn.

Let us now associate to each data cluster all the peers
active for a data in the cluster. The number of peers associ-
ated this way is thepopularity of the cluster. One may ex-
pect that these popularities will vary much, and that large
clusters will be very popular, possibly concerning almost
all the peers in the system.

Figure 8 shows this is not the case: very few clusters
have a low popularity, and none has a huge popularity,
the maximum being lower than4, 000 peers (to be com-
pared to the total number of peers in the system, around
50, 000).

These statistics show that the clusters we defined, de-
spite their simplicity, do capture non-trivial information
concerning the peers. This might indicate that data clus-
ters also define peer clusters, as assumed in [16].

In order to check this, we plot in Figure 9 the correla-
tions between the number of data peers are active for, and
the average number of clusters this population queried in.
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Fig. 9. Correlation between the number of data queried and the aver-
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This plot displays almost linear correlations until peers
reach a degree100 in D, but the correlation seems to be
inverted after this limit: the most active peers queried data
in very few clusters.

Several important observations can be done here. First,
most of the peers do not ask for data in a constant num-
ber of clusters but rather in a number of clusters which
depends on the number of queries they proceed. In other
words, peers do not ask for data in only one well identified
cluster, in contradiction with what is assumed in [16].

This could make us conclude that, either the model
should be improved to take this diversity into account, or
a more subtle definition of clusters is necessary. Indeed,
there are many ways in which data can be put into clus-
ters, and the very simple one we proposed capture some
features, but not all, of data/peers relations.

Notice that the previous plots do not capture the fact
that a peer generally asks for many data in the same cluster
(they only show that they ask for data in many clusters).
This is exactly whatpn(m), the ratio ofm-data asked for
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by n-peers, represents.
For each peer, we therefore have taken different values

of pn(m) and see how many clusters have to be quiered
by this peer to reach each of these values. We obtained
this way the distributions ofpn(m) plotted in Figure 10.

It appears that approximately60% of the peers can find
25% of the data they look for in onlyone cluster. This
percentage of peers goes over95% when we consider up
to 3 clusters. Using the same procedure, we can see that
asking only5 clusters permits to80% of the peers to find
50% of the data they look for. Likewise, considering still
5 clusters permits to more than50% of the peers to find
75% of the data they look for.

Finally, this analysis shows that our simple cluster def-
inition is enough to argue that the model proposed in [16]
is relevant concerning the data and may be used with
power law distributions of the size of clusters. It however
shows that, despite non-trivial correlations are captured,
either the cluster definition or the model fails in capturing
a strict equivalence between a peer and a cluster. It rather
indicates that most of the peers ask their data from asmall
set clusters, and not only one.

V. CONCLUSION

In this contribution, we proposed simple statistical pa-
rameters to capture the correlations between the set of
peers active for a given data. We used these parameters
first to confirm the previously noticed fact that semantic
clustering can be used to improve search algorithms. Sec-
ond, we used them to define a very simple and efficient
way to compute data clusters. We have shown that these
clusters succeed in capturing similarities between data.

We used these clusters to discuss the validity of a model
of data clustering proposed in [16]. We obtained informa-
tions on realistic parameters which should be used with
this model. We also shown that the clusters we define
can not be used directly with this simple model, which in-
dicates that either a more subtle cluster definition should
be considered, or that the model should be extended. We
pointed out some direction for this.

Notice that we focused here ondata, but the same kind
of approach may be fruitful with peers. A combination
of the clusters we defined on data and clusters defined in
a similar way on peers would probably bring significant
improvement. More subtle cluster computations would
also probably help, but we must keep in mind the huge
size of the trace, which forbids intricate methods.

Finally, let us insist on the fact that the analysis of large
real-world traces like the one we presented here is only at
its beginning, and that much remains to understand from

it. The lack of relevant statistical parameters (concerning
for example the dynamics of the trace), and of efficient
algorithms to deal with such traces are among the main
bottleneck to this, but studies like the one we presented
here show that simple methods can already bring much
information.
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