

Point of View Based Clustering of Socio-Semantic Networks Juan David CRUZ<sup>1</sup> Cécile BOTHOREL<sup>1</sup> François POULET<sup>2</sup> Séminaire ComplexNetworks - LIP6



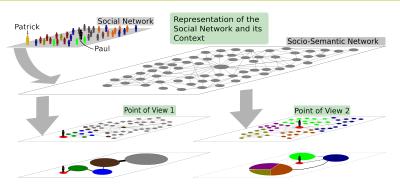
### Outline

- Introduction
  - Social Networks and Points of View
  - Some Previous Work
- The Point of View of Social Networks
- Influencing the Community Detection with the Point of View
  - Phase 1
  - Phase 2
- Preliminary Experiments and Results
- Conclusion



### Social Networks and Points of View

Introduction ▶ Social Networks and Points of View



It is possible to obtain different partitions from different points of view



# Social Networks and Points of View (Example)

Introduction ► Social Networks and Points of View

The following examples use information of a social network created from a Twitter data set.

- Point of view 1: The time zone distribution of the neighbors of each actor in the network.
  - For each actor in the network there is an unique time zone value wich represents the meridian in it is located. For the whole network there is a finite set Z of existent time zones.
  - Given an actor a, its neighbors can be assigned to one or more of the time zones contained in Z.
  - Let  $a_Z$  be the assignation vector of a over the time zone set. Thus,  $a_{Z_i}=1$  iff a has a neighbor in the time zone i, 0 otherwise
  - Example:  $Z = \{-8, -5, 0, +1, +3\}, a_Z = [0, 1, 0, 1, 1].$



# Social Networks and Points of View (Example)

Introduction ► Social Networks and Points of View

The following examples use information of a social network created from a Twitter data set.

- Point of view 2: The messaging profile of each actor in the network.
  - Each actor in the network sends messages over the network to inform or comment something.
  - Each actor has a number of followers and a number of persons being followed by him (friends).
  - $Z_0 = 1$  if the actor has more friends than followers.
  - $Z_1=1$  if the number of messages (n) sent by actor is less than the total average.  $Z_2=1$  if  $\mu \leq n < 3\sigma$ .  $Z_3=1$  if  $n \geq 3\sigma$ .



- Socio-semantic networks contains both:
  - The social graph (structural information)
  - Semantic information represented by the features of the vertices and the edges.
- By the combination of both it is possible to make analyses from different perspectives.
- Given this information, how to identify communities derived from the conjoint use of it?
- It is necessary to measure the quality of the partitions found using this information in two levels:
  - The quality of the graph clustering
  - The quality of the semantic information within the communities



| Type       | Objective                                                                                                                                                                                     | Examples                                                      |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Similarity | Reduce the distance between the members of the same group while the distance between groups is increased.                                                                                     | Manhattan $L_1$ <b>Euclidean</b> $L_2$ Chebyshev $L_{\infty}$ |
| Quality    | Increase the number of edges within each community while the number of edges between communities is reduced. In general: $index(\mathbf{C}) = \frac{f(\mathbf{C}) + g(\mathbf{C})}{N(G)}$ [1] | Coverage<br>Conductance<br>Performance<br><b>Modularity</b>   |

## **Graph Clustering Algorithms**

Introduction ► Some Previous Work

Several graph clustering algorithms have been developed, among others:

- Newman [2] (Modularity optimization)
- Fast unfolding [3] (Modularity optimization)
- Maximal cliques enumeration and kernel generation [4] (Modularity optimization)
- Genetic algorithm for detecting communities in large graphs
   [5] (Fitness function based on modularity)
- Genetic algorithm for detecting overlapped communities [6]
   (Fitness function based on internal edges vs. outgoing edges)



### **General Notation**

The Point of View of Social Networks

- Given an undirected graph G(V, E) with a set V of vertices and E of edges:
  - Let  $\mathscr{C} = \{C_1, C_2, \dots, C_k\}$  be a partition which is a division of the set V into non–empty, disjoint subsets  $C_i$ .
  - LetF<sub>V</sub> be the set of features of the actors of the social network.
  - Let  $\mathbf{F}_E$  be the set of features associated to each edge.
- Let  $F_V \in \mathscr{P}(F_V) \setminus F_V$ , where  $\mathscr{P}(A)$  is the powerset of the set A.
- Each vertex  $v_i \in V$  there is assigned a binary vector (instance)  $\xi_i$  of size  $||F_V|| = f$  and defined by:

$$\xi_i = v_i \times F_V$$



### The Representation of a Point of View

The Point of View of Social Networks

The point of view is the set of all the instances derived from a given F<sub>V</sub>:

$$PoV_{F_V} = \bigcup_{i=1}^{\|V\|} \xi_i$$

|        | Point of View |           |  |           |
|--------|---------------|-----------|--|-----------|
| Nodes  | Feature 1     | Feature 2 |  | Feature f |
| Node 1 | 1             | 0         |  | 0         |
| Node 2 | 0             | 1         |  | 1         |
| :      | :             | :         |  | :         |
| Node n | 1             | 0         |  | 1         |

The assignation of features to each node in the network



#### The Point of View of Social Networks

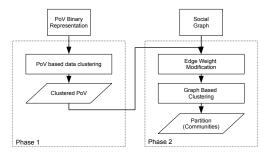
- We will use a simple example to show the different steps of the algorithm.
- For this example we use:
  - An undirected graph G with 29 nodes and 90 edges.
  - A point of view composed of view of three features:

|   |    | Feature 1 | Feature 2 | Feature 3 |
|---|----|-----------|-----------|-----------|
|   | 1  | 0         | 0         | 0         |
| • | 2  | 0         | 0         | 1         |
|   | :  | :         | :         | ÷         |
|   | 29 | 1         | 1         | 0         |

### General Architecture

Influencing the Community Detection with the Point of View

 Guide the community detection algorithm according to semantic information.

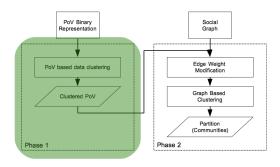


Use of clustering techniques from different domains.



### Semantic Clustering

Influencing the Community Detection with the Point of View ▶ Phase 1



## Semantic Clustering

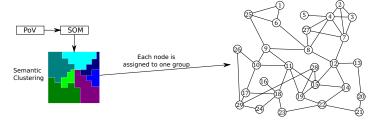
Influencing the Community Detection with the Point of View ▶ Phase 1

- Clustering of the defined point of view: search nodes with similar instances of features.
- Use of Self-Organizing Maps (SOM): non-supervised machine learning method [7].
- The proximity between the input vector (instance) and the weight vector of the network is measured with the Euclidean distance.
- The SOM algorithm will find some number of groups.



## **Example**

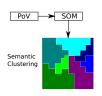
Influencing the Community Detection with the Point of View ▶ Phase 1

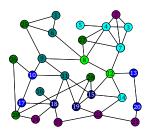


■ The SOM will group the nodes according to their instances, i.e., according to their semantic similarity.

# Example

Influencing the Community Detection with the Point of View ▶ Phase 1

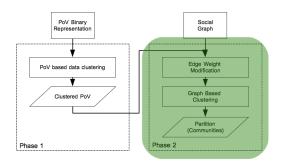




- The SOM will group the nodes according to their instances, i.e., according to their semantic similarity.
- Note that there are nodes which are semantically close but not are not even neighbors.

### Weights Assignation and Community Detection

Influencing the Community Detection with the Point of View ▶ Phase 2



# Weights Assignation and Community Detection

Influencing the Community Detection with the Point of View ▶ Phase 2

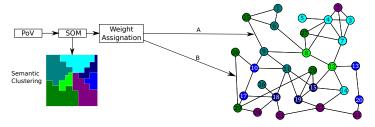
- Given the trained SOM network  $\mathcal{N}$  and a graph G(V, E):
- For each  $e(i,j) \in E$ , the weight will be changed according to:

$$w_{ij} = 1 + \alpha \left(1 - d\left(\mathscr{N}_{ij}\right)\right) \delta_{ij}$$

where  $\alpha \geq 1$  is constant parameter,  $d(\mathcal{N}_{ij})$ , is the distance between the node i and the node j in the SOM network and  $\delta_{ij} = 1$  if i,j belong to the same group in the SOM network.

• After the weights are set, a classic graph clustering algorithm (the fast unfolding algorithm [3]) is used.

Influencing the Community Detection with the Point of View ▶ Phase 2

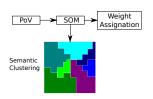


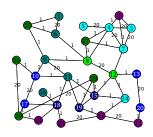
Using equation 2 with  $\alpha = 19$ :

- Case A e (9,25):
  - Node 9 belongs to a different group than 25.
  - $w_{9,25} = 1$
- Case B e(26,29):
  - Node 26 belongs to the same group than 29.
  - $w_{26,29} = 20$ : The distance between the node 26 and the node 29 in the SOM network is 0.



Influencing the Community Detection with the Point of View ▶ Phase 2





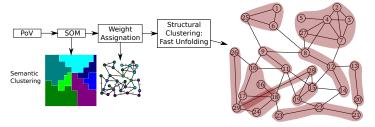
### Using equation 2 with $\alpha = 19$ :

- Case A e(9,25):
  - Node 9 belongs to a different group than 25.
  - $w_{9,25} = 1$
- Case B e(26,29):
  - Node 26 belongs to the same group than 29.
  - $w_{26,29} = 20$ : The distance between the node 26 and the node 29 in the SOM network is 0.



# Example

Influencing the Community Detection with the Point of View ▶ Phase 2



- After the weights are changed, the fast unfolding algorithm is used to find the communities.
- This algorithm is influenced by the assignation of weights according to the semantic clustering.
- This way structural and semantic information are used to find communities.
- The final communities are those surrounded in red.





### **Experiments Configuration I**

- In each experiment three algorithm were compared:
  - SOM
  - Fast unfolding
  - Our method
- Performed in two levels:
  - The final modularity: to measure the quality of the partition.
  - The average intra-cluster Euclidean distance: to measure the quality of the semantic clustering.
- The experiment were executed using a graph of 5389 nodes and 27347 edges extracted from a Twitter data set. The initial modularity of this graph is  $-2.5192 \times 10^{-3}$





### **Experiments Configuration II**

- The experiments were performed using two different points of view.
- Point of View 1:
  - Composed of 33 features. Each feature represents a time zone from the Twitter data set.
  - A feature will be set to 1 if the node has at least one friend in the time zone represented by the feature.
  - Distances vary from 0 to  $\sqrt{32}$





### **Experiments Configuration III**

- Point of View 2:
  - Composed of 4 features representing the messaging profile of each user.
  - The first feature is set to 1 if the user has more friends than followers.
  - The next three features indicate the user behavior according to the number of messages sent: below the mean, between the mean plus three standard deviations and, over mean plus three standard deviations.
  - Distances vary from 0 to  $\sqrt{3}$



### Case Twitter – Point of View 1

| Experiment             | Final Q               | Avg. Intracluster Distance |
|------------------------|-----------------------|----------------------------|
| SOM Graph              | $-7.5 \times 10^{-3}$ | 0.3697                     |
| Graph based clustering | 0.5728                | 1.8091                     |
| PoV based Clustering   | 0.5747                | 1.1947                     |

- The average intracluster distance found by our proposed method is less than the average intracluster distance found by the graph based algorithm.
- The modularity obtained is very similar: the point of view uses information associated with the localization of people's friends.
- The modularity of the graph from the SOM clustering is not very different from the modularity of the original graph.
- SOM groups are close to the structure of the non-clustered graph.



### Case Twitter - Point of View 2

| Experiment             | Final Q | Avg. Intracluster Distance |
|------------------------|---------|----------------------------|
| SOM Graph              | -0.2991 | 0                          |
| Graph based clustering | 0.5728  | 0.7100                     |
| PoV based Clustering   | 0.6351  | 0.5507                     |

- The SOM clustered the nodes into six groups, each one expressing one of the possible instances described above. This explains the average distance found.
- Creating a graph from the SOM clustering will produce better semantic clusters, however, the modularity is worst than the one from the original graph.
- The SOM groups are totally unrelated with the structure of the graph.
- Regarding the modularity and the average intracluster distance, the performance of the PoV based algorithm was better.



### Conclusions and Future Work I

#### Conclusion

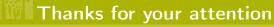
- The classic community detection algorithms do not take into account the semantic information to influence the clustering process.
- Changing the weights according to the results of the semantic clustering, the semantic information is included into the community detection process.
- The two types of informations are merged to find and visualize a social network from a selected point of view.

### Conclusions and Future Work II

#### Conclusion

### Future work

- Make tests over the obtained partitions: rand index, robustness tests...
- Study the case of overlapping communities.
- Include the features of the edges into the point of view generation.
- Development of a visualization algorithm for representing the PoV and the transition between two points of view.



Appendix

Questions?

Contact: juan.cruzgomez@telecom-bretagne.eu



### For Further Reading I

Appendix ▶ For Further Reading

- M. Gaetler, Network Analysis: Methodological Foundations, ch. Clustering, pp. 178 – 215.
   Springer Berlin / Heidelberg, 2005.
- M. E. Newman, "Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality.," *Physical Review. E,* Statistical Nonliner and Soft Matter Physics, vol. 64, p. 7, July 2001.
- V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, "Fast unfolding of communities in large networks," *Journal of Statistical Mechanics: Theory and Experiment*, vol. 2008, no. 10, p. P10008 (12pp), 2008.



### For Further Reading II

Appendix ▶ For Further Reading

- N. Du, B. Wu, X. Pei, B. Wang, and L. Xu, "Community detection in large-scale social networks," in WebKDD/SNA-KDD '07: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, (New York, NY, USA), pp. 16–25, ACM, 2007.
- 🦠 M. Lipczak and E. Milios, "Agglomerative genetic algorithm for clustering in social networks," in GECCO '09: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, (New York, NY, USA), pp. 1243–1250, ACM, 2009.

### For Further Reading III

Appendix ▶ For Further Reading

- C. Pizzuti, "Overlapped community detection in complex networks," in GECCO '09: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, (New York, NY, USA), pp. 859–866, ACM, 2009.
- T. Kohonen, Self-Organizing Maps. Springer, 1997.