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Abstract

Maps of the internet topology are generally obtained by measuring the routes
from a given set of sources to a given set of destinations (with tools such as
traceroute). It has been shown that this approach misses some links and
nodes. Worse, in some cases it can induce a bias in the obtained data, i.e.
the properties of the obtained maps are significantly different from those of
the real topology. In order to reduce this bias, the general approach consists
in increasing the number of sources. Some works have studied the relevance
of this approach. Most of them have used theoretical results, or simulations
on network models. Some papers have used real data obtained from actual
measurement procedures to evaluate the importance of the number of sources
and destinations, but no work to our knowledge has studied extensively the
importance of the choice of sources or destinations. Here, we use real data from
internet topology measurements to study this question: by comparing partial
measurements to our complete data, we can evaluate the impact of adding
sources or destinations on the observed properties.

We show that the number of sources and destinations used plays a role in
the observed properties, but that their choice, and not only their number, also
has a strong influence on the observations. We then study common statistics
used to describe the internet topology, and show that they behave differently:
some can be trusted once the number of sources and destinations are not too
small, while others are difficult to evaluate.

1. Introduction

The mapping of the internet topology has received a lot of interest from the
research community recently. Obtaining accurate maps of this topology is in-
deed of key importance for several applications, including protocol simulations.
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No exact map is available due to the internet’s distributed construction and
administration, and obtaining one through measurements is a challenging task.

Efforts have been made to discover the topology at the router or ip level
by using tools such as traceroute: one collects routes from a given set of
sources to a given set of destinations, and merges them to obtain a view of the
topology. Such views give much information on the global shape of the internet.
It has been shown that the internet topology has some statistical properties
which make it very different from most models used previously. This induced
an intense activity in the acquisition of such maps, see for instance [25, 3, 24, 12]
and in their analysis, see for instance [11, 4, 12, 20, 26].

It must be clear that the image obtained in such a way is partial (some
nodes and links are not seen) and may be biased by the exploration process.
Several experimental and formal studies have been conducted to evaluate the
accuracy of the obtained maps of the internet, as well as the benefit of using
more than one source (both concerning the quantity of data gathered and the
bias reduction) [1, 2, 5, 7, 9, 10, 13, 14, 15, 16, 17, 21, 23, 26]. All these studies
give good arguments of the fact that maps of the internet collected from a single
source are very incomplete, and that there probably is a bias induced by the
exploration process. This bias is greatly reduced when using more sources for
the measurement.

Using real data [18, 22] coming from recent measurements, we study in depth
the differences between the ip-level maps that can be obtained from different
sources and destinations. Following a methodology introduced in [14, 15], we
study the impact of the number of sources and destinations on a number of
classical graph properties, which allows us to determine to which extent these
properties are biased by the exploration process. We thus confirm results previ-
ously established on models. We also study the impact of the choice of sources
and destinations on the quality of the obtained view.

We first present the data set we use and our methodology in Section 2. We
then present in Section 3 how the choice of sources and destinations, and not
only their number, can influence the obtained view and its statistical properties.
Section 4 presents our detailed analysis of the impact of the number and choice
of sources and destinations on the obtained view of the ip-level topology, by
studying classical graph properties. We discuss related work in Section 5, and
present our conclusions in Section 6.

2. Data set and methodology

The data we use was collected in [18] and is publicly available [22]. Mea-
surements were conducted from more than 150 monitors. To each monitor was
associated a destination set that stayed the same for the whole duration of the
measurements. The measurements then consisted in periodically running the
tracetree tool, which collects the routes from a given monitor to a set of des-
tinations in a traceroute-like manner, but much more quickly, and imposing
a far smaller load on the network. The measurements were conducted with a
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high frequency (typically leading to about one hundred measurement rounds per
day), for a long period of time (from weeks to several months, depending on the
monitor). For a more comprehensive description of the measurement procedure
and the obtained data, see [18].

In this original data set, all sources do not use the same destination set. To
study the impact of adding sources and destinations, we need to have a set of
sources running measurements towards the same destinations. In this paper, we
therefore use a data set consisting of a set S of 11 sources, which are associated
to the same set D of 3 000 destinations.

For each source j and destination k, we call gj,k the graph composed of the
union of paths from source j to destination k 1 (the union keeps only one copy of
each link; all graphs we consider have no loops or multiple edges; moreover, all
links are undirected and unweighted). The nodes are the ip addresses observed
on the paths from source j to destination k, and the links represent the hops
at the ip level from node to node. The part of the ip-level topology observed
from source j is then the union of what was seen from this source towards all
destinations:

gj =
⋃

k

gj,k.

Notice that, in each measurement round, if a machine did not reply to a
probe, it is represented as a star (*). In a given measurement round, all stars
are different. A problem arises when we perform the union of several mea-
surement rounds: we cannot know if stars appearing at the same location at
different rounds correspond to a same machine or not. The solution we have
chosen consists of not taking into account the stars or the links associated to
them in the original data set. This causes the paths from the source to some
destinations to be disconnected, and therefore the graphs gj,k may not be con-
nected. However, this is not a problem for our purpose, because the graphs gj
are almost connected: in all cases, the largest connected component contains at
least 92% of nodes.

All sources are not equivalent, and the sizes of the graphs gj vary. The
smallest has 16 469 nodes, and the largest has 26 447 nodes. More details about
this can be found in Section 3.

From this we define the graph G to be the topology observed with all sources:
G =

⋃
j gj . It has n = 42 141 nodes and m = 165 438 links. Note that the nodes

of G are ip addresses and not routers, as we do not perform alias resolution.

Our approach consists generally in studying views of G obtained by exploring
it using only subsets of the sources and destinations. The important point in
this study is that our data provides us with the actual paths from sources to
destinations. We therefore do not rely on modeling to obtain the partial views.

1i.e. the union of the nodes and links appearing on paths from j to k in all measurement
rounds. Because of load balancing and other phenomena, this path is generally not constant
throughout the whole measurement period.
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If we denote by S′ a subset of sources and by D′ a subset of destinations,
GS′D′ is the view of G obtained with theses sources and destinations, defined
by:

GS′D′ =
⋃

j∈S′

k∈D′

gj,k.

In the rest of the paper, we will therefore evaluate the impact of the choice
of sources and destinations by comparing different views GS′D′ , for different
subsets S′ and D′ of the sources and destinations, with different sizes.

3. Impact of the choice of sources and destinations

In this section we evaluate the impact of both the choice and the number of
sources and destinations on the obtained view. We focus first on the number of
nodes and links of the obtained view, then on more elaborate properties.

3.1. Number of nodes and links

We focus here on the observed number of nodes and links. We will see that
the choice of sources and destinations has a strong impact on the observations.

Studying a large number of views obtained with randomly chosen sets of
sources and destinations is computationally expensive. To solve this problem
we use the following method. When studying the impact of the choice and
number of sources (resp. destinations), we will always build a view obtained by
k sources and all destinations (resp. k destinations and all sources) by adding
one source (resp. destination) to a view obtained with k − 1 sources and all
destinations (resp. k − 1 destinations and all sources). Starting with a single
source (resp. destination) and adding sources (resp. destinations) one by one
allows us to study the impact of the number of sources (resp. destinations).
Changing the order in which we consider sources (resp. destinations) allows us
to study the impact of the choice of sources (resp. destinations).

A good way of evaluating the impact of the choice of sources is to investigate,
given a number k of sources, what are the largest and smallest sizes (in terms
of the number of nodes) of the graphs it is possible to obtain by considering k
sources. We denote by Ms(k) the maximum size of a graph we can obtain with
k sources:

Ms(k) = max
S′⊆S,|S′|=k

|GS′D|,

and by ms(k) the minimum size of such a graph:

ms(k) = min
S′⊆S,|S′|=k

|GS′D|.

We define dually Md(k) and md(k), which are the maximum and minimum
sizes of graphs that can be obtained with k destinations.

Obtaining the maximum or minimum function is too computationally ex-
pensive. We therefore propose a greedy heuristic for approximating it: at each
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Figure 1: Left: Impact of the choice of destinations on the observed number of nodes. Right:
Impact of the choice of sources on the number of nodes of the obtained view.

step we consider the graph obtained in the previous step, and choose the source
(resp. destination) that adds the most nodes to this graph. We denote the size
of the graph obtained at the k-th step by M ′

s(k) (resp. M ′
d(k)). Conversely,

we approximate the minimum by starting with the source (resp. destination)
that discovers the fewest nodes, and choose at each time step the source (resp.
destination) that adds the least nodes to the current graph. We denote the size
of the graph obtained at the k-th step by m′

s(k) (resp. m
′
d(k)).

We have no guarantee of how closeM ′
s(k) andm′

s(k) are toMs(k) andms(k),
but we know that they are lower and upper bounds for them, respectively.

In order to get an intuition about what we obtain when we select sources or
destinations at random, we also computed the number of nodes and links seen
with 1 000 random orders. For these orders, we computed for each number k of
sources (resp. destinations) the maximum, the minimum and the average value
observed with the first k sources (resp. destinations).

The behaviors observed for the number of discovered nodes and links were
very similar, therefore we only present the figures concerning the number of
nodes.

Figure 1 (left) presents the impact of the chosen destinations on the observed
number of nodes. We observe several things. First, there is a high difference
between the approximated maximum and minimum sizes M ′

d(k) and m′
d(k).

For 500 destinations for instance, the observed number of nodes varies from
approximately 7 500 to more than 25 000. This shows that, for a same number
of destinations, the choice of these destinations may have a dramatic influence
on the observed topology.

This difference is not so clear however when we consider random orders: the
plots for the average, the minimum and the maximum among 1 000 orders are
both close to each other and far from the estimated maximum and minimum
orders. This seems to indicate that, concerning the number of nodes, there are
some atypical orders yielding very different results from the average, but that
most orders are close to the average and that it is therefore representative.

Figure 1 (right) shows the impact of the chosen sources on the observed
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number of nodes. As for the destinations, the difference between the minimum
and the maximum is important: when considering 4 sources, the number of
observed nodes varies from 64% to 91% of the whole graph.

However, we can see that the maximum value observed for 1 000 random
orders is equal to M ′

d(k); in the same way, the minimum value observed is
equal to m′

d(k). The fact that we consider a small number of sources plays an
important role in this. Though the number of orders we consider is very small
compared to the total number of possible orders on 11 sources (1 000 compared
to 11! ∼ 40 · 106), the probability of observing the actual maximum for small
numbers of sources is very high. For k = 3 sources for instance, the probability
of not observing Ms(3) is equal to 0.2% approximately 2.

Our observations are in accordance with previous work [5] about the impact
of the number of sources and destinations on the observed number of nodes
and links. However, the authors had considered the greedy maximum order for
sources, and a random order for destinations. Their conclusions were that there
is a diminishing returns effect concerning sources: adding sources provides less
and less additional information. Adding destinations, on the other hand, gives
an approximately constant benefit.

The authors of [26] have mitigated the diminishing returns effect. They argue
that, even though adding sources brings less additional information on average,
the benefit of adding many sources is far from negligible. They considered a
large number of sources, and sorted them by decreasing order of the number
of links they discover. Notice however that this order is naturally close to the
greedy maximum order.

By comparing the greedy maximum and minimum orders as well as ran-
dom orders, both for sources and destinations, we conclude that the effect of
adding sources and destinations is similar. We observe a strong diminishing
returns effect for the greedy maximum orders: in this case, the last sources or
destinations bring very little new information. This effect does not appear for
the greedy minimum orders, for which the plots are approximately linear. The
question of whether we would observe a diminishing returns effect for the greedy
minimum order if more sources or destinations were used remains open, but we
conjecture that the linear shape of the plot is caused by an intrinsic hetero-
geneity in the number of nodes each source or destination discovers. Finally,
the average orders represent what one may expect to observe in practice. The
diminishing returns effect is present, but much less striking than for the greedy
maximum orders. In particular, while the first sources or destinations discover
more nodes that the others, adding more sources or destinations still brings an
approximately linear benefit. Extreme behaviors, leading to the observation of
much more (or much less) nodes than expected, happen much more often for
sources than destinations. This is linked in part to the fact that we use less

2The probability for a given order to not select the three sources that give Ms(3) is p =
1 − 3!/(11 ∗ 10 ∗ 9), and p1000 ∼ 0.2%. The same probability applies when considering 8
sources.
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Average degree # sources # dest. Global Clust. # sources # dest.

7.852343 11 2993 0.160401 1 244
7.856401 11 2976 0.256501 1 5
7.855130 11 2975 0.125881 3 358
7.853955 11 2914 0.496428 1 353
7.852128 11 2997 0.152805 5 28
7.854578 11 2976 0.250000 1 1
7.854771 11 2984 0.154679 2 244
7.891898 11 2934 0.131765 4 396
7.853233 11 2973 0.185765 2 3
7.853207 11 1996 0.136787 3 503

Original graph G
7.851641 11 3 000 0.101155 11 3 000

Table 1: Maximum values of the average degree and the global clustering reached with 10
different orders on sources and destinations. For each order, we report the maximal values
observed over all graphs GS′D′ obtained with the first |S′| sources and |D′| destinations in
the order.

sources than destinations.
Finally, we conclude that the number of sources and destinations as well as

their choice plays an important role on the size of the observed topology.

3.2. Other properties

We now study the impact of the choice of sources and destinations on other
properties. Given an order on sources and one on destinations, we build all
graphs GS′D′ obtained with the first |S′| sources and |D′| destinations in the
orders. We then compare the observations for different orders.

Table 1 shows the maximum values observed for the average degree 3 and the
global clustering 4 for 10 different random orders on sources and destinations.
We observe that the maximum is different for all orders. In the case of the global
clustering, the difference can be quite high: the observed values vary from 0.13
to 0.5. Moreover, the number of sources and destinations for which it is reached
varies also. This means that, for a given number of sources and destinations,
their actual choice can have a strong impact on the observed properties. Though
the maximal value is not representative of all that can be observed for a given
order, this already brings to light strong differences in the observations for
different orders.

Notice that the average degree presents much less variation: the maximal
values observed are all close to each other, and are obtained for similar numbers

3d◦ = 2m/n, see Section 4.1.
4gc is equal to three times the number of triangles, divided by the number of connected

triples, see Section 4.2.

7



of sources and destinations. This shows that not all properties are affected in the
same way by the choice of sources and destinations, and that some properties
can probably be trusted more than others.

4. Grayscale plots

We now turn to a more detailed study of the impact of the choice of sources
and destinations on the observed properties. To study this impact on a given
property 5 p, we use grayscale plots as introduced in [14, 15]. We consider a
rectangle of width |D| and height |S|. Given an order on sources and one on
destinations, each point (d, s) of the rectangle corresponds to the graph GS′D′

such that S′ contains the first s sources in the order, and D′ contains the first
d destinations. The point is drawn using a grayscale representing the value of
p: from black for p = 0 to white for the maximal observed value of p (which
might be greater than the value obtained for the whole graph G). The points
darker than the upper-right point correspond to conditions where the value p is
underestimated, whereas lighter points correspond to conditions in which it is
over-estimated. The gray variation is linear: if a dot is twice as dark as another
dot, then the associated value is twice as large.

Finally, to improve readability, we represent level lines. The l-level line is
defined as the set of points where the value of p over its maximal value is between
l − 0.01 and l + 0.01. The 0.1-level line is represented in white, the 0.5-level
line alternates black and white segments, and the 0.9-level line is represented in
black 6.

The fact that the graph corresponding to the point (d−1, s−1) is included in
the one corresponding to (d, s) quickens considerably the computations needed
to produce such plots.

Since, as already discussed, the choice of sources and destinations has an
influence on the observed properties, different orders will produce different
grayscale plots. Generating plots for different orders, as well as the average
plot obtained with several orders, will therefore help us in evaluating this im-
pact.

We now turn to the study of important graph statistical properties. For each
property, we will recall its definition, then study grayscale plots corresponding to
different orders to evaluate the impact of the number of sources and destinations
(and the impact of their choice) on the observations.

4.1. Average degree and density

The degree d◦(v) of a node v is its number of links, or equivalently, its
number of neighbors. The average degree d◦ of a graph is the average of the

5All properties we consider in this paper are real-valued and non-negative.
6Notice that on some plots these lines do not appear, because the variation of the value of

the observed property is not large enough.
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Figure 2: Density (left) and average degree (right) as a function of the number of destinations
considered (the order on destinations is a random order). Each plot corresponds to a different
number of sources considered. The keys for both plots are the same.

degree over all nodes:

d◦ =
1

n

∑

v

d◦(v) =
2m

n
.

The density is the number of links in the graph divided by the total number of
possible links:

δ =
2m

n(n− 1)
.

The density indicates up to which extent the graph is fully connected (all links
exist). Equivalently, it gives the probability that two randomly chosen nodes
are linked in the graph. There is a trivial relation between the average degree
and the density: δ = d◦

(n−1) .

This relation implies that, when the average degree is constant with respect
to the graph size, the density tends to 0 when n grows.

Figure 2 (left) presents the density as a function of the number of desti-
nations considered, for different number of sources. The order chosen for the
destinations is a random order. For small numbers of destinations, the number
of sources plays an important role: for 100 destinations for instance, the den-
sity varies by a factor of approximately 5, depending on the number of sources.
When the number of destination grows, however, the difference quickly becomes
very small. We observed the same behavior for a significant number of different
orders on the sources (figures not presented here), which indicates that these
observations do not depend on the order in which the sources are considered.

Figure 2 (right) presents the average degree as a function of the number of
destinations considered, for different numbers of sources. After a rather strong
initial variation, these plots seem to reach a plateau. Notice that they are not
quite constant however: the plots corresponding to a small number of sources
seem to decrease slightly as the number of destinations increases, while the plots
corresponding to a large number of sources seem to increase slightly.

A similar change is observed for the corresponding densities: for a small
number of destinations, considering all sources lead to a smaller density than
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Figure 3: Average degree. Three random orders.

Figure 4: Left: number of nodes. Middle: number of links. Right: average degree. Average
grayscale plots for 10 different random orders.

considering a smaller number of sources. Then this trend is inverted as the num-
ber of destination grows, and when all destinations are considered, considering
more sources leads to a denser graph.

This is probably due to the fact that the observed topology from one source
to several destinations is tree-like. When one adds destinations, this adds
branches to this tree-like structure, therefore the average degree does not change
much, but the density decreases 7. When the number of destinations is low,
sources and destinations play similar roles, and adding sources or destinations
leads to a decrease of the density. When the number of destinations is high, how-
ever, adding sources leads to a densification of the tree-like structure (whereas
adding destinations still leads to a decrease in the density).

Figure 3 shows three grayscale plots for the average degree, corresponding
to three different (random) orders on sources and destinations. As we can see,
they are not identical: the gray is more uniform for the middle plot than for the
other two (the 0.5-level line does not appear), which means that the estimation
is more accurate: the difference between the maximum and minimum observed
average degree is low. The number of sources and destinations needed to achieve
a certain precision of the estimation also varies: the left and middle plots reach
the 0.9 level line with less sources and destinations than the right plot.

Figure 4 shows the average grayscale plots on 10 different random orders
for the number of nodes (left), the number of links (middle) and the average

7In a tree, the average degree tends to 2 as the number of nodes grows, whereas the density
tends to 0.

10



degree (right). We first observe that the plot for the average degree is similar
to the plots for single orders (Figure 3), which are themselves similar to each
other (though not identical). This means that in this case, the obtained value
does not strongly depend on the choice of sources and destinations: for a given
number of sources and destinations, the obtained values are more or less the
same for the three plots of Figure 3. In this case, the grayscale plot for the
average value over 10 random orders is therefore meaningful, and representative
of what one may expect to observe in practice.

The number of nodes, links, and the average degree all increase as the number
of sources and destinations grows. This is obvious for the number of nodes and
the number of links: more sources and destinations lead to the observation of
more nodes and links. The case of the average degree is different, as increasing
the number of sources and destinations may increase the number of links less
than the number of nodes, causing a decrease in the average degree. Figure 2
(right) shows indeed that, for a small number of sources, the average degree
decreases when the number of destinations increases. However, once at least 3
sources are considered, the average degree increases both with the number of
sources and destinations.

We can see that the average degree is better estimated than the number
of nodes or links. The fact that the average degree is obtained by dividing
two other properties (number of nodes and links) which are improved by the
use of more sources and destinations has important consequences. If the two
properties have the same kind of bias, the quotient may not suffer from this
bias: the estimation of the average degree is good whenever the ratio between
the number of links and the number of nodes is accurate, even if these numbers
themselves are poorly estimated. This is in accordance with the observations
made on models in [14, 15].

4.2. Global and local clustering

The clustering of a graph can be defined in two ways. The first definition is
the global clustering, also named transitivity ratio. This is the probability that
two nodes are linked, given that they are both connected to a same third node:

gc =
3N▽

N∨
,

where N▽ denotes the number of triangles (a triangle consists of three nodes
connected by 3 links) and N∨ denotes the number of connected triples (i.e. three
nodes connected by at least two links) in the graph.

The second definition is the local clustering. The local clustering of a node
v (of degree at least 2) is the probability for any two neighbors of v to be linked
together:

lc(v) =
2.|EN(v)|

d(v).(d(v)− 1)
,

where EN(v) is the set of links between neighbors of v. Notice that it is the
density of the neighborhood of v, and in this sense it captures the local density.
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Figure 5: From left to right: number of triangles, number of connected triples, global clus-
tering and local clustering. Each row corresponds to a single random order on sources and
destinations.

Then the local clustering of the graph is the average of this value for all nodes
(with degree at least 2):

lc =
1

|v ∈ V, d(v) ≥ 2|

∑

v,d(v)≥2

lc(v).

The clustering is strongly related to the numbers of triangles and connected
triples in the graph, just as the average degree depends on the numbers of nodes
and links (see section 4.1). We will therefore study these properties at the same
time.

Figure 5 presents grayscale plots for the number of triangles, the number of
connected triples, the global and the local clustering, for two different (random)
orders on sources and destinations. We can see that the plots for both clustering
notions are different for these two orders, meaning that the choice of sources
and destinations strongly impacts them. This is not the case for the number of
triangles and connected triples.

We now focus on the difference between the local and global clustering,
whose variations are quite different. The local clustering generally increases
(the gray becomes lighter) with the number of sources and destinations. This
means that it is always under-estimated, and increasing the number of sources
and destinations brings it closer to its actual value. The order on sources and
destinations plays a strong role on the speed of its evolution: for the second
order presented in Figure 5, the 90%-level line is reached with a single source,
and the gray does not change much when the number of monitors increases. This
means that in this case, the first source in the order gives a good estimation of
the local clustering. For the other order, the 90%-level line is only reached with
10 sources (and a large number of destinations).

However the global clustering tends to be over-estimated, whatever the order.
The maximum value is reached for small numbers of sources and destinations,
and can be quite different from the actual value, see Table 1.
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Figure 6: From left to right: number of connected triples, number of triangles, global clustering
and local clustering. Average for 10 different random orders.

Figure 6 shows (from left to right) the average grayscale plots for the number
of triangles, the number of connected triples, the global and the local clustering.
The grayscale plot for the global clustering is quite uniform, which means that
the values are very close to each other 8, independently of the number of sources
and destinations. Therefore the global clustering seems to be well-estimated
(notice that it is slightly over-estimated, as it tends to decrease when the number
of sources or destinations increase). Observations made in [14, 15] show that
the global clustering is overestimated in graphs with low clustering when the
number of sources is low compared to the number of destinations. In this case,
explorations discover proportionally more triangles than connected triples. This
over-estimation is not a very important one, though, therefore we expect the
clustering of a topology measured with more sources and destinations to have a
higher global clustering than a random graph. We also noticed that the observed
value for the global clustering depends strongly on the choice of sources and
destinations. Therefore, the grayscale plot for the global clustering in Figure 6
is not representative of what one may obtain in practice for a single order, and
this conclusion must therefore be considered with care.

The average grayscale plot for the local clustering shows that increasing the
number of sources and destinations makes its estimation better, as was already
the case for single random orders. The average behavior is therefore similar
to the behaviors observed for single orders. The wide difference between the
plots obtained for different orders however shows that the average plot is only
representative of the global behavior of this statistics.

In conclusion, the choice of sources and destinations influences the local and
global clustering differently. The local clustering depends more on the number
of sources and destinations than the global clustering. Therefore it can be
improved by adding sources and destinations, even though the influence of the
order on this is very high. The global clustering is more influenced by the choice
of the sources and destinations than by their number, meaning that it is very
difficult to estimate it accurately.

The authors of [14, 15] considered only the global clustering coefficient, and
did not study the impact of the order on sources and destinations. Our observa-

8The value of the gray represents the difference with the maximum value observed for the
ten considered orders, which is why no white point appears.
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Figure 7: Average distance. Left and middle: two different random orders. Right: average of
10 random orders.

tions concerning average grayscale plots for the global clustering are consistent
with theirs.

4.3. Average distance

We denote by d(u, v) the distance between two nodes u and v, i.e. the
number of links on a shortest path between them. We denote by:

d(u) =
1

n− 1

∑

v 6=u

d(u, v)

the average distance from u to all nodes, and by:

d =
1

n

∑

u

d(u)

the average distance in the graph.
Notice that these definitions only make sense for connected graphs. In prac-

tice, if the graph is not connected (as in the present case) one generally restricts
the computation to the largest connected component, which is reasonable since
the vast majority of nodes are in this component. The average distance is one
of the most classical properties used to describe real-world complex networks
and the internet topology in particular. Computing it is however time-costly.
To quicken the computations, we use here the heuristics proposed in [17]. It
consists in approximating the average distance by choosing at each step i a ran-
dom node vi, computing its average distance to all other nodes d(vi) in time
O(m) and space O(n), and using it to improve the current approximation. The

i-th approximation of the average distance is di = 1/i
∑i

j=1 d(vj). We stop
as soon as the variation in the estimations becomes less than a given ǫ, i.e.
|dj+1 − dj | < ǫ. The variable ǫ is a parameter allowing to tune the quality of
the approximation vs. the computation time. We use here ǫ = 0.1.

Figure 7 presents grayscale plots for the average distance. We can see that,
when one uses few sources, the average distance is over-estimated. The evalua-
tion becomes more accurate when the number of sources and destinations grows.
This can be understood as follows: with few sources the graph is close to a tree,
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Figure 8: Impact of the choice of sources and destinations on the degree distribution. Each
plot presents the degree distributions for three graphs GS′D′ obtained with different choices
of sources and destinations. Left: S′ contains 18% of sources and D′ 6% of destinations.
Middle: S′ contains 45% of sources and D′ 26% of destinations. Right: S′ contains 81% of
sources and D′ 67% of destinations.

and the average distance is therefore over-estimated. It changes quickly when
one adds more sources.

We observe some fluctuations of the gray level for small numbers of sources
and destinations. Once a certain number of sources and destinations is reached,
the gray color becomes almost uniform, which means that the average distance
does not vary much after this point, and that it is well estimated.

Finally, the impact of the order on sources and destinations on the average
distance is very small. There is a strong similarity between the results for
different single orders. Figure 7 (left and middle) presents the grayscale plots
for two different random orders. We can see that they are very similar, which
is also the case for other random orders we considered (not represented here).
This means that the choice of sources and destinations has little impact on the
observed average distance, and that the average grayscale plot is representative
of what one may obtain in practice.

In conclusion we obtain a good estimation of the average distance as soon as
a certain number of sources (and destinations) is reached. After this, the average
distance becomes accurate and close to the original one. We also showed that
the impact of the choice of sources and destinations on the average distance is
not important.

This is in accordance with the observations made in [14, 15] on different
types of graph models.

4.4. Degree distribution

The degree distribution of a graph is the fraction pk of nodes of degree ex-
actly k in the graph, for all k 9. Degree distributions may be homogeneous (all
the values are close to the average, like in Poisson and Gaussian distributions),
or heterogeneous (there is a huge variability among degrees, with several orders
of magnitude between them). When a distribution is heterogeneous, it makes
sense to try to measure this heterogeneity rather than the average value. In

9Equivalently, one may study the number of nodes with degree k.
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Figure 9: Impact of the number of sources and destinations on the degree distribution. Left:
degree distributions of graphs GSD′ for which the number of destinations d = |D′| varies
from 100 to 3 000 (all 11 sources are considered). Middle: degree distributions of graphs
GS′D for which the numbers of sources s = |S′| varies from 1 to 11 (all 3 000 destinations
are considered). Right: degree distributions of graphs GS′D′ for which both the number of
sources and the number of destinations vary.

some cases, this can be done by fitting the distribution by a power-law, i.e. a
distribution of the form pk ∼ k−α. The exponent α may then be considered
as an indicator of how heterogeneous the distribution is. As fitting distribu-
tions to power-law leads to disputable results when the distribution is not a
perfect power-law, we will however not attempt it here. We will therefore study
whether the observed distributions are heterogeneous or not, and whether they
are similar to each other.

The degree distribution of the internet is one of the properties for which the
bias induced by the exploration has been the most widely studied [1, 2, 6, 7, 8, 9,
10, 16, 17, 21, 23]. Certainly one of the most surprising results is from [16] which
shows that power-law distributions can be observed by performing traceroute

explorations on graphs with an underlying topology following a Poisson degree
distribution. The authors of [14, 15] deepen this result by considering several
network models and varying the number of sources and destinations. They show
that this observation depends of 2 parameters: the underlying topology and the
number of sources used to explore it. The exploration of a random graph with
a few sources may indeed lead to the observation of a heterogeneous degree
distribution. This effect tends to disappear quickly when the number of sources
grows. However even a small number of sources in a topology with a power-law
degree distribution provides a power-law degree distribution.

We first show to which extent the choice of sources and destinations influ-
ences the observed degree distribution. Figure 8 shows the degree distributions
for different numbers of sources and destinations. For each case, we present
the distributions obtained with three different random choices of sources and
destinations. For small numbers of sources and destinations (Figure 8, left), we
observe a difference only for degrees larger than ten, whereas for low degrees the
distributions are almost identical. When the number of sources and destinations
increases (Figure 8, middle and right), these distributions tend to become very
similar for all values of the degree. This shows that the choice of sources and
destinations does not influence much the observed degree distribution, provided
their number is not too small.
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Since the choice of sources and destinations does not influence much the
obtained degree distribution, we can now study the impact of the number of
sources and destinations, without worrying about their choice. We increase the
number of sources and destinations separately to show their impact on the degree
distribution. Figure 9 shows the degree distributions for graphs in which we vary
the number of destinations (left), the number of sources (middle), and both at
the same time (right). The first observation is that these degree distribution
are all heterogeneous and do not vary greatly. This confirms observations made
by simulations in [14, 15].

The distributions of Figure 9 (left) coincide more precisely than the others.
This indicates that the degree distribution is more accurately estimated when
the number of sources is high. In this case, changing the number of destinations
does not alter the distribution much.

The distributions of Figure 9 (middle and right) converge to the degree dis-
tribution of the final graph as the number of sources and destinations increases.
Since we saw that the number of destinations does not play a great role in the
degree distributions, this means that the change is driven by the number of
sources.

In summary, we have a good approximation of the degree distributions, even
with a small number of sources and destinations. It becomes even more accurate
as the number of sources grows. It is important to notice that in all cases, the
observed degree distribution is heterogeneous. This confirms observations made
by simulations [14, 15].

5. Related work

Since a few years, many works have conducted experimental and formal
studies to evaluate the accuracy of the obtained maps of the internet. Most of
these studies focus on the impact of the measurement procedure on the obtained
degree distribution, and use models for the topology and the traceroute ex-
ploration to evaluate this [1, 2, 6, 7, 8, 9, 10, 14, 15, 21, 23]. They give good
arguments for the fact that the maps of the internet collected with a single
source are very incomplete, and probably suffer from an important bias. Many
of these works agree that increasing the number of sources quickly reduces this
bias, at least concerning the degree distribution.

Some works have addressed specifically the question of the impact of the
number of sources and destinations on the obtained data: [5] and [26] study the
number of nodes and links discovered as a function of the number of sources
and destinations used for the exploration. They both exhibit a diminishing
returns effect, each new source adding less information than the previous one.
As explained in Section 3, both papers added sources approximately in the order
given by the greedy maximum heuristics. Studying also random orders allowed
us to moderate their observations. [14, 15] study the impact of the degrees of
sources and destinations on the observed number of nodes and links.
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The authors of [26] study the impact of the number of sources on a number of
graph properties, using data collected from the distributed measurement project
Dimes [24]. They consider sources by decreasing order of the number of links
they discover, and do not consider the impact of the choice of sources on these
properties.

The grayscale plots were introduced in [14, 15] in order to obtain an in-depth
understanding of the impact of the number of sources and destinations on a num-
ber of widely studied graph properties. They used models for different types of
networks in order to study the impact of the network topology on the observa-
tions. [5] also used contour plots, which are somewhat similar to grayscale plots,
for studying the impact of the number of sources and destinations on the ob-
served number of nodes and links. Our contribution is complementary to these
works in two ways: first, we use real data, whereas these works study models
both for the networks and the traceroute exploration ([5] uses real data but
only studies the observed number of nodes and links); second, in this paper we
study not only the impact of the number of sources and destinations, but also
their choice.

Finally, some works propose empirical criteria for identifying whether the
observed properties can be trusted [17, 14, 15, 26, 16]. This is similar to our
approach.

6. Conclusion

We conducted an extensive set of experiments aimed at evaluating the impact
of the sources and destinations used in traceroute-like measurements on the
properties of the observed topology. Our goal was to estimate whether the
observed properties are the actual properties of the topology, or if they are
biased by measurement artifacts.

We used real data obtained from traceroute-like measurements, so our
results do not rely on simulations. This has the advantage that we did not
need to rely on models, either for the internet topology, of for the traceroute

measurements.
As expected from previous work in this area, we showed that the number

of sources and destinations plays a strong role on the observed properties. We
also studied in depth the impact of the choice of sources and destinations on
the observed properties, and showed that it is important. When one uses two
different sets of sources and destinations with the same size, one may obtain
graphs which are very different from each other. This is true even for basic
properties such as the number of nodes and links.

We studied various graph statistics which are widely used for graph descrip-
tion. We showed that they do not behave in the same way with respect to
changes in the sources and destinations used for the exploration. Some of them
are strongly dependent on the choice of sources and destinations and/or their
number. Such properties can therefore not be trusted, since performing mea-
surements with different sets of sources and destinations would lead to very
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different results. This is the case for instance for the clustering coefficient. On
the other hand, some properties are very resilient to changes in the sets of sources
and destinations, and are therefore probably accurate descriptions of the actual
internet topology. This is the case for instance for the average distance and the
degree distribution.

This works could be extended in several directions. We showed that one may
trust in some properties more than in others: the average distance is probably
accurately evaluated, while the clustering coefficient most probably is not, for
instance. This should be compared to observations on other data sets. We also
showed that some properties which are the ratio of two other properties may
sometimes be well estimated, even if the two base properties are not accurate:
if they suffer from the same bias, this bias is removed by the ratio. It would
be beneficial to detect other properties that can be accurately estimated. Such
properties would probably not be ones that are classically used, since we studied
most of these in this paper. However the fact that they can be accurately
estimated, while more classical properties cannot be trusted, would increase
their interest. In particular, the authors of [17] noted that the ratio between
the clustering coefficient and the density was probably more accurate than any
of these properties. This idea should be explored further.

We observed that different sets of sources and destinations lead to statis-
tically different views of the topology. Designing methods for deciding which
sources and destinations will provide a representative view of the topology before
the measurements start is therefore an interesting goal. This would however still
probably require some preliminary experimental measurements, as some prior
knowledge seems necessary in order to know how different sources will comple-
ment each other. Since the choice of sources is limited by the fact that one
must have access to the corresponding computers, a relevant approach might be
to assign different destination sets to different sources, in order to increase the
contribution of each source to the global representativeness.

Finally, the internet topology is not a static object, and it evolves with time,
see for instance [19]. Performing several rounds of measurements, as was done for
the data we use here, therefore aggregates up-to-date data with obsolete data.
This has certainly an impact on the properties of the obtained topology (for
instance, one may expect that it increases the density of the obtained graphs).
Taking this dynamics into account in the evaluations of the properties of the
observed topology is therefore an important question.
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