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Abstract—Detecting events such as major routing changes
or congestions in the dynamics of the internet topology is an
important but challenging task. We explore here a top-down
approach based on a notion of statistically significant events.
It consists in identifying statistics which exhibit a homogeneous
distribution with outliers, which correspond to events. We apply
this approach to ego-centerd measurements of the internet
topology (views obtained from a single monitor) and show that
it succeeds in detecting meaningful events. Finally, we give some
hints for the interpretation of such events in terms of network
events.

I. INTRODUCTION

The study of the internet topology as obtained from mea-
surements attracted recently much attention, see e.g. [13], [21],
[24]. One of the key challenges in this field is nowadays to
describe the time evolution of this topology. However, getting
information on this is extremely difficult, as our measurement
abilities are limited [20] and object’s dynamics are very
complex [6], [23], [5], [17], [19], [22].

In [19], the authors propose to focus on a part of the
topology, which they call an ego-centered view. It consists in
what a single machine, called monitor, may see of the internet
topology. It is basically captured by running traceroute
measurements from the monitor to a given set of randomly
chosen destinations, and iterating this process every few min-
utes. See Section III and [19] for details.

This approach proved to be successful in capturing inter-
esting information [22], [19]. One of the main perspective
is to use it to try to detect events in the dynamics of ego-
centered views, which has not been explored yet. This would
lead to insight on the routing (and routing trees) dynamics,
and may have important applications in network security (one
may monitor a part of the network, or the network around a
given machine).

However, previous work has shown that the dynamics of
ego-centered views is intense [22], [6]: new nodes are contin-
uously observed, load-balancing introduces frequent changes
in paths, etc. Distinguishing events, i.e. abnormal dynamics in
this data is therefore challenging. It may even be impossible,
as many events may occur at the same time, and throughout
the measurement. Conversely, it is not clear that some events

are very different from others, and that ego-centered measure-
ments allow to capture some.

We present here the first method to automatically and
rigorously detect events in the dynamics of ego-centered views
of the internet topology. Intuitively, the internet topology is
subject to a substantive dynamics, which can be described as
regular, and sometimes undergo deep and unusual changes,
that we call events. For instance load balancing is a normal
routing dynamics. In contrast, failures in some parts of the
network, creating major links and congestions may be seen as
events.

The bottom-up approach is a natural approach to study such
events. It consists in the study of the system in detail in
order to characterize what normal dynamics and events are
expected, and then to search for traces of events. However
this approach raises difficult problems: first it is not known
what characterizes the dynamics, either normal or abnormal
[8]. In addition, there are many different events [10], [18],
that cannot necessarily be identified [28]. Finally intuition
on the dynamics and its effects often is misleading, as some
experiments confirm [22].

The other complementary approach is the top-down one. In
this approach, one observes the object from the outside by
measuring it, as it is done for a living organism for instance.
After calculating various statistics, one may then define an
event as a statistically significant anomaly. The advantage of
this approach is that knowledge of the system is not essential
as a first step (but it is necessary for event interpretation).
Furthermore, this approach is general, once established, it may
be applied to different case studies. Another strong point of
this method is that it is rigorous and objective and can help to
discover unexpected features of the dynamics. Finally, the top-
down approach is very suitable for event detection in complex
systems in the interest, and our goal in this paper is to explore
it in the case of ego-centred measurements of the internet
topology.

We describe our methodology in Section II. We present the
internet topology data which we use in Section III. We apply
the method in Sections IV to VI, considering different statis-
tics. Finally, we present some interpretations in Section VII,
which show that the detected events are indeed significant from



a networking perspective.

II. METHODOLOGY

A first possible approach for event detection is bottom-up:
from a knowledge of which events may occur on the internet,
one may attempt to define statistics to monitor, and which
would indicate such events. This supposes a good knowledge
of the actual dynamics of the topology, though, and the impact
that events have on it. It also means that one has to guess the
impact events will have on measurements, although they are
very partial and biased views of the whole internet. In addition,
correlating these events to statistics may turn out to be very
difficult.

It must be clear that the current situation makes this
approach extremely difficult. Current knowledge of internet
dynamics in general, and events occurring on it in particular
is very limited [19], [7], [22], [12], [25], [26]. It is not known
which impact routing changes or local failures have on the
internet topology. There is no database giving the list of all
events occurring on the network (even the events occurring in a
single AS are rarely and poorly documented, see Section VII).

Finally, the bottom-up approach, though appealing, is ex-
tremely challenging, and it seems out of reach in our current
knowledge of the internet topology and its dynamics.

We propose here a top-down approach for event detection in
the dynamics of ego-centered views of internet topology. We
first consider ego-centered measurements and define simple
statistics which may capture key dynamics (Sections IV to VI).
We then look for statistically significant events, i.e. situations
in which the observed statistics deviate significantly from the
ones usually observed [29]. These will correspond to events,
and interpreting them in terms of network events needs further
examination (Section VII).

The key point of our method is therefore to be able to define
statistics which allow event detection, i.e. which exhibit a clear
notion of normal vs abnormal dynamics.

When one considers a statistics, three typical situations may
occur:

« First, the observed values may be homogeneous, which
means that they all have approximately the same value,
and that we never observe a significant deviation from
this behavior. In such cases, the statistics is of no help
in detecting events: there is never a clear deviation from
the normal value.

o The observed values may be heterogeneous by nature,
which means that there is no normal value, and therefore
no abnormal value indicating events.

o Finally, the observed values may be homogeneous but
with some outliers, which indicate abnormal events from
a statistical point of view.

Therefore, we are interested in statistics which have a ho-
mogeneous behavior, but exhibit some outliers. When studying
a statistic, we will observe its dynamics and the distribution
of its values (i.e. for each x, the number of times the statistics
has value x). We will then try to distinguish between the three
kinds of situations above.

Studying such distributions and deciding on their nature
however is a subtle task. We will use here two complementary
approaches: manual inspection of the distributions by plotting
them in various scales, and automatic fit to classical distribu-
tions which characterize the three behaviors of interest pointed
out above.

In order to perform manual inspection we plot each distri-
bution in lin-lin, lin-log and log-log scales. We moreover plot
the inverse cumulative distributions (i.e. for each x, the number
of times the statistics has value greater than x) which are often
easier to read. The use of these three scales makes it possible
to highlight exponential and polynomial decreases, which are
hallmarks of homogeneity and heterogeneity respectively. This
gives a first mean to gain insight on the distribution and the
corresponding statistics.

Once a global shape has been identified in this way, one
may try to fit the observed distributions to classical model
distributions. One must keep in mind that many models may
be considered. Moreover automatic fitting is a difficult task,
and results may be misleading [30], [9]. This is why we
complement it with manual inspection of plots.

We consider here three typical model distributions, which
correspond to the three situations described above: the normal
distribution (i.e. P(z) = — 12ﬂe%1(%)2) is a typical homo-
geneous distribution with well defined mean p and standard
deviation v, which has an exponential decrease; the power-
law distribution (i.e. P(z) ~ x~%) is a typical heterogeneous
distribution characterized by its exponent v and which has no
normal value; and we model homogeneous distributions with
outliers by first identifying possible outliers with Grubb’s test
[14], then removing them and fit the remaining distribution to
the normal distribution as above.

We will perform all fits using the classical Maximum
Likelihood Estimation (MLE) [11]. Notice however that, in
our context, the fit is not the outcome of greatest interest: we
are interested in how much this fit is relevant. To estimate
this, we use one of the widely used goodness of fit called
Kolmogorov-Smirnov (KS) test [27].

Finally our event detection method consists in the following
steps:

« Define statistics which possibly allow event detection.

o Study the calculated statistics in order to keep those
exhibiting homogeneous distributions with outliers. The
detected outliers will characterize our statistically mean-
ingful events.

« Explore the detected outliers, with view to interpret them
in term of network events.

III. DATA

We use here the data described in [19]. It consists in periodic
ego-centered measurements of the internet topology: a monitor
runs periodic traceroute like measurements towards a set
of 3000 random targets, waits for 10 minutes, and iterates this
(which is called a round of measurement). There is approxi-
mately four rounds of measurements per hour (approximately
100 per day). Such measurements were performed from more



than 100 monitors (mainly PlanetLab machines [2]) and for
several months. The obtained datasets are freely available [3].
We computed the statistics on measurements from different
monitors, and obtained similar results in all cases. We present
in this paper statistics on representative cases.

IV. NUMBER OF NODES AT EACH ROUND

The first statistics that one may consider in order to study
the dynamics of ego-centered views is naturally the number
N; of nodes observed in each round 7 of measurement. We
display it in Figure 1 (top).
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Fig. 1. Top row: number N; of nodes observed at each round of measurement,
as a function of the number of measurements round i performed. Middle row,
left: distribution of NN;; right: inverse cumulative distribution of N;. Bottom
row: goodness of fit of the distribution with the three studied distributions
models.

This plot shows that the number of nodes at each round
is rather stable with some exceptions. Most of the time,
it oscillates close to a mean value slightly above 10 600.
However, one may observe that this value changes near rounds
2100 and 5600: during some time after these rounds, the
number of nodes oscillates close to a different value. In
addition to these changes in the average value, the plot also
exhibits sharp downward peaks. On the contrary, no upper
peak is visible.

These observations are confirmed by the distribution of
the value of V; and the goodness of fit test, see Figure 1.
Indeed, the distribution reveals two distinct regimes, with
many values around 10050 and 10 600. Otherwise, the distri-
bution is clearly homogeneous with outliers. The presence of
abnormally low values (points on the left) but no abnormally
high values corresponds the presence of downward peaks but
no upward ones.

It must be clear that downward peaks, although they are very
clear statistical outliers, bring little information: they may be
caused by local connectivity failures, which have the effect
that ego-centered views are (partly) blank during one or a few
rounds. This kind of event is trivial.

On the contrary, an upward peak would indicate an in-
teresting event: it would mean that we suddenly observe
significantly more nodes at one round. However, there is no
upper peak, which is a non-trivial fact: one may easily imagine
scenario where such peaks would appear. Figure 1 shows that
such scenario do not occur in practice. As a consequence, one
cannot detect events by observing abnormally high values of
N;.

Finally, the only notable dynamics in the number N; of
nodes observed at each round are changes in the mean values
around which it oscillates. We detect such changes as follows:
we associate to each ¢ the median of values /V; to NV;+100, that
we denote by M;, then we define D; = M; - M; — 1. We plot
these values in Figure 2. It appears clearly that this method
succeed in identifying events, i.e. outliers in D, distribution.
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Fig. 2. From top to bottom: N; and M; as functions of i (N; and M;
actually overlap but we shifted up M; for readability); the variations D; of
M, the distribution and the inverse cumulative distribution of D;; goodness
of fit of the distribution with the three studied distributions models.

V. NUMBER OF NODES IN CONSECUTIVE ROUNDS

The fact that the number N; of nodes observed at each
round is very stable does not mean that the observed nodes are
always the same: consecutive rounds may see different ones.
Such changes may be evidenced by observing the number
Nip of distinct nodes in p consecutive rounds, for a given
integer p. We display in Figure 3 the case p = 5 (top
row). This plot shows that, like N, Ni5 is very stable and
oscillates around a mean value'. As expected, this value is

U1t also experiences changes of regime, like N;, for instance around round
5600 in Figure 3. Notice that, in this case, the new average value for Nf is
larger than before, while it was lower for N;. This means that, although we
see less nodes in each round, the nodes we see vary more from one round
to another. This gives some hints on further understanding the event which
occurred, but deepening this is out of the scope of this paper.



larger than the one for IV;, but it is far from 5 times larger. This
shows that many nodes appear in several consecutive rounds.
Moreover, upper peaks appear on this plot, which make it
very different from the one of N; in Figure 1. The distribution
and the goodness of fit test are presented in this same figure
(middle and bottom rows): it confirms the presence of a clear
mean value, but also points out clear statistical outliers, both
abnormally low (as before) and abnormally high (which is
new). This observation is important for event detection: there
are specific times (pointed out by the peaks in Figure 3) at
which an abnormal number of new nodes appear in a series of
consecutive rounds. This gives a new way to detect statistically
significant events.
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Fig. 3. Top row: number Nf’ of distinct nodes observed during five
consecutive previous rounds of measurements, as a function of the number
of measurements rounds performed. Middle row, left: the distribution of IV 25
right: the cumulative distribution of NN, f . Bottom row: goodness of fit of the
distribution with the three studied distributions models.

However, automatic detection using this approach is not
trivial: as the observed mean value may change during time,
and as upper peaks (which we want to detect) may be smaller
than these variations of the mean, we may miss some events,
and making the difference between a statistically sound event
and normal dynamics may be difficult. In order to solve this
problem, we observe the number of appearing nodes, i.e.
the number of nodes observed in a series of rounds but not
observed in the previous rounds. To do so, we consider two
integers p and ¢ (for previous and current, respectively) and
compute for all ¢ the number of distinct nodes which we
observe in rounds ¢ to ¢ + ¢ — 1, but not in rounds ¢ — p
to ¢ — 1, which we denote by a;. Notice that observing the
number d; of disappearing nodes is also natural. We observed
similar results for appearing and disappearing nodes, and so
we focus here on appearing nodes. We considered wide ranges
of possible values for ¢ and p, and observed little difference,
if any, as long as they were greater than 1 or 2 and lower than
100. We illustrate here the obtained results with p = 10 and
c = 2, see Figure 4.

The obtained plot exhibits clear upper peaks, independent
of the current mean value of N7, which is confirmed by
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Fig. 4. Top: number a; of appearing nodes, for all round index ¢ and
values p = 10 and ¢ = 2, as a function of the number of measurements
rounds performed. Middle, left: the distribution of a;; right: inverse cumulative
distribution of a;. Bottom row: goodness of fit of the distribution with the
three studied distributions models.

the distributions and the goodness of fit test. We obtain
this way a method for automatic detection of statistically
meaningful events, by considering outliers of the appearing
nodes distribution as event.

VI. CONNECTED COMPONENTS

We have seen in the previous section that, at some particular
moments, an abnormal number of nodes appear in our ego-
centered views of the Internet topology. However, we said
nothing on their structure: are they scattered in the observed
topology? are they grouped? or do they belong to several
small groups?... Intuitively for instance, an important routing
change may lead to the discovery of a new part of the network,
which would be revealed by the appearance of nodes forming
a connected component in our ego-centered views.

In order to investigate this, we study the connected com-
ponents of newly appearing nodes. More precisely, for all ¢,
we select the appearing nodes as defined above, and consider
links observed between these nodes. We then compute the
connected components of this graph, which we call connected
components of appearing nodes. As in the previous section,
we use p = 10 and ¢ = 2, which give results representative of
what we observed on wide ranges of these values.

We show in Figure 5 the number of connected components
observed for all 7, as well as the size of the largest one for
all ¢, together with the distributions of these values and their
goodness of fit test. The statistically abnormal events detected
with the number of connected components statistics are the
same as the ones detected in the previous section. This shows
that events detected using the number of appearing nodes are
events in which many connected components appear, among
which at least a large one.

Observing connected components makes it possible to go
further. Indeed, it has the advantage that, at each round, several
values are observed: for all ¢ several connected components
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Fig. 5. From top to bottom: number of connected components of appearing
nodes; size of the largest one; distributions of the number of connected
components of appearing nodes; inverse cumulative distributions of these last
values; distributions of size of the largest connected components of appearing
nodes; inverse cumulative distributions of these last values; goodness of fit
of the distributions with the three studied distributions models. Here we
considered p = 10 and ¢ = 2

may appear, and we may consider their size. This leads to the
distribution of the size of all appearing connected components,
whichever round they appear in, presented in Figure 6.

This distribution does not exhibit a clear difference between
normal values and abnormal ones, though: the distribution is
well fitted by a power-law, as the goodness of fit test on the
figure 6 (bottom row) shows. As a consequence, we cannot use
it to detect events that would be revealed by the appearance
of an abnormally large connected component.

Notice that one may go further by computing various prop-
erties of connected components (their density, average degree,
or clustering coefficient, for instance), and then observing their
distribution. This may lead to the identification of statistically
meaningful events. However this is out of the scope of this
paper and left for future work.

VII. TOWARDS EVENT INTERPRETATION

In previous sections we have presented a methodology and
some statistics which make it possible to detect statistically
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Fig. 6. Top row, left: the distribution of the size of all connected components
of appearing nodes observed during the measurements; right: the inverse
cumulative distribution of the values on the left. Bottom row: the goodness
of fit of the distribution with the three studied distributions models. Here we
considered p = 10 and ¢ = 2

significant events. More precisely, we are able to point out
moments in time at which events occur, and to identify
nodes and links involved in these events. The ultimate goal
of this procedure is to further study detected events and in
particular to interpret them in term of network events (such
as node or link failures, or congestions). This is crucial for
a true understanding of internet dynamics and for network
monitoring.

Event interpretation is challenging, though, because the
current knowledge of the internet dynamics is limited, but
also because of the size of the data, its ego-centered (thus
biased) nature, and its lack of clear structure. Ideally, one may
use a database of events occurring in the internet and match
such events to the ones we detect (and conversely). This is
not feasible in general, though, as no complete such database
exists. Only partial information is available for some specific
AS, which we explore in Section VII-A below.

One may also try to interpret detected events by visualizing
the data. To do so, graph drawing is appealing, but current
methods are unable to handle large graphs and/or produce
drawings which are easy to interpret. Some insight may

however be obtained this way, and we explore this in Section
VII-B.

In the following, we select one of the most interesting
statistics for detecting events, the number of appearing nodes
in several consecutive rounds (Section V). We apply it to a
typical measurement and select events detected this way.

Moreover, we will use a data reduction technique which
will be of great help. It consists in focusing on the part of
the data involved in the event under concern. To do so we
first identify the set £ of nodes involved in the event i.e.
nodes significant appearance’s for the chosen statistics. We
then select the destinations such that a path from the monitor
to the destination contains at least a node in E. Finally we
keep only the part of the measurement obtained with these
destinations, which is equivalent to measurements conduced
with this reduced set of destinations. In this measurement the
dynamics of nodes in E is sill visible and most nodes not
involved in the event are removed.



A. Correlation with known events

In order to help maintenance and provide better services,
some ISP record events occurring in their network and doc-
ument them. This information is partial, poorly structured,
and needs manual inspection [16], [15], but this is of great
of interest here as it makes it possible to match statistically
significant events which we detect to known network events
reported in these databases.

Abilene [1] is one the main ISP to provide rich information
on events occurring in their network [4]. A database of tickets
describing such events is freely available on line; we display
typical instances in Figures 8 and 9.

To match a detected event to such a ticket, we proceed
as follows. First we select a statistical meaningful event with
our method as explained above, and then we localize the the
timestamps at which it happens (pointed out with peaks on
the corresponding plot). Correlating this event with abnormal
event consists in finding in the Abilene database a set of
tickets such that the timestamps of these tickets overlap the
timestamps of our event, and affected field cites elements
whose addresses appear in the set £ of involved nodes. We
therefore have to collect the IP addresses of the elements cited
in the ticket in order to check their presence in E.

An example of result is displayed in Figure 7. Among
the detected events, two of them are correlated with tickets,
and have some particularity. The first statistical event that
we pointed out is followed by a significant decrease in the
number of appearing nodes. This event is correlated with the
trouble ticket of Abilene shown in Figure 8. A second event
comes after on the plot, followed by an equivalent significant
increase in the number of appearing nodes. Inspecting this
second event leads to its correlation with the ticket in Figure 9,
which actually is the ticket declaring that the problem cited in
the first ticket ended. In this case, thus, there is a perfect fit
between the two statistical events under concern and the one
depicted in Figures 8 and 9.

SUBJECT:
AFFECTED:
StaRT TnvE:

END TIME:
DESCRIPTION:

Internet2 IP Network Peer SINET (CHIC) Outage
Peer SINET (CHIC)

Unavailable

Thursday, May 17, 2007, 11:47 AM (1147) UTC
Pending

Peer SINET’s connection the Internet2 IP

Community is unavailable. SINET Engineers

have been contacted, however, no cause of

outage has been provided yet. SINET is multi-homed.
10201:45

07-05-18 00:40:43 UTC

TICKET NO.:
TIMESTAMP :

Fig. 8. An example of Abilene trouble ticket which corresponds to the first
event pointed out in the Figure 7. It describes a technical intervention under
the ticket number 10201:45. The involved network elements are cited in the
field AFFECTED. The begin and the end timestamps are given, and details
are provided in field DESCRIPTION.

B. Graph drawing

One may also examine a detected event by manipulating
a drawing of the underlying graph. Although many drawing
methods exist, with different advantages and limitations, in
most cases the size of our data is prohibitive. To this regard,
being able to identify a moment in time at which an event

SUBJECT:
AFFECTED:
STATUS:
START TIME:
END TIME:
DESCRIPTION:

Internet2 IP Network Peer SINET (CHIC)
Peer SINET (CHIC)

Available

Thursday, May 17, 2007, 11:47 AM (1147) UTC

Friday, May 18, 2007, 3:51 AM (0351) UTC

Peer SINET was unavailable to the the Internet2 IP
Network Community. SINET Engineers reported the
reason for outage was due to a fiber cut in New York.
SINET is multi-homed.

10201:45

07-05-18 07:39:16 UTC

Resolved

TICKET NO.:
TIMESTAMP :

Fig. 9. The trouble ticket corresponding to the second event pointed out in
the Figure 7.

occurs and focusing on the nodes involved in the event as
described above both are crucial: this data reduction leads to
graphs of a few thousand nodes, which several software are
able to manipulate (and draw).

One may then draw in different colors the appearing,
disappearing and stable nodes and/or links. Figure 10 displays
a typical example. Such manual examination of events using
graph manipulation software opens the way to a more detailed
understanding of detected events, and to their interpretation in
terms of network events.

VIII. CONCLUSION

In this paper we propose and implement a method to auto-
matically and rigorously detect events in the dynamics of ego-
centered views of the internet topology. It relies on a notion
of statistically significant events. We define simple statistics
to do so interestingly, all kinds of distributions are obtained:
homogeneous and heterogeneous, which do not lead to the
detection of events, and homogeneous with outliers, which do.
We also provide approaches to interpret the detected events
by drawing them and correlating them to known networking
events

Our main perspectives for this work are of course to explore
more subtle statistics and to improve event detection. For
instance, one may compute the distance between extremities
of newly appearing links (before they appear). One may also
conduct more case studies to gain insight on the events we
observe. In order to help such interpretation, one may simulate
ego-centered measurements on a graph with simulated dynam-
ics (random removals/additions of nodes/links, for instance).
This would shed light on relation between what we observe
with such measurements and actual events, which is crucial
in our context. Going further, one may observe events using
measurements conduced from several monitors. Some events
may be invisible from single monitors, giving complementary
views.
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