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Abstract

In contrast with most internet topology measurement res-
earch, our concern here is not to obtain a map as complete
and precise as possible of the whole internet. Instead, we
claim that each machine’s view of this topology, which we
call ego-centered view, is an object worth of study in it-
self. We design and implement an ego-centered measure-
ment tool, and perform radar-like measurements consist-
ing of repeated measurements of such views of the internet
topology. We conduct long-term (several weeks) and high-
speed (one round every few minutes) measurements of this
kind from more than one hundred monitors, and we provide
the obtained data. We also show that these data may be
used to detect events in the dynamics of internet topology.

1 Introduction.

Since the end of the nineties, constructing maps of the
internet usingtraceroute-like measurements received
much attention, see for instance [13, 26, 18, 3, 20, 14, 21,
7, 29, 16, 27]. Such measurements are however partial and
they may contain significant bias [19, 6, 8, 9, 17, 4]. As a
consequence, much effort is nowadays devoted to the col-
lection of more accurate data [26, 3, 5, 28], but this task is
challenging.

In order to avoid these issues and obtain some insight on
internet topologydynamics, we use here a radically differ-
ent approach: we focus on what a given machine sees of the
topology around itself, which we call anego-centered view
(it basically is a routing tree measured in atraceroute-
like manner). These ego-centered measurements may be
performed very efficiently (typically in minutes, and induc-
ing low network load); it is therefore possible to repeat them
in periodic rounds, and obtain in this way information on
the dynamicsof the topology, at a time-scale significantly
higher than previous approaches (see for instance [23, 8]).

Taking advantage of these strengths, we conduct massive

radar-like measurements of the internet. We provide both
the measurement tool and the collected data, and show that
they reveal interesting features of the observed topology.

2 Measurement framework.

One may usetraceroute directly to collect ego-cent-
ered views by probing a set of destinations. This approach
however has serious drawbacks. First, as detailed in [11]
and illustrated in Figure 1, the measurement load is highly
unbalanced between nodes and there is much redundancy
in the obtained data (intuitively, one probes links close to
the monitor much more than others). Even worse, this im-
plies that the obtained information is not homogeneous, and
thus much more difficult to analyse rigorously (for instance,
the dynamics may seem higher close to the monitor). Fi-
nally, though the measurement would intuitively produce a
routing tree, the obtained view actually differs significantly
from a tree (see for instance [28]). Again, this makes the
analysis (visualisation of the data, for instance) more intri-
cate.

Finally, the directtraceroute approach has multiple
severe drawbacks. In this section we first design an ego-
centered measurement tool remedying to this. We then in-
clude it in a radar measurement scheme.

2.1 Ego-centered measurements.

As already discussed in various contexts [12, 11, 10, 24,
22, 27], one may avoid the issues described above by per-
forming tree-like measurements in a backward way: given a
set of destinations to probe, one first discovers the last link
on the path to each of them, then the previous link on each
of these paths, and so on; when two (or more) paths reach
the same node then the probing towards all corresponding
destinations, except one, stops1. However, as illustrated in

1Such measurements require the distance towards each destination,
which is not trivial [22]; we discuss this in Section 2.2.



Figure 1, naive such measurements encounter serious prob-
lems because of routing changes and other events. We pro-
vide a solution in thetracetree algorithm below: the
tree nodes are notIP addresses anymore, but pairs composed
of an IP address (or a star if a timeout occurred) and theTTL

at which it was observed (see Figure 1 for an illustration).
This is sufficient to ensure that the obtained view is a tree,
while keeping the algorithm very simple. It sends only one
packet for each link, and thus is optimal. Moreover, each
link is discovered exactly once, which gives an homoge-
neous view of the topology and balances the measurement
load.

Algorithm 1: tracetree algorithm.
Input: setD of destinations, withd ∈ D at distance

ttld.
to probe← empty queue,to receive← ∅, seen← ∅
foreach d ∈ D do add(d, ttld) to to probe

while to probe not emptyor to receive 6= ∅ do
α if to probe not emptythen

pop(d, ttl) from to probe and send a probe to
it
add(d, ttl, current time()) to to receive

// here necessarilyto receive 6= ∅

β if answerp to a probe to(d, ttl) receivedthen
// p sent byp.source, reply to a probe to(d, ttl)

if (d, ttl, ) ∈ to receive then
// else timeout
remove(d, ttl, ) from to receive;
print p.source ttl d

if (p.source, ttl) 6∈ seen then
add(p.source, ttl) to seen

push(d, ttl − 1) in to probe if ttl > 1

for (d, ttl, t) ∈ to receive if timeout exceededdo
remove(d, ttl, t) from to receive

print * ttl d

push(d, ttl − 1) in to probe if ttl > 1

From such trees with (IP,TTL) nodes, one obtains a tree
on IP addresses by applying the following filter (illustrated
in Figure 1)2: first merge all nodes of the tree which corre-
spond to a sameIP; remove loops (links from anIP to itself);
iteratively remove the stars with no successor; merge all the
stars which are successor of a same node into a unique star;
construct aBFS tree of the obtained graph which leads to a
tree onIP addresses3; iteratively remove the leaves which
are not the last nodes encountered when probing any desti-
nation.

2The measurement would be slightly more efficient if the filter wasin-
cluded directly intracetree; however, to keep things simple and mod-
ular, we preferred to separate the two.

3During the construction of theBFS tree, neighbours of a node are vis-
ited in lexicographic order, and stars are visited afterIPs.
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Figure 1. Typical outputs of various measure-
ments schemes. (1) – Real topology. a is the
monitor, n, o, and p are the destinations. We
suppose that l does not answer to probes,
that b is a per-destination load balancer, for-
warding traffic for n to d, and traffic for o to f ,
and that e is a per-packet load balancer for-
warding packets alternately to i and h. Such
situations are frequent in practice. (2) – Mea-
surement with traceroute. Three routes are
collected, leading to a higher load on links
close to the monitor (represented by thicker
lines here). (3) – Naive tree measurement.
Because of a route change due to per-packet
load balancer e, one obtains a disconnected
part. (4) – Measurement with tracetree.
Nodes are pairs of IP addresses and TTL, with
redundancy in the addresses; one necessar-
ily obtains a tree. (5–7) – Main steps of the
filtering process. (5) – Pairs with same IP ad-
dress are merged and loops are removed; (6)
– Appropriate stars are merged and a BFS tree
is computed; (7) – Leaves which are not the
last node on a path towards a destination are
iteratively removed. This is the final output of
the filter.

The key point is that the obtained tree is a possibleIP

routing tree from the monitor to the destinations (similar
to a broadcast tree). The obtained tree contains almost as
much information as the originaltracetree output and
has the advantage of being much more simple to analyse.
We evaluated the impact of this filtering on our observa-
tions, and found that it was negligible: Detailing this is out
of the scope of this paper.

Many non-trivial points would deserve more discussion.
For instance, one may apply a greedy sending or receiv-
ing strategy (by replacing lineα or β in Algorithm 1 by
a while, respectively); identifying reply packets is non-
trivial, as well as extracting the relevant information from
the read packets; introducing a delay may be necessary to
stay below the maximalICMP sending rate of the moni-
tor; one may consider answers received after the timeout
but before the end of the measurement (whereas we ignore
them); one may use other protocols thanICMP (the classical



traceroute usesUDP or ICMP packets); the initial order
of the destinations may have an impact on the measurement;
there may be many choices for theBFS tree in the filter; etc.
However, entering in such details is far beyond the scope of
this paper, and we refer to the code and its documentation
[2] for full details.

2.2 Radar.

With the tracetree tool and its filtered version, we
have the ground material to conduct radar measurements:
given a monitor and a set of destinations, it suffices to run
periodic ego-centered measurements, which we call mea-
surementrounds. The measurement frequency must be high
enough to capture interesting dynamics, but low enough to
keep the network load reasonable. We will discuss this in
the next section.

The only remaining issue is the estimation of distances
towards destinations, which is a non-trivial task in general
[22]. This plays a key role here, since over-estimated dis-
tances lead to several packets hitting destinations. Under-
estimated distances, instead, miss the last links towards the
destinations.

One may however suppose that the distance between
the monitor and any destination generally is stable between
consecutive rounds of radar measurement. Then, the dis-
tances at a given round are the ones observed during the pre-
vious round. If the distance happens to be under-estimated
(we do not see the destination at this distance), then we set
it to a default maximal value (generally equal to30) and
start the measurement from there (and we update the corre-
sponding distance for the next round).

3 Measurement and data.

First notice that many parameters (including the monitor
and destination set) may have a deep impact on the obtained
data. Estimating this impact is a challenging task since test-
ing all combinations of parameters is totally out of reach. In
addition, the continuous evolution of the measured object
makes it difficult to compare several measurements: the ob-
served changes may be due to parameter modifications or to
actual changes in the topology.

To bypass these issues while keeping the study rigorous,
we propose the following approach. We first choose a set of
seemingly reasonable parameters, which we callbase pa-
rameters(see Section 3.1). Then we conduct measurements
with these parameters from several monitors in parallel. On
some monitors, calledcontrol monitors, we keep these pa-
rameters constant; on others, calledtest monitors, we al-
ternate periods with base parameters and periods where we
change (generally one of) these parameters. Control mon-
itors make it possible to check that the changes observed

from test monitors are due to changes of parameters, not
to events on the network. The alternation of periods with
base parameters and modified ones also makes it possible
to confirm this, and to observe the induced changes in the
observations. In many cases, it is also possible to simulate
what one would have seen in principle if the parameters had
stayed unchanged, which gives further insight (we will il-
lustrate this below).

We use a wide set of more than one hundred monitors
scattered around the world, provided by PlanetLab [25] and
other structures (small companies and individualDSL links)
[2]. In order to be as general as possible, and to simplify the
destination setup, we use destinations chosen by sampling
random validIP addresses and keeping those answering to
ping at the time of the list construction. Other selection
procedures would of course make sense (this raises inter-
esting perspectives).

3.1 Our base parameters and data set.

In all the paper, the base parameters consist of a set of
3 000 destinations for each monitor, a maximalTTL of 30, a
2 seconds timeout and a10 minutes delay between rounds.
All our measurements were conducted with variations of
these parameters; wherever it is not explicitly specified, the
parameters were the base ones. We ran measurements con-
tinuously during several weeks, with some interruptions due
to monitors and/or local network shutdowns. The obtained
data is available at [2].

3.2 Influence of parameters.

Using the methodology sketched above, we show here
how to rigorously evaluate the influence of various param-
eters. We focus on a few representative ones only, the key
conclusion being that the base parameters described above
fit our needs very well.

Figure 2 (left) shows the impact of the inter-round delay:
on the rightmost part the delay was significantly reduced,
leading to an increase in the observation’s time resolution
(i.e.more points per unit of time). It is clear from the figure
that this has no significant impact on the observed behavior.
In particular, the variations in the number ofIP addresses
seen, though they have a higher resolution after the speed-
up, are very similar before and after it. Moreover, the con-
trol monitor shows that the base time scale is relevant, since
improving it does not reveal significantly higher dynamics.

Figure 2 (middle) shows the impact of the number of
destinations. As expected, increasing this number leads to
an increase in the number of observedIP addresses. The
key point however is that increasing the number of destina-
tions may lead to a relative loss of efficiency: simulations
of what we would have seen with3 000 or 1 000 destina-
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Figure 2. Impact of measurement parameters. The x axis of all plots represents the time (in hours) since
the beginning of the measurement. Left: impact of inter-round delay. Number of distinct IP addresses
viewed at each round. The bottom plot corresponds to a contro l monitor with the base parameters;
the other monitor starts with the base parameters, and about 27 hours later we reduce the inter-round
delay from 10 minutes to 1 (each ego-centered measurement takes around 4 minutes). Center: impact
of the number of destinations. Number of distinct IP addresses viewed at each round. The plot close
to y = 10 000 corresponds to a control monitor with the base parameters. T he other plain-line plot is
produced by a monitor which starts with the base parameters, thus with a destination set D of size
3 000, changes to a set D′ of 10 000 destinations containing D, goes back to D, and finally turns to
a subset D′′ of size 1 000 of D. In addition, the dotted plots are simulations of what we wou ld have
seen from this monitor with D during the measurement using D′ (obtained by dropping all nodes
and links which are on paths towards destinations that are no t in D), and what we would have seen
with D′′ during the measurements using D or D′ (obtained similarly). Right: impact of timeout value.
Round duration (in seconds). The monitor starts with a timeo ut value of 4 s, then we change it to 2 s,
and finally to 1 s.

tions display a smaller number ofIP addresses than direct
measurements with these numbers of destinations (the con-
trol monitor proves that this is not due to a simultaneous
topology change). This is due to the fact that probing to-
wards10 000 destinations induces too high a network load:
since some routers answer toICMP packets with a limited
rate only [15], overloading them makes them invisible to
our measurements. Importantly, this does not occur in sim-
ulations of1 000 destination measurements from ones with
3 000, thus showing that the load induced with3 000 desti-
nations is reasonable, to this regard.

Figure 2 (right) shows the impact of the timeout value.
As expected, decreasing the timeout leads to a decrease in
the round duration. However, it also causes more replies to
probe packets to be ignored because we receive them after
the timeout. A good value for the timeout is a compromise
between the two. We observe that the round duration is only
slightly larger with a timeout of2s than with a timeout of1s

(contrary to the change between a timeout of4 and2s). The
base value of the timeout (2s) seems therefore appropriate,
because it is rather large and does not lead to a long round
duration.

We also considered other observables (like the number
of stars seen at each round, and the number of packets re-
ceived after the timeout), for measurements obtained from
various monitors and towards various destinations; in all

cases, the conclusion was the same: the base parameters
proposed above meet our requirements.

3.3 Comparison with traceroute.

As explained in Section 2.1, a key goal of ourtrace-
tree measurement tool is to perform significantly better
than direct use oftraceroute in our context. To eval-
uate this, we compare the difference in the obtained infor-
mation withtraceroute andtracetree, as well as
the load they induce on the network (Figure 3, left and cen-
ter). First notice that the plot as a function of the number
of rounds withtraceroute is higher than the one with
tracetree, as expected: anytraceroute round gath-
ers slightly more data than the correspondingtracetree
round (below1%, here). It is however much more interest-
ing to compare them in terms of the number of packets sent
(reflecting the load induced on the network and our ability
to increase the measurement frequency). The plots show
that, to this regard,tracetree is much more efficient
than directtraceroute measurements: here,trace-
tree reaches14 100 distinct IP addresses with around3
millions packets, whiletraceroute needs around4.5
millions packets.

Recall moreover that the load induced bytracetree
is balanced among links, which is not the case fortrace-
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route, see Figure 3 (right). We can see that some links are
probed a very high number of timesat each round(typically
up to3 000 times if we use3 000 destinations). See [12, 11,
10] for detailed studies of such effects.

Finally, in addition to the key advantage of providing
homogeneous tree ego-centered views of the topology, the
tracetree tool also is much more efficient thantrace-
route in terms of the number of packets sent, thus making
it possible to repeatedly run it in radar measurements with
a reasonable network cost.

4 Towards event detection.

One key interest of our measurements is that they make
it possible to observe the dynamics of theIP internet topol-
ogy from an ego-centered perspective, at a time scale of a
few minutes only. In particular, detectingeventsin this dy-
namics,i.e.major changes in the topology, is very appealing
from a security and modeling point of view.

A most natural direction to try and detect events is to
observe the number of distinctIP addresses seen ateach
round, as plotted in Figure 4. Clear events indeed appear in
such plots, under the form of downward peaks. However,
this provides little information, if any: these peaks may be
caused by temporary partial or total connectivity losses at
the monitor (or close to it), not by important events at the
internet level. On the other hand, one may notice that no
significant upward peak appears in this plot. Notice that
this is a non-trivial fact: from a topological point of view,
such peaks would be possible; the fact that they do not occur
reflects non-trivial properties of the topology and its dynam-
ics, which we leave for further study.

Interestingly, the plot of the number of distinctIP ad-
dresses seen during ten consecutive rounds, Figure 4, has
very different characteristics. It exhibits upward peaks (the
distribution of observed values, presented in Figure 5, left,
confirms that these peaks are statistically significant out-
liers). These peaks reveal important changes in theIP ad-



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 3800  4000  4200  4400  4600  4800  5000  5200

 1

 10

 100

 1000

 1  10

x = # ip ; y = # series x = components size;y = # components

Figure 5. Left: Distribution of the values of the upper plot in Figure 4. Center: typical islands of appearing
nodes. Each node is an IP address; the black ones are the ones observed during the seco nd half
of the measurement only, the others being already present in the first half. The square nodes were
present in all the (2 200) rounds of measurement. Links are directed from bottom to to p, i.e. from the
monitor to destinations. The number of rounds necessary to d iscover all 13 new nodes in the left
drawing was 669 rounds ( 1 306 to 1 974), but only 2 rounds ( 2 021 and 2 022) were sufficient for the 9
right ones. Notice that 7 connected components of new nodes are displayed: 4 of size 1, 1 of size
4, 1 of size 5, and 1 of size 9. Right: distribution of new node component sizes. For each possible size x

(horizontal axis), the number of connected components of ne w nodes of size x is given.

dresses observed in consecutive rounds, and thus important
routing changes: though the number of observedIP ad-
dresses is roughly the same before and after these events,
the ego-centered views have changed.

To illustrate this, we present in Figure 6 a graph obtained
by merging ego-centered views measured before and after
such an upward peak. We can clearly see that this peak
corresponds to a large number of new edges appearing in a
specific part of the network, confirming the occurrence of a
significant event.

Another approach consists in detecting events occurring
during a measurement from roundi to roundj by compar-
ing it to the measurement from roundi−k to roundi, which
serves as a reference: we consider theIP addresses seen dur-
ing the period of interest which were not observed in the
reference period. We call theseIP addresses thenew ad-
dresses. Our observations show that it is natural to observe
such new addresses during any measurement. However, one
may expect that events of interest will lead to the appear-
ance of connected groups of such addresses; we therefore
propose to compute the connected components composed
of new addresses4 as a way to observe these events.

We display such components in Figure 5 (center), to-
gether with their neighborhood. This figure shows clearly
that, in some cases, the observed components are non-trivial
islands of newly observed nodes, revealing local events in
the network. Figure 5 (right) however shows that such non-
trivial islands are quite rare: most connected components

4i.e. maximal sets of new addresses such that there exists a path be-
tween any two of them composed only of new addresses.

of new nodes are very small, often reduced to a single node
(949 over a total of1 457 components, in our example). De-
spite this, some large components appear (the largest one in
our example has size17, and15 components have size at
least10), thus revealing underlying events of interest.

Another important characteristic of connected compo-
nents of new addresses is the number of rounds needed to
discover all their nodes, defined as the round number at
which their last node was discovered minus the round num-
ber at which their first node was, plus one. Indeed, short dis-
covery times indicate that all the new nodes under concern
probably appeared because of a same event. Large times, in-
stead, show that several events (located close to each other
in the network) occurred. The examples in Figure 5 (center)
show that both cases occur.

The distribution of the number of rounds needed to dis-
cover each component of new nodes (not represented here)
is very heterogeneous, with many components discovered
very rapidly and others much more slowly. This gives lit-
tle information, however, as the discovery time may depend
strongly on the component size. Studying the correlations
between the two (not represented here) confirms this, but it
also shows that some large connected components are dis-
covered very rapidly.

The two approaches we described point out specific mo-
ments at which events occurred; one may then observe the
data more closely, in order to investigate the nature of these
events. We leave this for further research.



Figure 6. Representation of the event at round 106231 in Figu re 4: the graph is obtained by merging
100 rounds before the event together with a single round afte r the event. Edges in bold black are
edges that were seen in the round after the event but not in the 100 rounds before.

5 Conclusion and perspectives.

In this paper, we propose, implement, and illustrate a
new measurement approach which makes it possible to
study the dynamics ofIP-level internet topology at a time
scale of a few minutes. We provide a rich dataset consisting
in radar measurements from more than one hundred mon-
itors towards thousands of destinations, conducted for sev-
eral weeks in continuous.

The most important direction for further research is of
course the analysis of collected data. A particularly appeal-
ing goal is the detection of events in the dynamics of the
observed topology; this raises difficult fundamental ques-
tions, such as the characterization ofnormal dynamics, or
the identification of relevant time scales for the observation.

Other promising directions include visualizing the ob-
served dynamics, and conducting more radar measurements

to gain a deeper insight (for instance, one could conduct si-
multaneous measurements from several monitors to observe
the dynamics from different viewpoints).
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