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Abstract

It appeared recently that the underlying degree distribution of networks may
play a crucial role concerning their robustness. Empiric and analytic results have
been obtained, based on asymptotic and mean-field approximations. Previous work
insisted on the fact that power-law degree distributions induce high resilience to
random failure but high sensitivity to attack strategies, while Poisson degree distri-
butions are quite sensitive in both cases. Then, much work has been done to extend
these results.

We aim here at studying in depth these results, their origin, and limitations. We
review in detail previous contributions and give full proofs in a unified framework,
and identify the approximations on which these results rely. We then present new
results aimed at enlightening some important aspects. We also provide extensive
rigorous experiments which help evaluate the relevance of the analytic results.

We reach the conclusion that, even if the basic results of the field are clearly
true and important, they are in practice much less striking than generally thought.
The differences between random failures and attacks are not so huge and can be
explained with simple facts. Likewise, the differences in the behaviors induced by
power-law and Poisson distributions are not as striking as often claimed.

Categories and Subject Descriptors: A.1 [Introductory and Survey]; C.2.1 [Com-

puter-Communication Networks]: Network Architecture and Design – Network

topology; G.2.2 [Discrete Mathematics]: Graph Theory – Network Problems;

General Terms: Experimentation, Reliability, Security

Introduction.

It has been shown recently, see for instance [5, 44, 97, 112, 120], that most real-world
complex networks have non-trivial properties in common. In particular, the degree distri-
bution (probability pk that a randomly chosen node has k links, for each k) of most real-
world complex networks is heterogeneous and well fitted by a power-law, i.e. pk ∼ k−α,
with an exponent α between 2 and 3 in general. This property has been observed in
many cases, including internet and web graphs [49, 59, 113, 21, 102, 84, 26, 102, 114, 122,
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27, 123, 23, 6, 2, 74, 20, 79], social networks [83, 92, 93, 47, 70], and biological networks
[73, 117, 69, 50].

In most of these cases, the existence of a path in the network from most nodes to
most others, called connectivity, is a crucial feature. For instance, in the case of the
internet, it means that computers can communicate; in the case of the web if means that
one may reach most pages from most others by following hyperlinks; and in the case
of social networks it conditions the ability of information and diseases to spread. Note
that connectivity may be a desirable feature (in the case of the internet for instance),
or an unwanted one (in the case of virus propagation, for instance), depending on the
application under focus.

Networks are subject to damages (either accidental or not) which may affect connec-
tivity. For instance, failures may occur on computers on the internet, causing removal of
nodes in internet and web graphs. Likewise, in social networks, people can die from a
disease, or people deemed likely to propagate the disease can be vaccinated, which cor-
responds to node removals. For the study of these phenomena, accidental failures may
be modeled by removals of random nodes and/or links in the considered network, while
attacks may be modeled by removals following a given strategy.

Networks of different natures may behave differently when one removes nodes and/or
links. The choice of the removed nodes or links may also influence significantly the
obtained behavior. It has been confirmed that this is indeed the case in the famous
paper [7], in which the authors consider networks with Poisson and power-law degree
distributions 2, and then remove nodes either randomly (failures) or in decreasing order
of their degree (attacks). They measure the size of the largest connected component (i.e.
the largest set of nodes such that there is a path in the network from any node to any
other node of the set) as a function of the fraction of removed nodes.

The authors of [20] had pursued the same kind of idea earlier. They tried to establish
whether the connectivity of the web is mainly due to the (very popular) pages with a very
large number of incoming links by studying the connectivity of the web graph from which
the links going to these pages have been removed.

The authors of [7] obtained the results presented in Figure 1, which shows two things:
the removal strategies play an important role, and the two kinds of networks behave
significantly differently: in particular, it seems that networks with power-law degree dis-
tributions are very resilient to random failures, but very sensitive to attacks. This par-
ticularity is now referred as the Achille’s heel of the internet [91, 10]. In the case of a
social network on which one wants to design vaccination strategies, it means that one may
expect better efficiency by vaccinating people with the highest number of acquaintances
than with random vaccination [41, 104, 33, 65].

2More specifically, they considered Erdös-Rényi random graphs and graphs obtained with the pref-
erential attachment model [4], which are not representative of all networks with Poisson or power-law
degree distributions. In particular networks obtained with the preferential attachment model are not
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Figure 1: Size of the largest connected component as a function of the fraction of randomly
removed nodes (failures) and nodes removed in decreasing order of node degrees (classical
attacks). We will define properly these different kinds of networks in Section 1.2. For
technical details on our plots see Section 1.4.

Since then, much work has been done to extend this initial result. Other kinds of
failures and attacks, in particular cascade ones, as well as other kinds of topologies, have
been studied. See for instance [80, 35, 36, 100, 22, 101, 125, 67, 52, 90, 89, 88, 108, 124].
Some studies introduced other criteria for measuring the state of the network, see for
instance [78, 37, 22, 101]. Cases where the underlying networks have non-trivial degree
correlations have also been studied, see for instance [17, 119]. Recent studies focused on
the identification and design of robust topologies, or repair strategies, see for instance [118,
107, 106, 115, 39, 28, 65, 55, 56, 110, 109, 13, 14]. More details are given in section 1.5.

Important efforts have been made to give analytic results based on mean-field approx-
imations completing the experimental ones, see in particular [30, 31, 34, 25, 96, 5]. Our
aim is to present these results in detail, to deepen them with new results, and to discuss
their implications.

A significant part of this paper is therefore devoted to detailing the existing proofs of
previously known results. Indeed, these proofs rely strongly on mean-field approximations
which are classical in statistical mechanics, but quite unusual in computer science. They
are therefore only sketched in the original papers, and many approximations are made
implicitly. Therefore we deem in important to give proofs with full details and explicit
approximations.

The original papers moreover focus on specific cases of interest. We give here a unified
and complete view of the questions under concern, including some new results, which
makes it possible to deepen significantly our understanding of the field. In particular,
we give results concerning failures and attacks on links, as well as results on finite cases,
which have received little attention. We also compare the two different approaches for
the study of power-law networks proposed in [31, 30, 34] and in [25, 96].

equivalent to the random power-law networks we consider in this paper, see Section 1.2.
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This paper may therefore be considered as an in-depth and didactic survey of the
main current results of the field, with the aim of unifying the different approaches and
questions that have been studied, which leads to the introduction of some new results.

This paper is organized as follows. Section 1 is devoted to preliminaries, which consist
of definitions and models, of methodological discussions, and of some preliminary results.
In particular, the approximations made in the proofs in this paper are presented and
explained. Sections 2 and 3 deal with failures and attacks, respectively. We present
classical results of the field, as well as several new results which aim at improving our
understanding of the phenomena under concern. We discuss the behavior of several real-
world complex networks in Section 4, and compare them to expected behaviors from
theory. Finally, we give an in-depth discussion and synthesis of our understanding of the
field in Section 5.

1 Preliminaries.

Before entering the core of the paper, we need some important preliminaries. They consist
of preliminary definitions and results, mainly concerning probability distributions and the
models we will consider, but also of methodological aspects. This section should be read
carefully before the rest of the paper since important notions are introduced and discussed
here.

Let us insist on the fact that most results in this paper are obtained using approxima-
tions, aimed at simplifying the computation. These approximations are valid in the limit
of networks with large sizes. They typically consist of neglecting the difference between
N and N ± n when n is small compared to N , or of supposing that random values are
equal to the average. More subtle approximations are also done, belonging to the mean-
field approximation framework, classical in statistical mechanics and widely used in the
context of complex networks [40, 1, 99].

It is important to understand that the proofs we provide are valid only in this frame-
work, as we have no formal guarantee that all approximations are valid. This is why we
will always explicitly point out the approximations we make, and we will always compare
analytic results to experiments. Moreover, we believe that efforts should be made to ob-
tain exact results and proofs in this context: most results presented here are currently
beyond the areas to which exact methods have been applied with success. Presenting
exact results is however out of the scope of this paper.

1.1 Poisson and power-law distributions.

A probability distribution is given by the probability pk, for all k, that the considered
value is equal to k. The sum of all pk must be equal to 1. A Poisson distribution
is characterized by pk = e−z zk

k!
, where z is the average value of the distribution. The
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probability of occurrence of a value x in such a distribution therefore decays exponentially
with its difference |z− x| to the average, which means that, in practice, all the values are
close to this average.

A power-law distribution with exponent α is such that pk is proportional k−α. In such
distributions, the probability of occurrence of a value x decays only polynomially with x.
This implies that, though most values are small, one may obtain very large values. In the
whole paper, we will generally consider exponents between 2 and 4, which are the relevant
cases in our context (see Section 1.2), but we will also state some results valid out of this
range.

We will consider here two types of power-law distributions, which are the most widely
used in the literature: discrete and continuous power-law distributions. They are both
defined by their exponent α and their minimal value m.

The corresponding continuous power-law is a Pareto distribution, such that
∫∞

m
Cx−αdx =

1. C is a normalization constant that we can compute:
∫∞

m
C x−αdx = C m−α+1

α−1
= 1.

We then obtain C = mα−1(α − 1). To obtain discrete values, we then take pk equal to
∫ k+1

k
Cx−αdx, which is proportional to k−α in the limit where k is large 3. And finally,

pk = mα−1(α−1)
∫ k+1

k
x−αdx = mα−1(k−α+1− (k +1)−α+1). We will mainly use this form

in the sequel but at some points we will switch back to the continuous form.
The corresponding discrete power-law distribution is pk = 1

C
k−α, k ≥ m, where

C =
∑∞

k=m k−α is the normalization constant necessary to ensure that each pk is between
0 and 1 and that their sum is 1. In such a distribution, therefore, pk is exactly proportional
to k−α for all k ≥ m. In order to simplify the computation, we will always take m = 1
for discrete power-law distributions in this paper. This implies that C = ζ(α), where ζ is
the Riemann zeta function defined for α > 1 by ζ(α) =

∑∞
k=1 k−α. Then, pk = 1

ζ(α)
k−α.

Discrete and continuous power-law distributions each have their own advantages and
drawbacks. For instance, continuous power-laws are easier to use in experiments than
discrete ones, which themselves are more rigorous than continuous ones for small values.
For a more complete discussion on the advantages and drawbacks of discrete and contin-
uous distributions, see for instance [43, 32]. We will use both of them in the sequel, and
discuss their differences.

Bounded distributions

Given a distribution pk as defined above, one may sample a finite number N of values
from it. In such a sample, there is a maximal value K. Therefore, the actual distribution
of the values in this sample, i.e. the fraction pk(N) of values equal to k for each k, is
slightly different from the original distribution pk. In particular, for all k > K, pk(N) = 0
(while in general pk > 0). We will therefore call these distributions bounded distributions.

3 One can also define pk to be proportional to
∫ k+1/2

k−1/2
x−αdx, see [32]. This has little impact on the

obtained results.
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The difference between bounded and unbounded distributions goes to zero when N tends
towards infinity, but for any finite value of N it may play a role in our observations.

We detail below important properties of bounded distributions, starting with their
expected maximal value K.

The maximal value K among a sample of N values from a given distribution pk is a
random variable, and it is possible to give the exact formula for its expected value: let
X1, . . . , XN be the values sampled from the distribution, and let Y = maxi=1..N Xi. Y
then has the following distribution:

P (Y = K) = (

K
∑

k=0

pk)
N − (

K−1
∑

k=0

pk)
N .

It is the probability that all values are lesser than or equal to K, minus the probability
that all values are lesser than K, i.e. the probability that all values are lesser than or
equal to K and at least one is equal to K, and its expected value is given by:

E[Y ] =
∞
∑

k=0

kP (Y = k).

However, deriving numerical values from this formula is too intricate. We will therefore
use an approximation:

Lemma 1.1 [30] For a given distribution pk such that pk > 0 for all k, the expected
maximal value K among a sample of N values can be approximated by

K−1
∑

0

pk = 1 − 1

N
.

Proof : The claim is equivalent to
∑∞

K pk = 1
N

, which means that K is such that there
is only one value larger than K in the sample. Moreover this value must be exactly equal
to K, otherwise there would be only one value larger than K + 1 and we would have
∑∞

K+1 pk = 1
N

, which is impossible since pk > 0 for all k. 2

We can apply this result to the three cases of interest:

Lemma 1.2 For a Poisson distribution with average value z, the expected maximal value
K among a sample of N values can be approximated by

K−1
∑

0

zk

k!
= ez

(

1 − 1

N

)

.
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Proof : Direct application of Lemma 1.1 with pk = e−z zk

k!
. 2

Lemma 1.3 [30] For a continuous power-law with exponent α and minimal value m, the
expected maximal value K among a sample of N values can be approximated by K =

mN
1

α−1 .

Proof : From Lemma 1.1, K satisfies
∑K−1

1 pk = 1− 1
N

. Therefore, 1
N

=
∑∞

K pk. We have

that pk = (α−1)mα−1
∫ k+1

k
x−αdx. Therefore, 1

N
= (α−1)mα−1

∫∞

K
x−αdx = mα−1K−α+1.

The result follows directly. 2

Lemma 1.4 For a discrete power-law with exponent α, the expected maximal value K
among a sample of N values can be approximated by ζ(α)(1− 1

N
) = H

(α)
K−1, where H

(α)
K =

∑K
k=1 k−α is the K-th harmonic number for α .

Proof : Direct application of Lemma 1.1 with pk = k−α

ζ(α)
. 2

These results may be used in practice to approximate the expected maximal value K
among a sample of N values. For Lemmas 1.2 and 1.4, it is obtained iteratively by setting
K = 0 and increasing it until

∑K
k=0 pk ≥ 1 − 1

N
.

Figure 2 plots the estimates of the maximal value for samples of size N = 100 000,
for the three types of distributions we consider, obtained from the results above, together
with experimental values obtained by computing the average of the maximum values of
1 000 sets of N random values.

In the case of power-law distributions, our approximations underestimate slightly the
experimental values. For Poisson distributions, the evaluation fits experiments exactly,
but for some precise values of the average only. This is due to the fact that K can only
take integer values in the evaluation: it is actually the first integer such that

∑K
k=0 pk >

N−1
N

. Therefore, this sum may sometimes be significantly larger than N
N−1

, and then
the evaluation of K is poor. To evaluate this bias, we have plotted the relative error
(

∑K
k=0 pk

)

N−1
N

in Figure 2 (left).

All in all, our approximations for the expected maximal value are quite accurate, and
we will use them in the rest of the paper.

An important point here is to notice that, for all the distributions we consider here,
the expected maximal among N sampled values grows sublinearly with N . For Poisson
distributions this is obvious. Lemma 1.3 explicitly states it for continuous power-laws,
and one may also check the discrete power-law case. As we will see, this is important for
some approximations we will make in the following, and for some results in Section 3.3.

Until now, we discussed the fact that sampling N values from a distribution induces
an expected maximal value. But it also induces an expected distribution of the N values,
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Figure 2: Analytic and experimental estimates of the expected maximal among N =
100 000 sampled values. Left: for Poisson distributions, as a function of the average
value; right: for discrete and continuous power-law distributions, as a function of the
exponent.

denoted by pk(N), which is different from the original distribution pk. We now study
more precisely this expected distribution.

Lemma 1.5 The expected distribution pk(N) of N values sampled from a given distribu-
tion pk can be approximated, for all k ≤ K, by

pk(N) =
N

N − 1
pk

where K is the expected maximal value, related to pk and N by Lemma 1.1.

Proof : Since we sample values from a truncated distribution, we must have that pk(N)
is proportional to pk for all k ≤ K: pk(N) = C pk, and that the sum of all pk(N)
is 1:

∑∞
k=0 pk(N) = 1. Moreover, we know from Lemma 1.1 that

∑∞
K pk = 1

N
. We

obtain 1 =
∑∞

k=0 pk(N) =
∑K

k=0 pk(N) = C
∑K

k=0 pk = C(1− 1
N

), where we neglected the
difference between

∑∞
K pk and

∑∞
K−1 pk. The claim follows. 2

Lemma 1.6 For a Poisson distribution with average value z, the expected distribution
pk(N) of a sample of N values can be approximated, for all k ≤ K, by

pk(N) =
N

N − 1

e−zzk

k!
,

where K is the expected maximal value, related to pk and N by Lemma 1.2.

Proof : Direct application of Lemma 1.5 with pk = e−z zk

k!
. 2
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Lemma 1.7 For a continuous power-law distribution with exponent α and minimal value
m, the expected distribution pk(N) of a sample of N values can be approximated, for all
m ≤ k ≤ K, by

pk(N) =
N

N − 1
mα−1

(

k−α+1 − (k + 1)−α+1
)

,

where K is the expected maximal value, related to pk and N by Lemma 1.3.

Proof : Direct application of Lemma 1.5 with pk = mα−1(k−α+1 − (k + 1)−α+1). 2

Lemma 1.8 For a discrete power-law distribution with exponent α, the expected distri-
bution pk(N) of a sample of N values can be approximated, for all k ≤ K, by

pk(N) =
N

N − 1

k−α

ζ(α)
=

k−α

H
(α)
K−1

,

where H
(α)
K =

∑K
k=1 k−α is the K-th harmonic number for α , and K is the expected

maximal value, related to pk and N by Lemma 1.4.

Proof : Direct application of Lemma 1.5, with pk = k−α

ζ(α)
. 2

The results above give a precise description of what one may expect from finite samples
from Poisson and power-law distributions. They will be useful when dealing with finite
networks below.

First moments of a distribution

The average 〈k〉 =
∑∞

k=0 kpk of a distribution pk is also called its first moment, the i-th
moment being defined as 〈ki〉 =

∑∞
k=0 ki pk. In the continuous case, the i-th moment is

similarly defined as 〈ki〉 =
∫∞

k=m
ki pk. In the whole paper, the first and second moments

will play a central role. We present here the results we will need about them. Namely,
we give formulæ for the Poisson and power-law cases, both in the infinite case and in the
case of a sample of finite size N .

Lemma 1.9 For a Poisson distribution with average value z, the first two moments of
the expected distribution of a sample of N values can be approximated by

〈k〉 =

(

N

N − 1

) K
∑

k=0

e−zzk

(k − 1)!
and 〈k2〉 =

(

N

N − 1

) K
∑

k=0

ke−zzk

(k − 1)!
,

where K is the expected maximal value, related to pk and N by Lemma 1.2.
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Proof : Direct application of Lemma 1.6. 2

Lemma 1.10 For a Poisson distribution with average value z, the first two moments are

〈k〉 = z and 〈k2〉 = z2 + z.

Proof : Direct computation, with pk = e−z zk

k!
. 2

Lemma 1.11 [30] For a continuous power-law distribution with exponent α and minimal
value m, the first two moments of the expected distribution of a sample of N values can
be approximated by

〈k〉 = mα−1K−α+2 α−1
−α+2

and 〈k2〉 = mα−1K−α+3 α−1
−α+3

if 1 < α < 2,

〈k〉 = m α−1
α−2

and 〈k2〉 = mα−1K−α+3 α−1
−α+3

if 2 < α < 3,

〈k〉 = m α−1
α−2

and 〈k2〉 = m2 α−1
α−3

if α > 3,

where K is related to pk and N by Lemma 1.3.

Proof : If we approximate N−1
N

by 1, we obtain directly in the continuous case: 〈k〉 =

mα−1(α−1)
∫ K

m
xx−αdx = (α−1)mα−1

−α+2
(K−α+2−m−α+2) and 〈k2〉 = mα−1(α−1)

∫ K

m
x2x−αdx =

(α−1)mα−1

−α+3
(K−α+3 − m−α+3).

Moreover, when N is large, we have K ≫ m and we can approximate K−α+2 − m−α+2

by K−α+2 and K−α+3 − m−α+3 by K−α+3 if 1 < α < 2; K−α+2 − m−α+2 by −m−α+2

and K−α+3 − m−α+3 by K−α+3 if 2 < α < 3; and K−α+2 − m−α+2 by −m−α+2 and
K−α+3 − m−α+3 by −m−α+3 if α > 3. The results follow. 2

Lemma 1.12 [30] For a continuous power-law distribution with exponent α and minimal
value m, the first two moments are

〈k〉 = m
α − 1

α − 2
if α > 2 and 〈k2〉 = m2 α − 1

α − 3
if α > 3,

and they diverge in all the other cases.

Proof : Direct application of Lemma 1.11 with K tending towards infinity. 2

Lemma 1.13 For a discrete power-law distribution with exponent α, the first two mo-
ments of the expected distribution of a sample of N values can be approximated by

〈k〉 =
H

(α−1)
K

H
(α)
K−1

and 〈k2〉 =
H

(α−2)
K

H
(α)
K−1

,

where H
(α)
K =

∑K
k=1 k−α is the K-th harmonic number for α , where K is the expected

maximal value, related to pk and N by Lemma 1.4.
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Proof : Direct application of Lemma 1.8. 2

Lemma 1.14 [96] For a discrete power-law distribution with exponent α, the first two
moments are

〈k〉 =
ζ(α − 1)

ζ(α)
and 〈k2〉 =

ζ(α − 2)

ζ(α)
.

Proof : Direct computation, with pk = k−α

ζ(α)
. 2

We would like to discuss here the differences between the moments of bounded and
unbounded distributions. Although the difference between the distributions themselves is
small, both for the Poisson and the power-law case (the ratio between a bounded and an
unbounded distribution is approximately N/(N−1)), this is not the case for the moments
of these distributions. In practice, we can notice that for Poisson distributions, the values
of the first and second moments are almost identical for bounded and unbounded distri-
butions, while there is a noticeable difference for power-law distributions. This can be
understood as follows: these differences are strongly related to the quantities

∑∞
k=K+1 kpk

and
∑∞

k=K+1 k2pk. In both cases, values of pk for k > K are quite small:
∑∞

k=K pk = 1/N .
For Poisson networks, this 1/N is distributed among pk which decrease exponentially, and
K is small. Therefore the values of kpk and k2pk for k > K are small. For power-law net-
works on the other hand, K is large, and the probabilities pk decrease only polynomially,
therefore values of kpk and k2pk for k > K are much larger.

These observations will explain in the following why in some cases theoretical predic-
tions for the finite case and for the infinite limit are almost identical for Poisson networks
and quite different for power-law networks.

We finally have all the preliminary results we need on distributions; we can now use them
in the context of complex networks.

1.2 Modeling issues.

In this section we detail the models of networks we will consider, then discuss the modeling
of failures and attacks we will use. We finally present results concerning the connectivity
of random networks, which will play a key role in the sequel.

Random networks

Given an integer N and a distribution pk one can easily generate a network taken uniformly
at random among the ones having N nodes and degree distribution pk. Indeed, it is
sufficient to sample the degree of each of the N nodes with respect to pk, then to attach
to each node as many stubs as its degree, and finally to construct links by choosing random

11



pairs of stubs. If the sum of degrees is odd, then one just has to sample again the degree
of a random node until the sum becomes even. This model is known as the configuration
model [12] and is widely used in the literature, see for instance [18, 86, 87, 3]. We will call
random networks all networks obtained using it 4.

If one chooses a Poisson distribution of average z then one obtains an equivalent of the
Erdös-Rényi model [48] in which the network is constructed from N initially disconnected
nodes by adding M = z N

2
links between randomly chosen pairs of nodes. One then

obtains a network taken uniformly at random among the ones having N nodes and M
links.

As already discussed in the introduction, and as we will see all along this contribution,
the degree distribution of a network may be seen as responsible for some of its most
important features (like robustness). Studying random networks with prescribed degree
distributions is therefore a key issue. Much work has already been done to this regard, see
for instance [96, 3, 103, 34]. These networks are particularly well suited for formal analysis,
and most formal results obtained on complex networks in the literature, including the
ones on robustness, rely on this modeling, this is why we use it here. For a more detailed
discussion on network modeling and other approaches, see Section 1.5.

We will focus on three classes of networks, namely the ones with Poisson, continu-
ous power-law and discrete power-law degree distributions, which we will call Poisson
networks, continuous power-law networks and discrete power-law networks respectively.

In our experiments, we will consider Poisson networks with average degree z between
1 and 8, because for z < 1 the networks do not have a giant component (see p. 13 and
Lemma 1.16), and we have observed that the behaviors for z ≥ 8 are very similar to and
easily predictable from the ones observed for z = 8. Concerning power-law networks, we
will always take the minimal degree m equal to 1, which fits most real-world cases. We
will consider exponents between 2 and 4 because below 2 the average degree is infinite (see
Lemmas 1.12 and 1.14) and above 4 the network has only small connected components,
as we will see below (see Lemmas 1.17 and 1.18). Moreover, most real-world cases fit in
these ranges.

Let us insist finally on the fact that real-world complex networks may have other
properties that influence their robustness, like for instance correlations between degrees,
clustering (local density), and others. Capturing these properties in formal models how-
ever remains a challenge. See section 1.5 for more details.

We will however discuss them informally when observing the behavior of real-world
networks in Section 4.

4These networks may contain loops (links from one node to itself) and multiple links (more than one
link between two given nodes) in small quantities, which we will neglect in our reasoning as explained in
Section 1.3.
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Failures and attacks

There are many ways to model various kinds of failures and attacks. We will focus here
on removals of nodes and/or links. We will suppose that failures are random, in contrast
to attacks, which follow strategies.

Random node failures are then series of removal of nodes chosen at random. Equiv-
alently, one may choose a fraction of the nodes at random and then remove them all.
Likewise, random link failures consist of series of removal of links chosen at random.

Attacks on the other hand follow a strategy for removing nodes or/and links which has
to be defined. We then say that we observe an attack following this strategy. For instance,
we presented in the introduction the most famous strategy, which consists of removing
nodes in decreasing order of their degrees. We will call this the classical attack, and we
will define other strategies in Section 3.

Notice moreover that, when one removes a node, one also removes all the links attached
to it. This leads to the link point of view of node failures and attacks, which consists of
observing the fraction of links removed during node failures or attacks.

In the sequel we will consider all these situations: random node or link failures, attacks
following various strategies, and link point of view of node failures and attacks. In these
various cases we want to observe the resilience of networks, which requires to use a criterion
to capture the impact of failures or attacks on a network. We will here consider the size of
its largest connected component, or more precisely the fraction of nodes in this component
as a function of the number of nodes or links removed. This captures the ability of nodes
to communicate, which is central in our context: the smaller this fraction, the greater the
impact of the removals. Notice however that one may use other criteria to measure the
impact of failures or attacks, see Section 1.5 for more details.

Largest connected component

In many cases, the largest connected component of a random network contains most nodes
of the network. More precisely, depending on the underlying degree distribution, the size
of the largest connected component may scale linearly with the size of the network. The
network is then said to have a giant component.

There actually exists a precise and simple criterion on the degree distribution of a
random network to predict if this network will have a giant connected component or not.
Since most of the results we will discuss later in this contribution rely on an appropriate
use of this criterion, we recall it here.

Theorem 1.15 [86, 3, 30, 96] A random network with size N tending towards infinity
and with degree distribution pk such that it has maximal value K < N1/4 almost surely
has a giant component if and only if:

〈k2〉 − 2〈k〉 =
K
∑

k=0

k(k − 2)pk > 0.

13



This theorem has been rigorously proved in [86, 3] and has been proved in the mean-
field approximation framework in [30, 96]. Detailing these proofs is out of the scope of
this paper.

This result can be applied to the three kinds of networks we consider here (since their
maximal degree is sublinear, as explained in Section 1.1, page 7), which gives the following
results 5.

Lemma 1.16 A Poisson network with size tending towards infinity and average degree z
almost surely has a giant component if and only if z > 1.

Proof : Direct application of Theorem 1.15 and Lemma 1.10. 2

Lemma 1.17 A continuous power-law network with size tending towards infinity, expo-
nent α and minimal degree m = 1 almost surely has a giant component if and only if
α < 4.

Proof : Direct application of Theorem 1.15 and Lemma 1.12. 2

Lemma 1.18 A discrete power-law network with size tending towards infinity and expo-
nent α almost surely has a giant component if and only if α is such that ζ(α−2)

ζ(α−1)
> 2.

Proof : Direct application of Theorem 1.15 and Lemma 1.14. 2

One may compute the numerical value from this last lemma. One then obtains the
condition α < 3.48 for discrete power-law networks. In summary, the criterion of Theo-
rem 1.15 gives very simple conditions under which the random networks we consider have
a giant component.

1.3 Mean-field framework and generating functions.

As already emphasized at the beginning of Section 1, most results in this paper are made
using approximations, valid in the mean-field framework. Most of these approximations
are classical and very simple, like for instance neglecting small values when compared to
large ones, but some are specific to random networks and deserve more attention. We
detail them below. We then present the generating function framework, which makes it
possible to embed these approximations in a powerful formalism. We finally recall some
results on generating functions which will be useful in the rest of the paper.

5Refer to Section 1.3 for the conditions under which the previous theorem is going to be applied.
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Mean-field approximations in random networks

The fact that stubs are linked fully at random in a random network is a feature which has
important consequences in our context. In particular, when one removes a link chosen at
random in such a network, this is equivalent to the removal of two stubs at random, and
so the obtained network is still random (with a different degree distribution in general).
Likewise, when one removes a node, the obtained network is also random. These simple
remarks will be essential in the following.

Mean-field approximations are very helpful in the study of random networks since they
allow to neglect some correlations which would otherwise be very hard to handle.

Consider for instance the neighbors of a given node, which we will call source node,
in a large random network. Suppose that the network is sparse (the probability for two
randomly chosen nodes to be linked together is almost 0) and that its maximal degree is
small compared to its size, which will always be true in our context. Then the probability
that two of these neighbors are directly linked together is negligible. Likewise, if we
take all the nodes at distance 2 of the source node then the probability of having a link
between two of them is very small and may also be neglected. So does the probability
to have a link from a node at distance 2 to more than one node at distance 1, or to the
source. Continuing this reasoning, the network may be considered locally as a tree: any
subnetwork composed of the nodes at a distance lower than a given finite value is a tree
if the size of the network tends towards infinity.

The approximation above relies on the fact that we neglect very small probabilities,
or equivalently that we consider the limit where the size of the network tends towards
infinity.

In the same manner, it is known that any random network with a maximal degree lower
than

√

〈k〉N almost surely has no loops or multiple links [29, 24]. Likewise, Theorem 1.15
is formally true only for networks with maximal degree less than N1/4. For both cases the
conditions might not be true for all the networks under concern, however we will consider
that the networks do not possess loops and multiple links and that Theorem 1.15 can be
applied.

The mean-field framework allows another important approximation which comes from
the fact that there is no distinction between choosing a stub at random and following a
link at random from a random starting node. Indeed, since links are formed by pairs of
randomly chosen stubs, it makes in principle no difference.

One consequence is that we suppose that there is no correlation between the degree of
a node and the degrees of its neighbors, i.e. that the random starting node we choose has
no impact on the neighboring node we will reach. This is indeed true when the maximal
degree is below Nmin(1/2,1/(α−1)) [24], but not if the maximal degree is larger. We will
neglect the possible correlations, which is classical in the mean-field approach, even if the
above condition is not fulfilled.

This approximation may be used to describe the degree distribution of neighbors of
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nodes, in other words the degree of a node reached by starting from a randomly cho-
sen node and following one of its links chosen at random. According to the mean-field
approximation above, this is equivalent to choosing a random stub and therefore the prob-
ability that a random stub belongs to a given node is proportional to this node’s degree,
i.e. the probability of reaching a node of degree k is proportional to k pk. The sum
of these probabilities must be equal to 1, we therefore obtain the following probability:

k pk
P

∞

j=0 jpj
= k pk

〈k〉
.

We can derive from this the probability qk that a neighbor of a node has k other
neighbors, which will be useful in the sequel. It is nothing but the probability that a node
obtained by following a link has k + 1 neighbors, and so:

qk =
(k + 1)pk+1

〈k〉 . (1)

Basics on generating functions

Generating functions, also called formal power series, are powerful formal objects widely
used in mathematics, computer science and physics. They encode series of numbers (sk)k≥0

as functions f(x) =
∑∞

k=0 skx
k. Operations on the series of numbers then correspond to

operations on the associated functions, which often are much more powerful. See [121]
for a general introduction.

The application of generating functions to the random network context is presented
in details in [99]. Using them to encode series of probabilities (like for instance degree
distributions), the authors show how mean-field approximations may be embedded with
benefit in this formalism. Once this is done, it is possible to manipulate the associated
notions efficiently and easily. We give an overview of this approach below, and we refer
to [99] for a detailed and didactic presentation with illustrations. We follow the notations
in this reference, and we will use them all along the paper.

Let us begin by encoding the degree distribution pk by the following generating func-
tion:

G0(x) =

∞
∑

k=0

pkx
k. (2)

This function is an encoding of the whole distribution since one may obtain pk by differ-
entiating it k times, then evaluate it at x = 0 and divide the result by k!: pk = G

(k)
0 (0)/k!.

Moreover, we have G0(1) =
∑∞

k=0 pk = 1 (this is true for all generating functions encoding
distributions of probabilities), and the average is given by 〈k〉 =

∑∞
k=1 k pk = G′

0(1).
Going further, let us consider the generating function G1 for the number of other

neighbors of a node chosen by following one random link of a randomly chosen node.
This number is distributed according to qk, defined in Equation 1. We then have

G1(x) =
∞
∑

k=0

qkx
k =

∑∞
k=0(k + 1)pk+1x

k

〈k〉 =

∑∞
k=1 kpkx

k−1

〈k〉 =
G′

0(x)

〈k〉 . (3)
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This generating function will be useful in the sequel. For more details on how to use
generating functions in the context of random networks, see [99].

We give now a few results on generating functions which will play an important role.
These results are rewritings of results in [25, 96]. They aim at expressing the existence of
a giant component in terms of generating functions.

Let us consider a random network with degree distribution pk encoded in G0. Let
us suppose that some of its nodes (resp. links, i.e. pairs of stubs) are marked. All
marked nodes are to be removed, we are therefore interested in components composed of
unmarked nodes, i.e. sets of unmarked nodes such that there exists a path composed only
of unmarked nodes (resp. links) between any two of them. We will call such sets of nodes
clusters and we are interested in the existence of a giant such cluster.

Let us consider a node reached by following a random link, i.e. a node obtained by
picking a random stub. We will first compute the number of unmarked nodes that can
be reached from this node by following links between unmarked nodes (resp. unmarked
links) only.

Two cases may occur: either the chosen node (resp. stub) is marked, in which case
the cluster is of size 0, or it is unmarked. Let us denote by rk the probability that it is
unmarked and has k other stubs, and by F1(x) the corresponding generating function:
F1(x) =

∑∞
k=0 rkx

k. Note that the case where the chosen node (resp. stub) is marked
plays no role in F1(x). Note also that F1(1) is the fraction of unmarked nodes (resp. links)
in the network.

When the size of the network tends towards infinity, the clusters have a limit distribu-
tion of sizes. We will call finite clusters the ones with a finite size in this limit distribution,
while we call infinite clusters the others. We denote by H1(x) the generating function for
the distribution of the size of such finite clusters. Notice that H1(x) does not take into
account infinite clusters, if they exist.

Lemma 1.19 [25, 96] The generating function H1(x) satisfies the following self-consistency
condition:

H1(x) = 1 − F1(1) + xF1(H1(x)).

Proof : The cluster is of size 0 if the chosen node (resp. stub) is marked, which happens
with probability 1 − F1(1) since F1(1) is the fraction of unmarked nodes (resp. links).

In the other case, let us denote by rk the probability that the initial node has k
other links, i.e. F1(x) =

∑∞
k=0 rkx

k. Since we consider networks whose size tends towards
infinity, according to the mean-field framework we can neglect cycles (i.e. multiple paths
between two nodes) in finite clusters. Then, the size of the cluster is 1 plus the sum of the
sizes of the clusters at the end of these k links. The distribution for the sum of the sizes
of k independent clusters is given by Hk

1 (x), see [99]. Moreover, the distribution of 1 plus
a value is obtained by multiplying the corresponding generating function of this value by
x. We therefore obtain H1(x) = 1 − F1(1) + x

∑∞
k=0 rkH

k
1 (x) = 1 − F1(1) + xF1(H1(x)).

2
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Theorem 1.20 [25, 96] If τ is the fraction of marked nodes (resp. links) such that
removing all these marked nodes (resp. links) gives a network with no giant component,
then τ is such that F ′

1(1) = 1.

Before proving this result, we need a new approximation, made implicitly in [25, 96].
It consists of assuming that the average size of components in a random network is finite if
and only if there is no giant component. This is an approximation since one can construct
graphs such that all the components are of infinite but sub-linear size (thus there is no
giant component), in which case the average is infinite. Conversely, there may be a giant
component but a finite average size 6. This approximation is however necessary for the
following proof of Theorem 1.20.

Proof : Suppose we marked enough nodes (resp. links) to ensure that there is no
giant cluster, or equivalently that there is no giant component in the network where
marked nodes have been removed. According to the assumption above, the average size
of components is finite (which does not mean that there is no infinite component) and
is given by H ′

1(1). From Lemma 1.19, H ′
1(x) = F1(H1(x)) + xF ′

1(H1(x))H ′
1(x), and since

H1(1) = 1, we obtain

H ′
1(1) =

F1(1)

1 − F ′
1(1)

.

If there is still a giant component in the network the above calculations do not hold
since H1(1) is no longer equal to 1. The calculations are valid only for fractions of removed
nodes (resp. links) in the interval ]τ, 1] for a given τ which is the fraction of marked (thus
removed) nodes (resp. links) above which there is no giant component anymore.

Notice now that the expression above for H ′
1(1) diverges at the point F ′

1(1) = 1, which
defines τ . If we choose to remove a fraction of nodes (resp. links) closer and closer to τ ,
but still larger than it, the size of remaining components grows. It keeps growing until
the point where the fraction of removed nodes (resp. links) is not large enough to destroy
the giant component. At this point, the average size of finite components tends towards
infinity. 2

The result we have just described is very powerful and general. We will see that it
can be applied to many cases and give simple results with direct proofs: to compute
the fraction of nodes (resp. links) to remove from a network in order to ensure that the
resulting network contains no giant component, it is sufficient to give an expression for
F1(x) and then to determine the fraction which leads to F ′

1(1) = 1.
One must however keep in mind that they rely on mean-field approximations, and

that the formalism sometimes makes it difficult to see exactly when approximations are
performed.

6Computing the distribution of component sizes is a difficult task [86, 25].
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We insist on the fact that, in the current state of our knowledge, the above-mentioned
approximations are necessary to derive the results we seek. It is important however to
pursue the development of exact methods in order to validate these results and deepen
our understanding. It is important, too, to know exactly the approximations we make
and when we make them. We will carefully point out the uses of these approximations in
the whole paper.

1.4 Plots and thresholds.

In all plots of this paper, Poisson, C PL and D PL stand for Poisson networks, continuous
power-law networks, and discrete power-law networks, respectively.

The first main kind of plots we will consider in the sequel represents the fraction of
nodes in the largest connected component of a network as a function of the fraction of
removed nodes or links. Figure 1 provides an example. To produce these plots, we sampled
a large number of networks (typically 1 000) on which we repeated the experiment, and
then plotted the average behavior. In order to be able to compare the various kinds
of networks, we selected two typical exponents for the power-law, namely 2.5 and 3,
produced continuous and discrete power-law networks with these exponents, as well as
Poisson networks with the same average degrees. These values are summarized in Table 1.
The figures of this kind are Figures 3, 5, 7, 9, 11, 13 and 15.

average degree
exponent continuous power-law discrete power-law

2.5 2.6 1.9
3 1.6 1.4

Table 1: The exponents we consider in our experiments on power-law networks, and the
average degrees they induce (obtained in practice with minimal value m = 1 and N =
100 000 nodes; they are slightly lower than previsions from Lemma 1.11 for continuous
power-laws, but fit very well the previsions from Lemma 1.13 for discrete power-laws).

In our context, it is usual to witness a threshold phenomenon (typical of statistical
mechanics and more precisely percolation theory, see for instance [111]): there exists a
critical value pc such that, whenever the fraction of removed nodes (or links, depending
on the context) is lower than pc, the network almost surely still has a giant component,
whereas whenever the fraction of removed nodes (or links) is greater than pc the network
almost surely does not have a giant component anymore. In other words, the threshold is
reached when the fraction of nodes in the largest connected component goes to zero (there
is no giant component anymore). These thresholds play a central role in the phenomenon
under consideration and will be often studied in the sequel.

Notice that, for a given finite size network, the notion of threshold does not make
sense: the fraction of nodes in the largest connected component will never be zero. In this
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case, there are several ways to define a threshold. One may notice that, when we reach the
threshold, the slope of the plot of the fraction of nodes in the largest connected component
in function of the number of removed nodes goes to infinity. In finite-size computation,
we may therefore consider that we reach the threshold when this slope is maximal [25].
Notice that this does not always make sense: it may happen, like in Figure 3 (right), that
the slope is maximal at 0 (while the expected value of the threshold is closer to 1). One
can then adopt the convention that in such cases there is no threshold, but this reduces
our ability to discuss practical cases.

Another solution, described in [105], consists of computing the degree distribution of
the network after each removal of a node or a link, and see if it satisfies the criterion of
Theorem 1.15 for it to have a giant component. The threshold is then the fraction of
nodes or links to remove so that the network does not satisfy this criterion anymore.

The solution we choose is to consider that the threshold is reached when the largest
connected component contains less than a given (small) fraction of all the nodes. We
chose a fraction which makes both definitions quite equivalent in our cases, namely 0.05.
In other words, we consider that a network does not have a giant component whenever the
size of its largest connected component is less than 5 % of the whole. Notice that changing
this value may have a impact on numerical results. However, similar observations would
be made.

This leads us to the second main kind of plots encountered in this paper. For a given
node or link removal strategy, these plots represent the threshold as a function of the
main character of each kind of networks: the average degree for Poisson networks, and
the exponent of the power-law for power-law networks. We plot experimental results
obtained by averaging results on large number of networks (typically 1 000), for different
sizes of networks (typically 1 000, 10 000 and 100 000). To help in the comparison between
different kinds of networks, we add on these plots vertical lines at the values quoted in
Table 1. We also plot the theoretical predictions we obtain, together with experimental
results, to make it possible to compare them. The figures of this kind are Figures 4, 6, 8,
10, 12, 14 and 16.

We will see that the experimental results do not always fit analytic predictions very
closely. This is influenced in part by the choice to consider that a giant component must
contain at least 5 % of the nodes, as explained above. But other factors impact this.
In the case of random failures, for instance, there is a significant difference between the
infinite limit and the finite case, even for large sizes. This is why we present results for
both finite cases and the infinite limit when possible. This makes it possible to observe
the error due to the asymptotic approximation. More generally, the difference between
predictions and numerical values are due to the approximations made in the derivations
of the analytic results.

For Poisson networks, for instance, we are faced with the same problem as the one
concerning the evaluation of the maximal degree of finite networks, see Section 1.1 and
Figure 2: since some parameters can only take integer values, their analytic evaluation
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may lead to values quite different from their true values. Therefore, we have chosen to use
only the analytic values of the threshold for which the error due to this effect is minimal.

Notice finally that the plot for a particular instance may vary significantly from the
average behavior, in particular for power-law and/or small networks. We do not enter in
these considerations here.

1.5 Towards a more realistic modeling

Modeling large networks is a complex task and many parameters have to be taken into
account. The modeling approach we use in this paper relies on random sampling: given
a set of properties of a real network that one wants to reproduce, the goal is to choose
with uniform probability a graph among the set of all graphs having these properties.
This approach has the advantage of allowing to study precisely the impact of a given
property: if a certain behavior is observed on graphs obtained with such a model, then
we can conclude that this behavior is a consequence of the studied property. This type
of model is also well-suited for exact proofs. However, it also suffers from limitations:
some properties cannot currently be reproduced by this type of models. It is for instance
currently impossible to sample a graph uniformly at random among all graphs having a
given clustering coefficient, or even a given number of triangles [95, 61, 60]. In summary,
this type of model is well-adapted for understanding the impact of some properties and for
formal proofs, but is not currently able to reproduce all properties of real-world networks.

In this paper, we focus on the degree distribution of graphs, and use models produc-
ing random graphs with given degree distributions. However, the sole degree distribution
cannot reproduce the complexity of networks (for instance it is possible to produce com-
pletely different networks having the exact same degree distribution). It has also been
shown that when the sole degree distribution is taken into account, high degree nodes
tend to be connected to each other, which might not be realistic [46].

Efforts have therefore been made to study other properties taking into account the
tendency of nodes to be linked to nodes of the same degree or not, and incorporate them
into random models. For instance, this can be captured by the assortativity parame-
ter [94], degree correlations which are the probabilities P (d|d′) that a node of degree d is
linked to another node of degree d′ [17, 119], or by the s(g) parameter which is the sum
of didj for all links (i, j), normalized by the larger value obtainable on a graph with the
same degree sequence [46, 81].

Some authors have studied network resilience to failures and attacks, in a similar way
as what we present in this paper, on random networks with degree correlations. In [119],
the authors study the resilience of assortative networks (nodes are linked to similar nodes)
and disassortative networks to failures. The resilience depends on the second moment of
the degree distribution and the correlations: assortative networks are very resilient even
when the second moment of the degree distribution is finite, while disassortative networks
can be fragile when the second moment is divergent.
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Another, and orthogonal, modeling approach consists of taking into account properties
that play a role in the construction of a network. For instance, in the case of the internet,
one can consider the way routers work, or other technological or economic constraints.
One then iterates an evolution process which respects a set of properties and produces in
the end a graph similar to the original network.

This type of approach has the advantage of being able to take into account many prop-
erties that cannot be considered in random modeling, for instance clustering [120, 71, 45,
44, 72, 66]. This makes it relevant for producing graphs for simulation purposes. However,
the evolution rules in these models create graph structures that are hard to characterize,
and in the end the properties of the obtained graphs are not always fully understood. A
simple example of this is the preferential attachment model [4], which produces trees (if
each new node creates a single link) or graphs with no nodes of degree one (if new nodes
create more than one link). These models therefore allow to study the impact of the
construction rule on the observed behaviors, but do not allow yet to study the impact of
some topological properties of the networks. Also, in the case of optimization models, it
is not always easy to find interesting parameters to optimize. Indeed performance related
measures are quite natural in the context of computer networks but can be harder to
find in social networks for instance. In summary, this approach is relevant for taking into
account complex network properties, and for simulation purposes, but does not allow to
study precisely the impact of global topological properties. Therefore, these two types of
approaches are complementary.

The HOT framework, Heuristically Optimal Topology or Highly Optimized/Organized
Tolerance/Tradeoffs, belongs to this approach. This framework has been mainly used in
the context of the internet [46, 82]. The authors of these papers propose to rewire a
network with a given degree distribution in a non random fashion which preserves the
degree sequence. The nonrandomness consists of rewiring with the aim of optimizing
some properties of the networks to mimic real properties, for instance technological or
economical ones. This kind of optimization can also be found in the context of biological
systems [38].

Concerning network robustness, we only consider here the size of the largest compo-
nent, which describes the ability of nodes to communicate, as an indicator of the state of
the network after failures or attacks. However other approaches have been introduced.

In [78, 67] the authors use the efficiency, also called average inverse geodesic length,
which is computed as 1/(N(N − 1))

∑

i,j 1/dij, where dij is the distance between i and j.
An high efficiency means that pairs of nodes are on average close to each other. This is
very similar to the average distance but allows to consider disconnected networks, which is
pertinent in our context. In a similar fashion, the authors of [101] introduce the Diameter-
Inverse-K (DIK) measure defined as d/K, where d is the average distance between pairs
of connected nodes, and K is the fraction of pairs of nodes which are connected. It allows
to take into account disconnected graphs and for connected graphs allows to distinguish
between short or large average distance. In [37], the authors consider that using shortest
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paths can put a higher load on some nodes which can increase when failures or attacks
occur. In consequence, each node is associated with a given capacity that cannot be
exceeded without a loss of efficiency of the node, which forces the use of longer paths.
This concept has mainly been used for cascading failures and attacks but could be used
as a more evolved definition of efficiency.

More specific measures have also been introduced. In particular, in the case of the
internet, nodes and links are used to carry some demand and the efficiency of the network
can be measured as its capacity at carrying it. In [82, 46], the authors define the maximal
throughput based on the bandwidth of nodes, a routing matrix and the traffic demand
for all nodes. In the case of the internet, high degree nodes are at the periphery of the
network and the fragility of the network lies more on the low degree core nodes than on
the high degrees periphery nodes.

Some attack strategies based on these measures of importance have also been intro-
duced. For instance, attack strategies that focus on important nodes rather than on large
degree nodes. In [67] for instance, the authors compare the removal of highest degree
nodes with the removal of highest betweenness nodes. Furthermore, the order of removal
can be either chosen before any removal occurs, or recalculated after each removal.

Finally, more complex types of failures and attacks, like cascading failures, have been
considered in the literature, for instance in [35, 80, 36, 100, 89, 88, 108, 124].

We presented here a quick overview of the different types of graph modeling that exist
in the literature, together with a brief discussion on their advantages and drawbacks. We
also presented other attack or failures strategies, as well as other definitions of network
resilience. Studying all this in detail is however out of the scope of this paper.

2 Resilience to random failures.

The aim of this section is to study the resilience of random networks to random failures.
Recall that random node (resp. link) failures consist of the removal of randomly chosen
nodes (resp. links).

We will first consider random node failures (Section 2.1) on general random networks,
and then apply the obtained results to Poisson and power-law networks. We will see that
the empirical observations cited in the preliminaries concerning the different behaviors of
Poisson and power-law networks are formally confirmed. In order to deepen our under-
standing of random node failures, we will consider in Section 2.2 these failures from the
link point of view: what fractions of the links are removed during random node failures?
Finally, we will consider random link failures (Section 2.3).
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2.1 Random node failures.

In this section, we first present a general result on random node failures, independent of
the type of underlying network, as long as it is a random network. We detail the two
main proofs proposed for this result [25, 96, 30, 34]. We then apply this general result to
the special cases under concern: Poisson and power-law (both discrete and continuous)
networks. Figure 3 displays the behaviors observed for these three types of networks.
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Figure 3: Size of the largest connected component as a function of the fraction of randomly
removed nodes. For technical details on our plots see Section 1.4.

As explained in the preliminaries, there is a fundamental difference between Poisson
and power-law networks: in the Poisson case the giant component is destroyed when a
fraction of the nodes significantly lower than 1 has been removed, whereas in the power-
law cases one needs to remove almost all nodes. The aim of this section is to formally
confirm this, and give both formal and intuitive explanations of this phenomenon.

2.1.1 General results

Our aim here is to prove the following general result, which gives the value of the threshold
for random node failures.

Theorem 2.1 [25, 96, 30, 34] The threshold pc for random node failures in large random
networks with degree distribution pk is given by

pc = 1 − 〈k〉
〈k2〉 − 〈k〉 .

Notice that this theorem states that in some cases pc might be less than 0. But we have:

pc = 1 − 〈k〉
〈k2〉 − 〈k〉 ≤ 0 ⇐⇒ 〈k2〉 − 2〈k〉 ≤ 0.
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According to Theorem 1.15, this implies that the network almost surely has no giant
component. In this case, the notion of threshold therefore has no meaning, and the
theorem is irrelevant.

Theorem 2.1 has been derived in different ways in the literature. The two main
methods were proposed in [30, 34] and in [25, 96]. We detail both approaches below.

Let us begin with the proof in [30, 34]. It relies on the fact that random node failures
on a random network lead to a network which may still be considered as random (with a
different degree distribution), as explained in the preliminaries. Therefore, by computing
the degree distribution of this network, one can use the criterion in Theorem 1.15 to
decide if there is still a giant component or not.

Lemma 2.2 [30, 34] In a large random network with degree distribution pk, after the
removal of a fraction p of the nodes during random node failures the degree distribution
pk(p) is given by

pk(p) =

∞
∑

k0=k

pk0

(

k0

k

)

(1 − p)kpk0−k.

Proof : If a given node had degree k0 before the removal, then the probability that it
has degree k′ ≤ k0 after the removal is

(

k0

k′

)

(1− p)k′

pk0−k′

. Indeed, k0 − k′ of its neighbors
have been removed with probability p, and k′ of its neighbors have not been removed with
probability (1 − p). 2

In order to apply Theorem 1.15, we now have to compute the first and second moments
of the new degree distribution:

Proposition 2.3 [30, 34] With the notations of Lemma 2.2, the first and second moments
of the degree distribution pk(p) are

〈k(p)〉 = (1 − p)〈k〉 and 〈k2(p)〉 = (1 − p)2〈k2〉 + p(1 − p)〈k〉.

In order to prove this proposition, we need the following technical lemma which gives the
first and second moment of a binomial distribution.

Lemma 2.4 For any integer k and k0, and any real p, we have

k0
∑

k=0

k

(

k0

k

)

(1 − p)kpk0−k = (1 − p)k0,

and
k0
∑

k=0

k2

(

k0

k

)

(1 − p)kpk0−k = (1 − p)2k2
0 + p(1 − p)k0.
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Proof : Let us start with:

(x + y)k0 =

k0
∑

k=0

(

k0

k

)

xkyk0−k.

If we differentiate this equality with respect to x and then multiply the resulting equality
by x, we obtain:

xk0(x + y)k0−1 =

k0
∑

k=0

(

k0

k

)

kxkyk0−k.

We obtain the first claim by setting x = 1 − p and y = p in this equation.
If again we differentiate the last equation with respect to x and multiply the resulting
equality by x, we obtain:

x(k0(x + y)k0−1 + xk0(k0 − 1)(x + y)k0−2) =

k0
∑

k=0

k2

(

k0

k

)

xkyk0−k.

By setting x = 1 − p and y = p we obtain:

∑k0

k=0 k2
(

k0

k

)

(1 − p)kpk0−k = (1 − p)k0 + (1 − p)2k0(k0 − 1)
= (1 − p)2k2

0 + p(1 − p)k0,

which ends the proof. 2

We can now prove Proposition 2.3:
Proof : The claims follow from the following series of equations.

〈k(p)〉 =
∑∞

k=0 kpk(p)

=
∑∞

k=0 k
∑∞

k0=k pk0

(

k0

k

)

(1 − p)kpk0−k

=
∑∞

k0=0

∑k0

k=0 kpk0

(

k0

k

)

(1 − p)kpk0−k

=
∑∞

k0=0 pk0

∑k0

k=0 k
(

k0

k

)

(1 − p)kpk0−k

=
∑∞

k0=0 pk0(1 − p)k0

= (1 − p)〈k〉
where we made an inversion of the sum between the second and third line and used
Lemma 2.4 between lines four and five.

〈k2(p)〉 =
∑∞

k=0 k2pk(p)

=
∑∞

k=0 k2
∑∞

k0=k pk0

(

k0

k

)

(1 − p)kpk0−k

=
∑∞

k0=0

∑k0

k=0 k2pk0

(

k0

k

)

(1 − p)kpk0−k

=
∑∞

k0=0 pk0

∑k0

k=0 k2
(

k0

k

)

(1 − p)kpk0−k

=
∑∞

k0=0 pk0 [(1 − p)2k2
0 + p(1 − p)k0]

= (1 − p)2〈k2〉 + p(1 − p)〈k〉
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using the same tricks as for the first series of equations. 2

Finally, this yields the following proof for Theorem 2.1:
Proof : The threshold pc is reached when the network does not have a giant component
anymore. From Theorem 1.15, this happens when 〈k2(pc)〉 − 2〈k(pc)〉 = 0. From Propo-
sition 2.3, this is equivalent to (1 − pc)[(1 − pc)〈k2〉 − (2 − pc)〈k〉] = 0, which gives the
result. 2

Let us now describe the method developed in [25, 96], to obtain Theorem 2.1. It relies
on the use of generating functions (see Section 1.3), each node being marked as absent
with probability p and as present with probability 1 − p.

Recall that F1(x) is the generating function for the probability of finding an unmarked
(i.e. present) node with k (marked or unmarked) other neighbors at the end of a randomly
chosen link. In our case, F1(x) therefore is

F1(x) =

∞
∑

k=0

(1 − p)qkx
k = (1 − p)G1(x),

where G1(x) =
∑∞

k=0 qkx
k is the generating function for the probability of finding a node

with k others neighbors at the end of a randomly chosen link, defined in Section 1.3. We
can then prove Theorem 2.1 as a direct consequence of Theorem 1.20:
Proof : From Theorem 1.20, the threshold pc is reached when F ′

1(1) = 1, which is
equivalent here to (1 − pc)G

′
1(1) = 1. Therefore pc satisfies

pc = 1 − 1

G′
1(1)

.

We know that G1(x) =
∑∞

k=0 qkx
k =

∑∞
k=1 kpkx

k−1/〈k〉. Therefore G′
1(x) =

∑∞
k=2 k(k −

1)pkx
k−2/〈k〉 =

∑∞
k=0 k(k − 1)pkx

k−2/〈k〉, and G′
1(1) = 〈k2〉−〈k〉

〈k〉
. This ends the proof. 2

The two proofs have different advantages and drawbacks. The first one is self contained
and relies only on classical probabilistic notions, but it is quite long and technical. The
second one is very concise and simple, but it relies on the generating function formalism,
which has to be first introduced and understood. These differences do not only have an
impact on the aspect of the proofs: they also imply that one has to think carefully about
each approximation in the first approach, while they are hidden in the generating function
formalism in the second one. As a counterpart, the first approach makes it easier to tune
and locate approximations precisely.
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2.1.2 The cases of Poisson and power-law networks

Theorem 2.1 is valid for any random network, whatever its degree distribution. To study
the behavior of Poisson and power-law networks in case of random node failures, we
therefore only have to apply it to these cases. More precisely, we will consider Poisson,
continuous power-law and discrete power-law networks, and, for each of these classes,
both finite networks with N nodes and finite networks with size tending towards infinity.
Comparison with simulations will be provided at the end of the subsection.

Note that we will derive all the results for finite size networks as corollaries of results
presented in previous sections. The results for networks with size tending towards infin-
ity can then be derived either from results of the previous sections, or as limits of the
corresponding finite cases.

Corollary 2.5 For large Poisson networks with N nodes and average degree z, the thresh-
old pc for random node failures is given by

pc = 1 −
∑K

k=0 zk/(k − 1)!
∑K

k=0 zk/(k − 2)!
,

where K is the maximal degree or the network, related to pk and N by Lemma 1.2.

Proof : Direct application of Theorem 2.1 using Lemma 1.9. 2

Corollary 2.6 [30] For Poisson networks with size tending towards infinity and average
degree z, the threshold pc for random node failures is

pc = 1 − 1

z
.

Proof : Direct application of Theorem 2.1 using Lemma 1.10. 2

Corollary 2.7 [30] For large continuous power-law networks with N nodes, exponent α
and minimal degree m, the threshold pc for random node failures is

pc =



















1 −
[

2−α
3−α

m − 1
]−1

if α > 3

1 −
[

2−α
α−3

mN
3−α
α−1 − 1

]−1

if 2 < α < 3

1 −
[

2−α
3−α

mN
1

α−1 − 1
]−1

if 1 < α < 2.
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Proof : We can rewrite Theorem 2.1 into pc = 1 − 1/(〈k2〉/〈k〉 − 1). From the approxi-
mations of 〈k〉 and 〈k2〉 in Lemma 1.11, we then obtain:

pc =











1 −
[

2−α
3−α

m − 1
]−1

α > 3

1 −
[

2−α
α−3

mα−2K3−α − 1
]−1

2 < α < 3

1 −
[

2−α
3−α

K − 1
]−1

1 < α < 2.

Using the evaluation of K in Lemma 1.3, we obtain the result. 2

Corollary 2.8 [30] For continuous power-law networks with size tending towards infinity,
exponent α and minimal degree m, the threshold pc for random node failures is

pc =

{

1 −
[

2−α
3−α

m − 1
]−1

if α > 3

1 if 1 < α < 3.

Proof : Direct application of Corollary 2.7 when the size tends towards infinity. 2

Corollary 2.9 For large discrete power-law networks with N nodes and exponent α, the
threshold pc for random node failures is given by

pc = 1 − H
(α−1)
K

H
(α−2)
K − H

(α−1)
K

,

where H
(α)
K =

∑K
k=1 k−α is the K-th harmonic number for α , where K is the maximal

degree or the network, related to pk and N by Lemma 1.4.

Proof : Direct application of Theorem 2.1 using Lemma 1.13. 2

Corollary 2.10 [25] For discrete power-law networks with size tending towards infinity
and exponent α, the threshold pc for random node failures is

pc = 1 − ζ(α − 1)

ζ(α − 2) − ζ(α − 1)
.

Proof : Direct application of Corollary 2.9 when the size tends towards infinity. 2

We plot numerical evaluations of these results in Figure 4, together with experimental
results. We also give in Table 2 the thresholds for specific values of the exponent and the
average degree.
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Figure 4: Thresholds for random node failures. For technical details on our plots, on
the computation of thresholds, and for discussions on the origins of differences between
experiments and predictions, see Section 1.4.

continuous Poisson discrete Poisson
power-law power-law

α prev. exp. prev. exp. prev. exp. prev. exp.
2.5 1 0.74 0.62 0.59 1 0.67 0.47 0.45
3 1 0.55 0.38 0.34 1 0.32 0.29 0.26

Table 2: Values of the threshold for random node failures on discrete and continuous
power-law networks of exponents 2.5 and 3, and on Poisson networks having the same
average degree (see Table 1). The values are the analytic previsions at the infinite limit
and the ones obtained for experiments with networks of N = 100 000 nodes.

The central point here is to notice that power-law and Poisson networks display a
qualitatively different behavior in case of node failures. In theory, power-law networks
have a threshold pc = 1 as long as the exponent is lower than 3 (most real-world cases),
which means that all nodes have to be removed to achieve a breakdown. On the contrary,
for Poisson networks only a finite (i.e. strictly lower than 1) fraction of the nodes has
to be removed. This leads to the conclusion that power-law networks are significantly
more resilient to node failures than Poisson networks, which confirms the experimental
observations discussed in introduction.

However, this result is moderated by the two following observations. First, Poisson
networks may have a quite large threshold when their average degree grows (which appears
from both analytic previsions and experiments). Second, and more importantly, power-
law networks of finite size N are much more sensitive to failures than what is predicted
for the infinite limit. This is already true from the analytic previsions, and even more
pronounced for experiments.

This is particularly clear when one compares the behavior of networks of various kinds
but with the same average degree, see Table 2. The experimental thresholds of Poisson
networks are at most 38% smaller than those for power-law networks of the same average
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degrees.
We may therefore conclude that power-law networks are indeed more resilient to ran-

dom node failures than Poisson ones, but that the difference in practice is not as striking
as predicted by the infinite limit approximations.

2.2 Link point of view of random node failures.

As discussed in the preliminaries, one may wonder what happens in networks during
random node failures in terms of the number of links removed. The plots of the size
of the largest component as a fraction of the number of links removed during random
node failures are given in Figure 5 (notice that these plots are nothing but (nonlinear)
rescalings of the plots in Figure 3). The question we address here therefore is: how many
links have been removed when we reach the threshold for random node failures? This is
not equivalent to random removals of links, which are studied in the next subsection.
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Figure 5: Size of the largest connected component as a function of the fraction of removed
links, during random node failures. For technical details on our plots see Section 1.4.

Like in the previous subsection, we will begin with general results and then apply
them to the cases under concern.

2.2.1 General results

One can evaluate the number of links removed during random node failures as follows.

Proposition 2.11 In large random networks, after the removal of a fraction p of the
nodes during random nodes failures, the fraction of removed links is m(p) = 2p − p2.

Proof : Let us consider a network in which we randomly remove a fraction p of the nodes.
Since the nodes are chosen randomly, we can assume that the same fraction p of the stubs
in the network were attached to the removed nodes. Each stub is kept with probability
(1−p), the fraction of pairs of stubs linking non removed nodes is therefore (1−p)2. This
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last quantity is the fraction of non removed links and 1− (1− p)2 = 2p− p2 is finally the
fraction of removed links. 2

We can now use this result to study the threshold for random node failures in terms
of the fraction of removed links.

Corollary 2.12 The fraction of links removed at the threshold pc for random node failures
in large random networks with degree distribution pk is

m(pc) = 2pc − p2
c = 1 −

( 〈k〉
〈k2〉 − 〈k〉

)2

.

Proof : Immediate from Theorem 2.1 and Proposition 2.11. 2

2.2.2 The cases of Poisson and power-law networks

We now apply the general result above to the cases of interest, which gives a corollary in
each case.

Corollary 2.13 For large Poisson networks with N nodes and average degree z, the frac-
tion of links removed at the threshold pc for random node failures is

m(pc) = 1 −
(

∑K
k=0 zk/(k − 1)!

∑K
k=0 zk/(k − 2)!

)2

,

where K is the maximal degree or the network, related to N by Lemma 1.2.

Proof : Direct application of Corollaries 2.5 and 2.12. 2

Corollary 2.14 For Poisson networks with size tending towards infinity and average
degree z, the fraction of links removed at the threshold pc for random node failures is

m(pc) = 1 − 1

z2
.

Proof : Direct application of Corollaries 2.6 and 2.12. 2

Corollary 2.15 For large continuous power-law networks with N nodes, exponent α and
minimal degree m, the fraction of links removed at the threshold pc for random node
failures is

m(pc) =



















1 −
[

2−α
3−α

m − 1
]−2

α > 3

1 −
[

2−α
α−3

mN
3−α
α−1 − 1

]−2

2 < α < 3

1 −
[

2−α
3−α

mN
1

α−1 − 1
]−2

1 < α < 2.
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Proof : Direct application of Corollaries 2.7 and 2.12. 2

Corollary 2.16 For continuous power-law networks with size tending towards infinity,
exponent α and minimal degree m, the fraction of links removed at the threshold pc for
random node failures is

m(pc) =

{

1 −
[

2−α
3−α

m − 1
]−2

α > 3

1 1 < α < 3.

Proof : Direct application of Corollaries 2.8 and 2.12. 2

Corollary 2.17 For large discrete power-law networks with N nodes and exponent α, the
fraction of links removed at the threshold pc for random node failures is given by

m(pc) = 1 −
(

H
(α−1)
K

H
(α−2)
K − H

(α−1)
K

)2

,

where H
(α)
K =

∑K
k=1 k−α is the K-th harmonic number for α , and K is the maximal

degree or the network, related to N by Lemma 1.4.

Proof : Direct application of Corollaries 2.9 and 2.12. 2

Corollary 2.18 For discrete power-law networks with size tending towards infinity and
exponent α, the fraction of links removed at the threshold pc for random node failures is

m(pc) = 1 −
(

ζ(α − 1)

ζ(α − 2) − ζ(α − 1)

)2

.

Proof : Direct application of Corollaries 2.10 and 2.12. 2

We plot numerical evaluations of these results in Figure 6, together with experimental
results. We also give in Table 3 the thresholds for specific values of the exponent and the
average degree.

As expected, these results are not qualitatively different from what is observed from
the node point of view. Again, power-law networks are more resilient than Poisson ones,
but the difference in practice is not as important as in the predictions.

Notice also that the fraction of removed links is significantly larger at the threshold
than the fraction of removed nodes. This is a simple consequence of the fact that removing
a node leads to the removal of both its stubs and some of its neighbors, as explained in
the proof of Proposition 2.11.
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Figure 6: Thresholds for the link point of view of random node failures. For technical
details on our plots, on the computation of thresholds, and for discussions on the origins
of differences between experiments and predictions, see Section 1.4.

continuous Poisson discrete Poisson
power-law power-law

α prev. exp. prev. exp. prev. exp. prev. exp.
2.5 1 0.93 0.85 0.83 1 0.89 0.72 0.69
3 1 0.80 0.61 0.57 1 0.54 0.49 0.44

Table 3: Values of the threshold for the link point of view of random node failures on dis-
crete and continuous power-law networks of exponents 2.5 and 3, and on Poisson networks
having the same average degree (see Table 1). The values are the analytic previsions at
the infinite limit and the ones obtained for experiments with networks of N = 100 000
nodes.

2.3 Random link failures.

Until now we observed the behavior of random network when nodes are randomly removed,
both from the nodes and from the link points of view. One may then wonder what happens
when we remove links rather than nodes, still at random. This may model link failures,
just like random removal of nodes models node failures.

Typical behaviors for each type of random networks under concern, when one randomly
removes links, are plotted in Figure 7. Just like in the case of random node failures (see
Figure 3), there is a qualitative difference between Poisson and power-law networks. Going
further, the plots are very similar to the ones for node failures. We will see that the formal
results for both cases are indeed identical.

Again, in this section we will first prove a general result which we apply to the three
cases under concern. We then compare formal results to experiments, and discuss them.
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Figure 7: Size of the largest connected component as a function of the fraction of randomly
removed links. For technical details on our plots see Section 1.4.

2.3.1 General results

The goal of this section is to prove that the the threshold mc for random link failures
actually is the same as the one for random node failures (see Theorem 2.1):

Theorem 2.19 [25, 31] The threshold mc for random link failures in large random net-
works with degree distribution pk is

mc = 1 − 〈k〉
〈k2〉 − 〈k〉 .

Just as we did for Theorem 2.1, we will present the main ways to derive this result,
as described in [25, 96] and in [31, 34]. They are very similar to the ones for Theorem 2.1
therefore we will present them in less detail.

The first proof is based on the fact that, as explained in the preliminaries, a ran-
dom network in which one randomly removes links may still be viewed as a random
network, with another degree distribution. Therefore, one can use the criterion given in
Theorem 1.15 with this new degree distribution to decide if the network still has a giant
component. We therefore begin with the computation of the new degree distribution.

Lemma 2.20 [31] In a large random network with degree distribution pk, after the re-
moval of a fraction m of the links during random link failures the degree distribution pk(m)
is given by

pk(m) =
∞
∑

k0=k

pk0

(

k0

k

)

(1 − m)kmk0−k.

Proof : Removing randomly a fraction m of the links corresponds to removing randomly
a fraction m of the stubs. If a given node has degree k0 before the removals, then the
probability that its degree becomes k′ ≤ k0 is

(

k0

k′

)

(1 − m)k′

mk0−k′

. Indeed, k0 − k′ of its
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stubs have been removed, with probability mk0−k′

, and k′ of its stubs are still present,
with probability (1 − m)k′

. The result follows. 2

This leads to the first proof of Theorem 2.19:
Proof : Notice that Lemma 2.20 actually is nothing but a direct rewriting of Lemma 2.2
on random node failures. Therefore Theorem 2.19 is derived from Lemma 2.20 and The-
orem 1.15 in exactly the same way as Theorem 2.1 is derived from Lemma 2.2 and The-
orem 1.15. 2

The other method used to obtain this result [25] relies on generating functions. As
explained in the preliminaries, each link is marked as present with probability 1−m, and
absent with probability m.

Recall that F1(x) is the generating function for the probability that, when following a
random link, this link is unmarked (i.e. present) and leads to a node with k other (marked
or unmarked) links emanating from it. In our case, F1(x) therefore is

F1(x) =

∞
∑

k=0

(1 − m)qkx
k = (1 − m)G1(x).

This leads us to the second proof of Theorem 2.19:
Proof : Again, the generating function F1(x) obtained here is exactly the same as the
one obtained in Section 2.1.1, page 27, for random node failures. The proof therefore is
the same as the proof for Theorem 2.1, page 27. 2

2.3.2 The cases of Poisson and power-law networks

Since theoretical results for random link failures are the same as those for random node
failures, we focus in this section on experimental results. See Figure 8 and Table 4.

continuous Poisson discrete Poisson
power-law power-law

α prev. exp. prev. exp. prev. exp. prev. exp.
2.5 1 0.90 0.62 0.60 1 0.84 0.47 0.46
3 1 0.67 0.38 0.35 1 0.41 0.29 0.27

Table 4: Values of the threshold for random link failures on discrete and continuous
power-law networks of exponents 2.5 and 3, and on Poisson networks having the same
average degree (see Table 1). The values are the analytic previsions at the infinite limit
and the ones obtained for experiments with networks of N = 100 000 nodes.
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Figure 8: Thresholds for random link failures. For technical details on our plots, on
the computation of thresholds, and for discussions on the origins of differences between
experiments and predictions, see Section 1.4.

In principle, these plots and values should be exactly the same as the ones in Figure 4
and in Table 2. This is true for the analytic previsions, but experiments differ significantly,
which deserves more discussion.

When we consider the size of the largest connected component as a function of the
fraction of removed nodes/links, see Figures 3 and 7, then it appears clearly that, though
the plot seems to reach 0 at the same fraction, they do not have the same shape. Since
we chose to define the threshold as the value for which the largest connected component
reaches 5 % of the total number of nodes, the different shapes give different experimental
thresholds.

As explained in Section 1.4, the 5 % value is somewhat arbitrary, but we insist on the
fact that, in the case of power-law networks considered in these experiments, the other
main method for computing the threshold cannot be applied: in several cases, the slope
of the plots for these networks is always decreasing (see Section 1.4).

Finally, the same conclusions as the ones for random node failures hold: power-law
networks are more resilient to random link failures than Poisson ones, but the difference
in practice is not as striking as predicted by the results for the infinite limit.

2.4 Conclusion on random failures.

Two main formal conclusions have been reached in this section concerning the case where
the size of the network tends towards infinity. First, as expected from the empirical
results discussed in the introduction, Poisson and power-law networks behave qualitatively
differently in case of (node or link) random failures: whereas Poisson networks display a
clear threshold, in power-law ones all the nodes or links have to be removed to achieve
a breakdown. Second, what happens in case of random link failures is very similar, if
not identical, to what happens in case of random node failures. On the other hand, link
point of view does not change the observations qualitatively but the fraction of removed
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links at the threshold is significantly larger than the fraction of removed nodes. This also
means that the thresholds for the link point of view of random node failures are larger
than the thresholds for random link failures.

The qualitative difference between Poisson and power-law networks leads to the con-
clusion that power-law networks are much more resilient to random failures. This may be
used in the design of large scale networks, and it may also be seen as an explanation of the
fact that real-world networks like the internet or biological networks seem very resilient
to random errors. This has been widely argued in the literature, see for instance [42, 9].

These results however concern only the limit case where the size of the network tends
towards infinity. When one considers networks of a given size N , even for very large
values of N , then the difference between Poisson and power-law networks often is much
less striking than predicted. This is even clearer when one considers the link point of
view.

3 Resilience to attacks.

The aim of this section is to study the resilience of random networks to targeted attacks.
In our context, an attack on a network consists of a series of node or link removals, like
failures. The difference lies in the fact that the removals are not random anymore; instead,
the nodes or links to remove are chosen according to a strategy.

Obviously, one may define many different strategies, and failures themselves could
be considered as attacks where the strategy consists of choosing randomly. More subtle
strategies can however be much more efficient to destroy a network. We already presented
such a strategy, defined in the initial paper on the topic [7], which received since then
much attention. It consists of the removal of nodes in decreasing order of their degree;
we will call this strategy a classical attack.

We will first consider these classical attacks (Section 3.1) on general random networks,
and then apply the obtained results to Poisson and power-law networks. In order to deepen
our understanding of classical attacks, we will consider these attacks from the link point
of view (Section 3.2): what fractions of the links are removed during classical attacks?
We will also introduce new attack strategies (both on nodes and on links) to give deeper
understanding on classical attacks (Section 3.3). Finally we will conclude this section
with a detailed discussion on the efficiency of classical attacks, as well as other attack
strategies (Section 3.4).

3.1 Classical attacks.

In this section, we first present a general result on classical attacks, independent of the
type of underlying network, as long as it is a random network. We detail the two main
proofs proposed for this result in [25, 96] and [31, 34]. We then apply this general result
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to the special cases under concern: Poisson and power-law (both discrete and continuous
versions) networks. Figure 9 displays the behaviors observed for these three types of
networks.
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Figure 9: Size of the largest connected component as a function of the fraction of nodes
removed during classical attacks. For technical details on our plots see Section 1.4.

As explained in the preliminaries, there is no fundamental difference in the behaviors
of Poisson and power-law networks in case of classical attacks: in both cases the largest
connected component is quickly destroyed. It is important however to notice that Poisson
networks are significantly more resilient than power-law ones. The aim of this section is
to formally confirm these observations, and give both formal and intuitive explanations.

3.1.1 General results

Our aim here is to prove the following general result, which gives the value of the threshold
for classical attacks.

Theorem 3.1 [25, 31] The threshold pc for classical attacks in random networks, with
size tending towards infinity and degree distribution pk, is given by

∑K(pc)
k=0 k(k − 1)pk

〈k〉 = 1,

where K(pc) is the maximal degree in the network after the attack, related to pc by
Lemma 3.2.

As in the case of failures, there are two main ways to derive this result, proposed in
[25, 96] and [31, 34]. They both rely on the following result which concerns the maximal
degree of random networks after removal of a fraction p of the nodes during a classical
attack, which we denote by K(p).
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Lemma 3.2 [31] In a random network with size tending towards infinity and degree dis-
tribution pk, after removal of a fraction p of the nodes during a classical attack the maximal
degree K(p) is given by

p = 1 −
K(p)
∑

k=0

pk.

Proof : Before the removals, the network has a maximal degree K. The new maximal
degree K(p) can then be evaluated using

∑K
k=K(p)+1 pk = p. From Lemma 1.1, this

is equivalent to
∑∞

k=K(p) pk = p + 1
N

(neglecting the difference between
∑∞

k=K pk and
∑∞

k=K+1 pk). Since N tends to infinity, we can neglect 1/N , which gives p =
∑∞

k=K(p)+1 pk,
hence the result. 2

In order to compute the threshold for random networks with a given degree distribution
and size tending towards infinity, one therefore has to proceed in two steps: first compute
the value of K(pc) using Theorem 3.1, then obtain the value of pc using Lemma 3.2.
Note that we will mainly use Lemma 3.2 to compute a fraction of removed nodes given a
maximal degree and not the converse.

Before entering in the core of the proofs, notice that the above results hold for random
networks with size tending towards infinity. It would be possible to write equivalent results
for large networks of finite size N , by taking into account the (original) maximal degree
given by Lemma 1.1. However, we do not consider this case in this section for two main
reasons. First, and most important, the results for large networks of finite size N would
be very similar to the ones for the infinite limit. Indeed, the equivalent of Lemma 3.2 for
finite networks is:

p = 1 −
K(p)
∑

k=0

pk −
1

N

(where we neglected the difference between
∑∞

K+1 pk and
∑∞

K pk). For large networks,
1/N is very small compared to p when p is the threshold for classical attacks (which
we will prove later in this section). Therefore the maximal degree of a large network
of finite size N after a classical attack is very close to the one at the infinite limit.
Second, considering large networks of finite size N would make the following computations
much more intricate. One must however keep in mind that the case of finite networks is
tractable, and results can be derived in a very similar way.

We now give the two main proofs available for Theorem 3.1. The first one, from
[31, 34], uses the following preliminary result.

Lemma 3.3 [31] In a random network with size tending towards infinity and degree dis-
tribution pk, when a fraction p of the nodes is removed during a classical attack, the
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fraction s(p) of stubs attached to removed nodes is given by

s(p) = 1 − 1

〈k〉

K(p)
∑

k=0

kpk,

where K(p) is the maximal degree of the network after the attack, related to p by Lemma 3.2.

Proof : Each node of degree k has k stubs attached to it. Therefore the fraction of
stubs attached to all nodes of degree k is equal to kpk/〈k〉. Therefore, the total number
of stubs attached to removed nodes is s(p) = 1

〈k〉

∑K
K(p)+1 kpk. At the infinite limit, this

is equivalent to s(p) = 1
〈k〉

∑∞
K(p)+1 kpk, hence the result. 2

We can now give the first proof of Theorem 3.1:
Proof : The central point here is to understand that the network obtained after the
removal of a fraction p of the nodes during a classical attack is equivalent to a random
network on which random link failures occurred.

Indeed, a classical attack has two kinds of effects: it reduces the maximal degree in
the network by removing the nodes with highest degree, and it removes the links attached
to these nodes. If we consider links as pairs of randomly chosen stubs, as explained in the
preliminaries, then a classical attack removes all the stubs attached to the removed nodes
and some other stubs, which were linked to removed stubs. Since pairs of stubs are linked
randomly, this is equivalent to randomly removing the correct number of stubs from the
subnetwork composed of the nodes which are not removed. This is again equivalent to
randomly removing half as many links in this subnetwork.

If the classical attack removes a fraction p of the nodes, the fraction of stubs attached
to removed nodes is s(p), given by Lemma 3.3. The probability for any given stub of a
remaining node to be linked to a stub of a removed node is therefore s(p). Finally, each
stub attached to a remaining node is removed with probability s(p), which is equivalent
to the removal of the same fraction of links.

Since links in this subnetwork are constructed by choosing random pairs of stubs, it
is also a random network. Moreover, its degree distribution is nothing but the original one

with a cutoff (which is the maximal degree after the attack):

(

p′k = pk
PK(p)

k=0 pk

= pk

1−pc

)

0≤k≤K(p)

,

where K(p) is the maximal degree after the attack.
We finally obtain that a classical attack is equivalent to random link failures on a

random network with known degree distribution. The value of the threshold can therefore
be derived from Theorem 2.19 on random link failures. We then have to relate this
threshold, which is the number of stubs removed among remaining nodes, to the number
of nodes removed during classical attacks.
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We can now apply Theorem 2.19 to compute the fraction s(pc) of links to remove
randomly to destroy the random network described above. This gives

1 − s(pc) =
〈k(pc)〉

〈k2(pc)〉 − 〈k(pc)〉
,

where 〈k(pc)〉 and 〈k2(pc)〉 are the first and second moment of the degree distribu-

tion
(

p′k = pk

1−pc

)

0≤k≤K(pc)
, which is the degree distribution described above. The first

two moments of this distribution are 〈k(pc)〉 =
∑K(pc)

k=0 kpk/(1 − pc) and 〈k2(pc)〉 =
∑K(pc)

k=0 k2pk/(1 − pc).
We can finally transform the above relation into the claim:

1 − s(pc) =
〈k(pc)〉

〈k2(pc)〉 − 〈k(pc)〉
1

〈k〉

K(pc)
∑

k=0

kpk =

∑K(pc)
k=0 kpk

∑K(pc)
k=0 k2pk −

∑K(pc)
k=0 kpk

1

〈k〉

K(pc)
∑

k=0

kpk =

∑K(pc)
k=0 kpk

∑K(pc)
k=0 k(k − 1)pk

〈k〉 =

K(pc)
∑

k=0

k(k − 1)pk.

2

The other method used to obtain this result [25, 96] relies on generating functions. As
explained in the preliminaries, the fraction p of nodes of highest degrees are marked as
absent, and the others are marked as present.

Recall that F1(x) is the generating function for the probability of finding an unmarked
(i.e. present) node with k other (marked or unmarked) neighbors at the end of a randomly
chosen link. In our case, F1(x) therefore is:

F1(x) =
1

〈k〉

K(p)
∑

k=1

kpkx
k−1.

We can then prove Theorem 3.1 as a direct consequence of Theorem 1.20:
Proof : From Theorem 1.20, the threshold pc is reached when F ′

1(1) = 1. Differentiating

F1 gives the result: F ′
1(x) = 1

〈k〉

∑K(p)
k=2 k(k − 1)pkx

k−2 and F ′
1(1) = 1

〈k〉

∑K(p)
k=2 k(k − 1)pk.

2
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Again, the two proofs of Theorem 3.1 have different advantages and drawbacks. See
the comments at the end of Section 2.1.1.

3.1.2 The cases of Poisson and power-law networks

Theorem 3.1 is valid for any random network, whatever its degree distribution. To study
the behavior of Poisson and power-law networks in case of classical attacks, we therefore
only have to apply it to these cases. More precisely, we will consider Poisson, discrete
power-law and continuous power-law networks, with size tending towards infinity. Com-
parison with simulations will be provided at the end of the section, see Figure 10.

Corollary 3.4 For Poisson networks with size tending towards infinity and average de-
gree z, the threshold pc for classical attacks is given by

z = e−z

K(pc)
∑

k=0

zk

(k − 2)!
,

where K(pc) is the maximal degree of the network after the attack, related to pc by
Lemma 3.2.

Proof : Direct application of Theorem 3.1, with pk = e−zzk/k!. 2

Corollary 3.5 [25] For discrete power-law networks with size tending towards infinity
and exponent α, the threshold pc for classical attacks is given by

H
(α−2)
K(pc)

− H
(α−1)
K(pc)

= ζ(α − 1),

where H
(α)
K =

∑K
k=1 k−α is the K-th harmonic number for α , and K(pc) is the maximal

degree of the network after the attack, related to pc by Lemma 3.2.

Proof : Direct application of Theorem 3.1, with pk = k−α/ζ(α). 2

Corollary 3.6 [31] For continuous power-law networks with size tending towards infinity,
exponent α and minimal degree m, the threshold pc for classical attacks is given by

(

K(pc)

m

)2−α

− 2 =
2 − α

3 − α
m

(

(

K(pc)

m

)3−α

− 1

)

,

where K(pc) is the maximal degree of the network after the attack, related to pc by
Lemma 3.2.
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Proof : From Theorem 3.1, we have:
(

∑K(pc)
k=m k(k − 1)pk

)

/〈k〉 = 1, thus 〈k〉 =
∑K(pc)

k=m k2pk−
∑K(pc)

k=m Krk. We have pk = mα−1(k−α+1− (k +1)−α+1), and 〈k〉 = m(α−1)/(α−2), from

Lemma 1.12. From this, switching back to the continuous form, we obtain
∑K(pc)

k=m kpk =

(α − 1)mα−1
∫ K(pc)

m
kkα−1dk = α−1

−α+2
mα−1 (K(pc)

−α+2 − m−α+2) and similarly for the sec-

ond moment,
∑K(pc)

k=m k2pk = α−1
−α+3

mα−1 (K(pc)
−α+3 − m−α+3).

The above equality then becomes:

(α − 1)mα−1

[

K(pc)
−α+3 − m−α+3

−α + 3
− K(pc)

−α+2 − m−α+2

−α + 2

]

= m
α − 1

α − 2
.

We can finally transform this equation to obtain the result:

m−α+3

−α + 3

[

(

K(pc)

m

)−α+3

− 1

]

− m−α+2

−α + 2

[

(

K(pc)

m

)−α+2

− 1

]

=
m−α+2

α − 2

m

−α + 3

[

(

K(pc)

m

)−α+3

− 1

]

− 1

−α + 2

[

(

K(pc)

m

)−α+2

− 1

]

=
1

α − 2

m

−α + 3

[

(

K(pc)

m

)−α+3

− 1

]

− 1

−α + 2

[

(

K(pc)

m

)−α+2

− 2

]

= 0

2

Numerical evaluations of these results can be done by computing the maximal degree
K(pc) with the appropriate corollary, and then injecting it into Lemma 3.2 to evaluate
pc. For Poisson and discrete power-law networks (Corollaries 3.4 and 3.5), the equations
can be solved in a similar way as computing the maximal degree of a random network,
see Section 1.1. For continuous power-law networks (Corollary 3.6), the equation can be
solved using a computer algebra system [85]. Notice that this equation is not defined for
α = 3; one may obtain the threshold for this value as the limit of its values when α tends
to it.

Moreover, still in the case of continuous power-law networks, one may use the following
result, which is simpler and more precise (since it allows non-integer values for the degree),
instead of Lemma 3.2.

Lemma 3.7 [31] For continuous power-law networks with size tending towards infinity,
exponent α and minimal degree m, the maximal degree K(p) after the removal of a fraction
p of the nodes during classical attacks is related to p by

p = mα−1K(p)−α+1.
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Proof : From Lemma 3.2, we have p =
∑∞

K(p)+1 padj, which we can approximate to be

equal to
∑∞

K(p) pk. Switching back to the continuous definition, we have that p = (α −
1)mα−1

∫∞

K(p)
x−αdx = (α−1)mα−1

[

k−α+1

−α+1

]∞

K
= (α−1)mα−1K−α+1/(α−1) = mα−1K−α+1,

hence the result. 2

We plot numerical evaluations of these results in Figure 10, together with experimental
results. We also give in Table 5 the thresholds for specific values of the exponent and the
average degree.
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Figure 10: Thresholds for classical attacks. For technical details on our plots, on
the computation of thresholds, and for discussions on the origins of differences between
experiments and predictions, see Section 1.4.

continuous Poisson discrete Poisson
power-law power-law

α prev. exp. prev. exp. prev. exp. prev. exp.
2.5 0.056 0.038 0.18 0.19 0.018 0.017 0.08 0.09
3 0.025 0.012 0.05 0.05 0.002 0.0015 0.03 0.035

Table 5: Values of the threshold for classical attacks on discrete and continuous power-law
networks of exponents 2.5 and 3, and on Poisson networks having the same average degree
(see Table 1). The values are the analytic previsions at the infinite limit and the ones
obtained for experiments with networks of N = 100 000 nodes.

It appears clearly that both types of networks are very sensitive to classical attacks:
only a few percents of the nodes have to be removed to destroy them. Moreover, the
thresholds for power-law networks are much lower than the ones for Poisson networks:
they are almost one order of magnitude smaller than for comparable Poisson networks.
These are certainly the main results on the topic and we will deepen them in the rest of
the section.
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3.2 Link point of view of classical attacks.

The classical attack strategy removes highest degree nodes first. Since in a power-law
network there are some very high degree nodes, this leads in this case to the removal of a
huge number of links. One may then wonder if its efficiency on power-law networks is due
to the fact that the number of removed links is much larger than in the case of random
failures. Likewise, one may wonder if the fact that a classical attack removes much more
links in a power-law network than in a Poisson one is the cause of its difference of efficiency
on these two types of networks. These explanations actually have been proposed by some
authors as an intuitive explanation of the results presented above.

Figure 11 displays the behaviors observed for these three types of networks. One can
see there that the thresholds for Poisson and power-law networks are much closer than
from the node point of view, see Figure 9. One may also observe that, though there are
significant differences, when one removes from power-law networks as many links as what
is needed to destroy a Poisson network with the same average degree, then the size of the
largest connected component becomes very small.

The questions we address here therefore are: how many links have been removed when
we reach the threshold for classical attacks? Is this number similar for power-law and
Poisson networks? And is it similar to the threshold for link failures? We will investigate
these questions more precisely in this section by first introducing a general result and
then apply it to the cases under concern.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

S
iz

e 
la

rg
es

t c
om

po
ne

nt

Fraction removed

Poisson

N=10000, <k>=1.4
N=10000, <k>=1.6
N=10000, <k>=1.9
N=10000, <k>=2.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.2  0.4  0.6  0.8  1

Fraction removed

Continuous power-law

N=10000, exp=2.5
N=10000, exp=3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1

Fraction removed

Discrete power-law

N=10000, exp=2.5
N=10000, exp=3

Figure 11: Size of the largest connected component as a function of the fraction of links
removed during classical attacks. For technical details on our plots see Section 1.4.

3.2.1 General results

Our aim here is to prove the following general result, which gives the fraction m(p) of
links removed when a fraction p of the nodes are removed during classical attacks.
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Theorem 3.8 In a large random network, the fraction m(p) of links removed when a
fraction p of the nodes have been removed during a classical attack is

m(p) = 2s(p) − s(p)2,

where s(p) is the fraction of stubs attached to removed nodes, and is related to p by
Lemma 3.3.

Proof : Let us consider a network in which we remove a fraction p of the nodes during
a classical attack. Let s(p) be the fraction of the stubs in the network attached to the
removed nodes (s(p) is linked to p by Lemma 3.3). Each stub attached to a remaining
node is therefore kept with probability (1−s(p)), the fraction of pairs of stubs linking non
removed nodes is therefore (1 − s(p))2. This last quantity is the fraction of non removed
links, and m(p) = 1 − (1 − s(p))2 = 2s(p) − s(p)2 is finally the fraction of removed links,
hence the result. 2

3.2.2 The cases of Poisson and power-law networks

Theorem 3.8 is valid for any random network, whatever its degree distribution. It makes
it possible to compute the fraction of links removed at the threshold for classical attacks.
To study the behavior of Poisson and power-law networks, we therefore only have to
apply it to these cases. More precisely, we will consider Poisson, continuous power-law
and discrete-power-law networks.

In each case, one first has to compute the (node) threshold pc for classical attacks
using the appropriate corollary in Section 3.1.2, then use Lemma 3.3 to obtain s(pc),
before applying Theorem 3.8.

In the case of continuous power-law networks, it is possible to obtain s(pc) from pc

more easily as follows.

Lemma 3.9 [31] For continuous power-law networks with size tending towards infinity,
exponent α and minimal degree m, when a fraction p of the nodes is removed during a
classical attack, the fraction s(p) of stubs attached to removed nodes is given by

s(p) = p(2−α)/(1−α).

Proof : From Lemma 3.3, we know that s(p) = (
∑∞

k=K(p)+1 kpk)/〈k〉, which we can

approximate to be equal to (
∑∞

k=K(p) kpk)/〈k〉. Moreover, we have 〈k〉 = α−1
α−2

m from
Lemma 1.12.

Switching back to the continuous case, we therefore have

s(p) =
1

〈k〉(α − 1)mα−1

∫ ∞

K(p)

kk−αdk =
1

〈k〉(α − 1)mα−1

[

k−α+2

−α + 2

]∞

K(p)

= mα−2K(p)−α+2.
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From Lemma 3.7, we finally obtain K(p) = mp1/(−α+1), hence the result. 2

We plot numerical evaluations of these results in Figure 12, together with experimental
results. We also give in Table 6 the thresholds for specific values of the exponent and the
average degree.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8

T
hr

es
ho

ld

Average degree

Poisson

N=1000
N=10000

N=100000
prediction, infinite limit

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  2.5  3  3.5  4

Exponent

Continuous power-law

N = 1000
N = 10000

N = 100000
prediction, infinite limit

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  2.5  3  3.5  4

Exponent

Discrete power-law

N = 1000
N = 10000

N = 100000
prediction, infinite limit

Figure 12: Thresholds for the link point of view of classical attacks. For technical
details on our plots, on the computation of thresholds, and for discussions on the origins
of differences between experiments and predictions, see Section 1.4.

continuous Poisson discrete Poisson
power-law power-law

α prev. exp. prev. exp. prev. exp. prev. exp.
2.5 0.62 0.6 0.5 0.6 0.45 0.42 0.28 0.4
3 0.3 0.24 0.15 0.28 0.08 0.07 0.1 0.2

Table 6: Values of the threshold for the link point of view of classical attacks on discrete
and continuous power-law networks of exponents 2.5 and 3, and on Poisson networks
having the same average degree (see Table 1). The values are the analytic previsions at
the infinite limit and the ones obtained for experiments with networks of N = 100 000
nodes.

The results are striking: the thresholds are much larger from the link point of view
than from the node point of view (see Table 5 for comparison). More importantly, while
the number of nodes to be removed is much lower for power-law networks than for Poisson
ones, the corresponding number of links if similar for both kinds of networks: the links
thresholds are similar.

The conclusion from these observations is that the fact that power-law networks are
rapidly destroyed during classical attacks may be viewed as a consequence of the fact
that many links are removed. It is however important to notice that the obtained behav-
ior for power-law networks is not the same as the one obtained if we remove the same
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amount of links at random (see Figure 8 and Table 4 for comparison). Therefore, although
the amount of removed links is huge and this plays a role in the behavior of power-law
networks, this is not sufficient to explain the observed behavior. This means that the
links attached to highest degree nodes play a more important role regarding the network
connectivity than random links.

3.3 New attack strategies.

In this section we introduce two very simple new attack strategies, one targeting nodes
(Section 3.3.1) and the other targeting links (Section 3.3.2). These strategies are close
to random failures. Our aim is not to provide efficient attack strategies, but rather to
deepen our understanding of previous results.

These two new attack strategies rely on the following observation. We have seen
(Theorem 1.15) that a random network with size tending towards infinity has a giant
component if 〈k2〉 − 2〈k〉 > 0. This is equivalent to the condition p1 <

∑∞
k=3 k(k − 2)pk

(where pk is the fraction of nodes of degree k). The fraction of nodes of degree 1 in the
network therefore plays a key role. The two attack strategies are based on the idea that
increasing this fraction should quickly break the network.

Since our aim here is not to compute the exact value of the threshold, but rather to
understand a general behavior, we will only consider in the sequel the case of networks
with size tending towards infinity.

3.3.1 Almost-random node attacks

The first attack strategy simply consists of randomly removing nodes of degree at least
2. We call it the almost-random node attack strategy.

We first present a general result for this strategy, then apply it to the special cases
under concern: Poisson and power-law (both discrete and continuous) networks. Figure 13
displays the behaviors observed for these three types of networks.

Although this strategy is barely different from random node failures, it is actually
much more efficient than failures (see Figure 3 for comparison). In particular, it has a
finite threshold for all the types of networks we consider.

Theorem 3.10 The threshold pc for almost-random node attacks for large random net-
works with degree distribution pk, is bounded by

pc < 1 − p1 − p0.

Proof : When all nodes that had initially a degree higher that one have been removed,
then the network surely has no giant component anymore since all remaining nodes have
degree at most 1. All nodes of degree higher than one represent a fraction 1 − p1 − p0 of
all nodes; this is therefore an upper bound for the threshold for this attack strategy. 2
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Figure 13: Size of the largest connected component as a function of the fraction of nodes
removed during almost-random node attacks. For technical details on our plots see
Section 1.4.

Theorem 3.10 is valid for any random network, whatever its degree distribution. To
study the behavior of Poisson and power-law networks in case of classical attacks, we
therefore only have to apply it to these cases. More precisely, we will consider Poisson
and power-law networks (both discrete and continuous), with size tending towards infinity.
Comparison with simulations will be provided at the end of the section, see Figure 14.

Corollary 3.11 For Poisson networks with size tending towards infinity and average
degree z, the threshold pc for almost-random node attacks is bounded by

pc < 1 − e−z(z + 1).

Proof : Direct application of Theorem 3.10 with pk = e−zzk/k!. 2

Corollary 3.12 For continuous power-law networks with size tending towards infinity,
exponent α and minimal degree m, the threshold pc for almost-random node attacks is
bounded by

pc < 1 − mα−1(1 − 2−α+1).

Proof : Direct application of Theorem 3.10, with pk = mα−1(k−α+1 − (k + 1)−α+1). 2

Corollary 3.13 For discrete power-law networks with size tending towards infinity and
exponent α, the threshold pc for almost-random node attacks is bounded by

pc < 1 − 1/ζ(α).
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Figure 14: Thresholds and upper bounds for almost-random node attacks. For technical
details on our plots, on the computation of thresholds, and for discussions on the origins
of differences between experiments and predictions, see Section 1.4.

continuous Poisson discrete Poisson
power-law power-law

α bound exp. bound exp. bound exp. bound exp.
2.5 0.35 0.29 0.73 0.43 0.25 0.2 0.57 0.25
3 0.25 0.16 0.48 0.16 0.17 0.06 0.41 0.10

Table 7: Values of the threshold for almost-random node attacks on discrete and con-
tinuous power-law networks of exponents 2.5 and 3, and on Poisson networks having the
same average degree (see Table 1). The values are the ones obtained for experiments with
networks of N = 100 000 nodes, and the theoretical upper bounds.

Proof : Direct application of Theorem 3.10 with pk = k−α/ζ(α). 2

We plot experimental results for the value of the threshold in Figure 14, as well as the
upper bounds given above. We also give in Table 7 the thresholds for specific values of
the exponent and the average degree.

We recall that our aim here is not to obtain an efficient attack strategy, but to study
the ability of a strategy very similar to random failures to have the same qualitative
behavior as classical attacks, namely to display a finite threshold for power-law networks.

To this regard, the values of the thresholds displayed in Table 7 are quite large (one
has to remove a large fraction of the nodes do destroy the networks), but remain signif-
icantly lower than 1 and much lower than the thresholds for node failures (see Table 2).
This shows that the efficiency of classical attacks relies in part on simple properties like
removing nodes of degree larger than 1.
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3.3.2 Almost-random link attacks

The other attack strategy consists of randomly removing links between nodes of degree
at least 2, i.e. a node of degree 1 will always stay connected during the attack. We call it
the almost-random link attack strategy.

We first present a general result for this strategy, then apply it to the special cases
under concern: Poisson and power-law (both discrete and continuous) networks. Figure 15
displays the behaviors observed for these three types of networks.
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Figure 15: Size of the largest connected component as a function of the fraction of
links removed during almost-random link attacks. For technical details on our plots see
Section 1.4.

Although this strategy is barely different from random link failures, it is actually much
more efficient than failures (see Figure 7 for comparison). In particular, it has a finite
threshold for all the types of networks we consider, which makes it much more efficient
on power-law networks.

Theorem 3.14 The threshold mc for the almost-random link attack strategy for large
random networks with maximal degree sublinear in the number of nodes and degree distri-
bution pk is bounded by

mc < 1 − 2p1

〈k〉 +
p2

1

〈k〉2 .

Proof : The threshold is bounded by the fraction of links between two nodes of degree at
least 2. Indeed, when all such links have been removed, the only links left are between a
node of degree 1 and another node. Therefore the network is nothing but a set of disjoint
stars (each central node being connected to nodes of degree 1). The size of the largest
component therefore is less than K + 1, where K is the maximal degree in the original
network. Hence, if K is sublinear with respect to the number of nodes, so is the size of
the largest component after the attack.

Let us now evaluate the number of links between nodes of degree at least 2. This
quantity is |E| minus the number of links incident to at least one node of degree 1. The
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number of such links is given by the number of nodes of degree 1, minus the number of
links between two nodes of degree 1.

The number of links between two nodes of degree 1 can be evaluated as follows. There
are Np1 nodes of degree 1, each of them having a probability Np1/2|E| of being connected
to another node of degree 17. Therefore the number of nodes of degree 1 adjacent to
another node of degree 1 is Np1 · Np1/2|E| = Np2

1/〈k〉. Finally, the number of links
between two such nodes is Np2

1/2〈k〉.
From this we have that the number of links adjacent to at least one node of degree

1 is: Np1 − Np2
1/2〈k〉, and the number of links not adjacent to any node of degree 1 is:

|E| − Np1 + Np2
1/2〈k〉. The fraction of such links therefore is 1 − 2p1

〈k〉
+

p2
1

〈k〉2
, hence the

result. 2

Corollary 3.15 For Poisson networks with size tending towards infinity and average
degree z, the threshold mc for almost-random link attacks is bounded by

mc < 1 − 2e−z + e−2z.

Proof : Direct application of Theorem 3.14 with pk = e−zzk/k!, the maximal degree of
the network being sublinear in the size of the network (see Lemma 1.2). 2

Corollary 3.16 For continuous power-law networks with size tending towards infinity,
exponent α and minimal degree m, the threshold mc for almost-random link attacks is
bounded by

mc < 1 − 2(α − 2)mα−2(1 − 2−α+1)

(α − 1)
+

(

(α − 2)mα−2(1 − 2−α+1)

(α − 1)

)2

.

Proof : Direct application of Theorem 3.14 with pk = mα−1(k−α+1 − (k + 1)−α+1),
〈k〉 = m α−1

α−2
(Lemma 1.12), the maximal degree of the network being sublinear in the

size of the network (Lemma 1.3). 2

Corollary 3.17 For discrete power-law networks with size tending towards infinity and
exponent α, the threshold mc for almost-random link attacks is bounded by

mc < 1 − 2ζ(α − 1) − 1

ζ2(α − 1)
.

7This is an approximation of the real value (N − 1)p1/(2|E| − 1)
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Proof : Direct application of Theorem 3.14 with pk = k−α/ζ(α), 〈k〉 = ζ(α−1)
ζ(α)

(Lemma 1.14),

the maximal degree of the network being sublinear in the size of the network (Lemma 1.4).
2

We plot experimental results for the value of the threshold in Figure 16, as well as the
upper bounds given above. We also give in Table 8 the thresholds for specific values of
the exponent and the average degree.
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Figure 16: Thresholds and upper bounds for almost-random link attacks. For technical
details on our plots, on the computation of thresholds, and for discussions on the origins
of differences between experiments and predictions, see Section 1.4.

continuous Poisson discrete Poisson
power-law power-law

α bound exp. bound exp. bound exp. bound exp.
2.5 0.62 0.55 0.86 0.51 0.37 0.35 0.72 0.32
3 0.39 0.22 0.64 0.23 0.15 0.07 0.57 0.15

Table 8: Values of the threshold for almost-random link attacks on discrete and continuous
power-law networks of exponents 2.5 and 3, and on Poisson networks having the same
average degree (see Table 1). The values are the ones obtained for experiments with
networks of N = 100 000 nodes, and the theoretical upper bounds.

As in the case of almost-random node attacks, the values of the thresholds are quite
large but remain significantly lower than 1. Since our aim is still to study the ability
of a strategy very similar to random failures to display a finite threshold, this result is
satisfactory. This shows that the efficiency of classical attacks relies in part on simple
properties like removing links between nodes of degree at least 2.

Going further, one may notice that almost-random link attacks perform better than
classical attacks in terms of the number of removed links (see Table 6). This shows that
classical attacks, although they focus on high degree nodes, actually remove many links
connected to nodes of degree one, which play little role in the connectivity of the network.
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The simple almost-random strategy, on the opposite, focuses on those links which really
disconnect the network.

3.4 Conclusion on attacks.

There are two main formal conclusions for this section. First, as expected from the em-
pirical results discussed in introduction, power-law networks are very sensitive to classical
attacks, much more than Poisson networks. Second, the link point of view shows that
many links are actually removed when the thresholds for classical attacks are reached.
Moreover, very simple attack strategies close to random node or link failures also lead to
finite (and reasonably small) thresholds.

Altogether, these results make it possible to discuss precisely the efficiency of classical
attacks. First, although the number of links removed during such attacks is huge, this
is not sufficient to explain the collapse of the network. Indeed the removal of the same
number of links at random does not collapse the network. Second, the number of removed
links during classical attacks in a Poisson network and in a power-law network are very
similar. This moderates the conclusion that power-law networks are particularly sensitive
to classical attacks, since in terms of links both are equally robust.

Finally, the attack strategies we introduced, which are very close to random failures,
show that the efficiency of classical attacks relies strongly on simple properties like re-
moving nodes of degree larger than 1 and links between nodes of degree at least 2.

4 Resilience of real-world networks.

So far we have presented theoretical results as well as experiments on failures and attacks
for different types of random networks. We have seen that, apart from the general shape
of their degree distributions, precise properties of the networks under concern, like for
instance their fraction of nodes of degree 1, may play a crucial role in their behavior in
case of failures or attacks. Other properties not captured by the models, like clustering for
instance, may also play an important role. In order to give some insight on the practical
incidence of the results above, we present in this section empirical results on real-world
complex networks.

We will consider the following real-world cases, which are representative of the ones
considered in studies of this field. The actor network is composed of movie actors which
are linked together if they played in the same movie. It is obtained from the Internet
Movie DataBase [68]. See [120, 9] for results on this network. The co-authoring network
is composed scientific authors, two authors being linked together if they signed a paper
(present in the archive) together. It is obtained from the arXiv site [8] See [92, 93] for
results on this kind of networks. The cooccurrence network is composed of words of the
Bible [15], two words being linked if they belong to the same sentence. See [51] for results
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network # nodes # links avg. deg.
actor 392 341 15 038 083 76.658
co-authoring 16 402 29 552 3.603
cooccurrence 9 297 392 066 84.342
internet1 228 263 320 149 2.805
internet-core 75 885 357 317 9.417
protein 2 115 4 480 4.236
www 325 729 1 497 135 9.192
p2p 159 541 17 454 369 218.807

Table 9: Number of links, nodes and average degree of the real-world networks under
study.

on this kind of networks. The internet1 and the internet-core networks are two internet
maps where the nodes are routers in the internet, two routers being linked if they are at
one hop at the ip level. These networks are described and studied in [59, 62]. The protein
network is composed of proteins, two proteins being linked if they interact together in
a cell. It is obtained from [11]. See [69] for results on this kind of networks. The www
network is composed of web pages, two pages being linked together if there is a hyperlink
from one of them to the other. This sample is obtained from [11]. See [6] for results
on this kind of networks. Finally, the p2p network is a set of exchanges between peers,
captured in a running peer-to-peer system, two peers being linked if they exchanged a
file during the capture. See [63, 64] for precise description and results on this network.
We give in Table 9 the number of nodes and links of these networks, together with their
average degree. More detailed description of these data can be found in the references.

We will discuss these networks’ resilience to failures and attacks and will explain it
using our knowledge of their structure and the results presented in this paper. Note that
these networks are obtained through intricate measurement procedures. It is known that
the obtained views of the networks cannot always be considered as representative of the
original networks, see for instance [76, 116] in the general case and [62, 40, 27, 26, 21, 1, 75]
in the case of the internet. However, our goal is not to address such issues and we do
not claim to give exact results on these networks. Our goal is rather to illustrate our
approach.

Figures 19 to 26 show the obtained plots, together with the actual degree distribution
of the network. We also present in Figures 17 and 18 the behavior of power-law random
networks in case of failures and attacks, in order to compare it to the behavior of our
real-world networks. We chose the two types of power-law networks that yielded the
most different behaviors, namely continuous power-law networks with exponent 2.5 and
discrete power-law networks with exponent 3, in order to span all existing behaviors for
these networks.
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Figure 17: Behavior of continuous power-law networks with exponent 2.5 in case of failures
and attacks.
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Figure 18: Behavior of discrete power-law networks with exponent 3 in case of failures
and attacks.
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Figure 19: actor network. From left to right: degree distribution, node removals and link
removals.
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Figure 20: co-authoring network. From left to right: degree distribution, node removals
and link removals.
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Figure 21: coccurrence network. From left to right: degree distribution, node removals
and link removals.

First notice that none of these networks has a Poisson structure, though their degree
distribution sometimes is quite far from a power-law. In all the cases the degree distribu-
tion is highly heterogeneous, which makes the discussed attack strategies relevant. Notice
however that some networks (in particular, the actor, cooccurrence, internet-core and p2p
networks) have a significantly lower fraction of nodes of degree one than what can be
expected for power-law networks.

It appears that in all the cases the behavior for random node failures and classical
attacks matches the theoretical expectations: there is a significant difference between
random node failures and classical attacks, even if this difference is quite small in the
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Figure 22: internet1 network. From left to right: degree distribution, node removals and
link removals.
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Figure 23: internet-core network. From left to right: degree distribution, node removals
and link removals.
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Figure 24: protein network. From left to right: degree distribution, node removals and
link removals.

cases of actor and p2p networks. The same is true for almost-random node attacks: in
most cases, they are an intermediate between random nodes failures and classical attacks.
Notice however that in several cases, namely actor, cooccurrence, internet-core and p2p,
the behaviors in the case of random node failures and almost-random node attacks are
very similar. This is due to the fact that, as pointed out above, there are few nodes of
degree 1 with respect to the total number of nodes.

Concerning link removals, we observe two different types of behaviors. The co-
authoring, internet1, protein, and www networks more or less conform to the expected
behavior. Notice however that the www network is very resilient to all link removal
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Figure 25: www network. From left to right: degree distribution, node removals and link
removals.
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Figure 26: p2p network. From left to right: degree distribution, node removals and link
removals.

strategies. We will come back to this point later.
The actor, cooccurrence, internet-core, and p2p networks, however, behave very differ-

ently from what was expected. For these networks, almost all links have to be removed to
simply reduce significantly the size of the largest connected component, for all strategies
except node failures seen from the link point of view. This can be explained as follows.
First, these networks have very strong average degrees: they are the four networks with
the strongest average degree. Denser networks are naturally more resilient to link re-
movals. Also, notice that these networks have a relatively low fraction of nodes of degree
one, compared to the other networks. This naturally induces that a very large fraction of
the links are attached to the highest degree nodes. The removal of a few of these nodes
does not have a strong impact on the network, however this induces the removal of most
of the links, causing the plot for classical attacks seen from the link point of view to be
almost horizontal in the beginning. The fact that there are few nodes of degree one also
explains why random link failures and almost-random link attacks behave very similarly.
Finally, counter-intuitively, the most efficient link removal strategy for these networks
is node failures seen from the link point of view (though this strategy cannot be called
efficient in itself, since all links must be removed to break down the networks): random
node failures cause the size of the largest connected component to decrease linearly in this
case (meaning that the largest connected component contains all nodes except the ones
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actually removed by failures). We have seen in Proposition 2.11 that, when a fraction p
of the nodes are removed by random failures, the corresponding fraction of removed links
is 2p−p2. The size of the largest component as a function of the fraction of removed links
is therefore expected to evolve as

√
1 − x, which corresponds to the shape of the random

node failures seen from the link point of view plot.
It must be noticed finally that though the actor, cooccurrence, internet-core, and p2p

networks behave similarly and have high average degrees, there is a large difference in
the average degree of the internet-core network and the one of the three others. The
average degree of the www network is in fact almost the same as the one of the internet-
core network, but it behaves differently (though it is indeed very resilient to link removal
strategies). This means that the average degree does not uniquely determine the behavior
of a network, and that other properties are in cause.

The behaviors of the two maps of the internet are very different, which shows that
one must be very careful when deriving conclusions about such networks. Indeed, the
measurement procedure only gives a partial and biased view, see [62, 40, 27, 26, 21, 1, 75].
This moderates the often claimed assertion that the internet is very robust to failures
and very sensitive to attacks, which has been derived from such experiments, typically
conducted on maps of the kind of internet1.

In this last case, one may notice that almost-random link attacks destroy the network
more efficiently than classical attacks viewed from the link point of view. This indicates
that the robustness of this network in case of failures is strongly due to the fact that the
amount of nodes of degree 1 is huge.

In conclusion, these experiments showed that, concerning random node failures and
classical attacks, real-world networks behave accordingly to theoretical predictions. When
taking into account almost-random node attacks, as well as link removal strategies, how-
ever, more subtle behaviors occur.

This shows that all the aspects we have discussed in this paper must be taken into
account when dealing with practical cases. This also shows that much remains to be done
to fully understand the observed phenomena; we will discuss this further in the conclusion.
On the other hand, one may see the study of the resilience of a given network as a way to
deepen the understanding of its structure and point out some non-trivial features which
should be explored. This is the case, for instance, of the remarks we made on the www
network above.

5 Conclusion and discussion.

In this contribution, we focused on a set of previously known results which received much
attention in the last few years. These results state that, although power-law networks
are very resilient to random (node or link) failures and Poisson ones are not, they are
very sensitive to a special type of attacks (which we call classical attacks) consisting of
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removing the highest degree nodes first, while Poisson networks are not. This had led to
the conclusion that its power-law degree distribution may be seen as an Achille’s heel of
the internet [91, 10].

These results were first obtained empirically [7, 20], but an important analytic effort
has been made to prove them with mean-field and asymptotic approximations [30, 31, 34,
25, 96] using two different techniques.

Our first contribution is to give a unified and complete presentation of these results
(both empiric and analytic ones). Since some of the involved techniques (in particular
mean-field approximations) are unusual in computer science, we emphasized on the meth-
ods used and gave much more detailed proofs than in the original papers. In particular,
we pointed out the approximations where they occur, discussed them in the light of the
experiments, and tried generally to give a didactic presentation.

Our second contribution is to introduce some new results on cases which received less
attention, maybe because these results are less striking. They are however essential for
deepening one’s understanding of this topic. We focused in particular on two aspects:
studying the finite case, and studying the link point of view of random node failures, and
classical attacks. We also introduced new attacks, very similar to random failures, which
allowed us to deepen our understanding of the phenomena at play.

Finally, we conducted extensive simulations, on random graphs of different types in
order to confront them to theoretical results, but also on real-world networks, which put
in evidence complex behaviors, not attributable to the sole degree distribution.

All this showed that many of the classical conclusions of the field should be discussed
further. We may now put all these results and their relations together to derive global
conclusions.

Concerning random node and link failures (i.e. random node and link removals), the
striking point is that, although analysis predict completely different behaviors for Poisson
and power-law networks, in practice the differences, though important, are not huge (see
Tables 2 to 4). This is even more pronounced for link failures. This overestimation of
the difference was due to the study of the infinite limit and to the approximations made.
It may also be a consequence of our choice to consider that a network breakdown occurs
when the size of the the giant component reaches 5% of all nodes, but other conventions
lead to similar conclusions.

Concerning classical attacks (i.e. removal of nodes in decreasing order of their degree),
we have shown that, although the thresholds for power-law networks indeed are very low,
and much smaller than the ones for Poisson networks, our other observations tend to
moderate this conclusion. Indeed, as one may have guessed, the number of links removed
during a classical attack is huge. When one considers the number of removed links,
power-law networks are not more fragile than Poisson ones.

The large number of removed links, though it clearly plays a role, is however not
sufficient to explain the efficiency of classical attacks: if one removes the same fraction of
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links randomly, then there is no breakdown. This invalidates the often claimed explanation
that classical attacks are very efficient on power-law networks because they remove many
links.

Going further, if one removes the same, or even a smaller, fraction of links, but almost
randomly (i.e. randomly among the ones which are linked to nodes of degree at least 2)
then a breakdown occurs. In terms of the fraction of removed links, classical attacks
therefore lie between random link failures and almost-random link attacks, which makes
them not so efficient.

Finally, the efficiency of classical attacks resides mainly in the fact that it removes
many links, and that these links are mostly attached to nodes of degree larger than 1.
Conversely, this explains the robustness of power-law networks to random node failures:
such failures often remove nodes of degree 1 and/or links attached to such nodes.

Another conclusion of interest comes from the study of classical attacks on Poisson
networks (which was not done in depth until now). Although these networks behave
similarly in case of random node failures and classical attacks, it must be noted that their
threshold is significantly lower in the second case. This goes against the often claimed
assumption that, because all nodes have almost the same degree in a Poisson network,
there is little difference between random node failures and classical attacks. This is worth
noticing, since it reduces the difference, often emphasized, in the behavior of Poisson and
power-law networks.

The observation of practical cases in Section 4 also provided interesting insights: in
several cases, some observed behaviors may be explained using the results in this paper and
our knowledge of the properties of the underlying network. It appears clearly however that
other properties than degree distributions play an important role on network resilience.
This points out interesting directions for further analysis. Conversely, this shows that one
may see the study of a particular network’s resilience as a way to obtain some insight on
its structure.

All these results led us to the conclusion that, although random node failures and
classical attacks clearly behave differently and though the Poisson or power-law nature of
the network has a strong influence in this, one should be careful in deriving conclusions.
This is confirmed by our experiments on real-world networks. The sensitivity of networks
to attacks relies less on the presence of high-degree nodes than on the fact that they have
many low-degree nodes. Conversely, their robustness to failures relies strongly on the fact
that when we choose a node at random, we choose such a node with high probability, and
not so much on the fact that high-degree nodes hold the network together. Moreover, the
fact that a classical attack on a power-law network removes many links may be considered
as partly, but not fully, responsible for its rapid breakdown.

Although this paper is already quite long, we had to make some choices in the pre-
sented results, and there are of course many omissions. For instance, we did not mention
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random networks with degree correlations, on which interesting results exist [17, 119], or
other types of modeling, for instance the HOT framework [46, 82]. We also ignored the
various contributions considering other attack strategies [80, 35, 36, 100, 22, 101, 67, 52,
90, 89, 88, 108, 124] and other definitions of the robustness than the size of the giant com-
ponent [78, 67, 101, 37, 82, 46]. Likewise, we could have compared real-world networks
in Section 4 with random networks having exactly the same degree distribution, which
would certainly be enlightening. It would be interesting also to compare more precisely
the results obtained with other practical definitions of a network breakdown.

Presenting and discussing all these aspects is impossible in a reasonable space; instead,
we chose to deepen the basic results of the field, which we hope leads to a significantly
improvement of our understanding of them. This work could serve as a basis for further
deepening of some aspects we have voluntary omitted, such as the ones pointed out above.

Going further, it must be clear that other properties than the degree distribution,
which should be investigated, certainly play a role in real-world complex networks’ ro-
bustness. This appears clearly in Section 4, where several classes of behaviors appear.

It seems obvious, for instance, that the fact that nodes of real-world complex networks
are organized in communities (groups of densely connected nodes), which is also captured
in part by the notion of clustering coefficient [16, 57, 74, 53, 58, 54, 98, 77], plays a key
role. However, these properties are not captured by the random networks we considered
here.

Studying robustness of networks with more subtle properties than degree distribu-
tions would therefore be highly relevant, but most remains to be done. In particular,
while there is a consensus on the modeling of networks with a given degree distribution in
the community (through the use of the configuration model [12], like here, or the prefer-
ential attachment principle [4]), there is no consensus for more subtle properties like the
clustering. Many models have been proposed, but each has its own advantages and draw-
backs. Some of them seem however well suited for analysis, as they are simple extensions
of the configuration model [61, 60] or of the preferential attachment one [44, 45].

Finally, let us insist once more on the necessity of developing formal results to enhance
our understanding of empiric results. It makes no doubt that experiments (in our case first
obtained in [7, 20]) bring much understanding and intuition on phenomena of interest. The
need for rigor and for a deeper understanding of what happens during these experiments
is however strong. It led to several approaches to analyze them. The main ones in our
context are developed in [30, 31, 34, 25, 96]. They all rely on mean-field approximations,
and we gave here the details of the underlying approximations and assumptions. Such
an approach is definitively rigorous, but is not formal. Obtaining exact results, or even
approximate results, with formal methods would be another improvement. Some results
begin to appear in this direction [19], but much remains to be done and the task is
challenging.
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[41] Z. Dezsö and A.-L. Barabási. Halting viruses in scale-free networks. Physical Review
E, 65(055103), 2002.

[42] S.N. Dorogovtsev and J.F.F. Mendes. Evolution of Networks: From Biological Nets
to the Internet and WWW. Oxford University Press, 2000.

[43] S.N. Dorogovtsev and J.F.F. Mendes. Comment on ’breakdown of the internet
under intentional attack’. Physical Review Letters, 87, 2001.

[44] S.N. Dorogovtsev and J.F.F. Mendes. Evolution of networks. Adv. Phys., 51:1079–
1187, 2002.

[45] S.N. Dorogovtsev, J.F.F. Mendes, and A. Samukhin. Structure of growing networks
with preferential linking. Physical Review Letters, 85:4633–4636, 2000.

[46] J.C. Doyle, D. Alderson, L. Li, S.H. Low, M. Roughan, S. Shalunov, R. Tanaka,
and W. Willinger. The ”Robust yet Fragile” Nature of the Internet. Proceedings of
the National Academy of Sciences, 102(40):14123–14475, Oct 2005.

[47] H. Ebel, L.-I. Mielsch, and S. Bornholdt. Scale-free topology of e-mail networks.
Physical Review E, 66(035103), 2002.
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