

The surround of intermittentlyconnected wireless networks

Marcelo Dias de Amorim

Nadjet Belblidia (UPMC) Jéremie Leguay (Thalès), Vania Conan (Thalès), Jon Crowcroft (Cambridge U.)

LIP6/CNRS – Université Pierre et Marie Curie

Séminaire Complex Networks Jan. 14, 2010

Context...

Ad hoc networks

Intermittently-connected mobile networks

An example: Rollernet

http://www.youtube.com/watch?v=kdkCx1xlMkl

Particularities

• Space-temporal paths

Experimenting ICMN

Infocom 2005, Sigcomm 2009

RollerNet 2008

Two Situations, the Same Representation

- Only duration
- No explicit information on the environment

Questions?

• What happens during a contact?

– Is a contact isolated?

- What are the "popular" nodes?
- Are centrality-oriented metrics efficient?

Proposal: A metric to represent a node's surround

Reasoning

- Dense areas are more prone to interference
- Nodes with more neighbors → more likely to communicate
- •We want a fine understanding of the network
 - Is the node degree enough?

Time Evolution of the Surround Indicator

Time Evolution of the Surround Indicator

Time Evolution of the Surround Indicator

Contact Expansion

•For the contact $[x, y, t_s, t_e]$ $\begin{cases} [x, y, t_s, t_1], (6) \\ [x, y, t_1, t_2], (5) \implies \text{Expansion} = 3, \\ [x, y, t_2, t_e], (3) \end{cases}$

• The expansion reflects the surround stability

Would be the degree enough?

Degree = 4 ; Surround = 3

Would be the degree enough?

Degree = 4 ; Surround = 9

Would be the degree enough?

Datasets

Infocom Trace

- Performed during Infocom conference 2005
- 41 Intel iMotes during 4 days

RollerNet Trace

- Performed during a roller tour in 2008
- 62 Intel iMotes during 3 hours

Distribution of contacts vs. surround

Distribution of contacts (CDF) vs. surround

Duration of sub-contacts according to the surround indicator

Repartition of Sub-Contacts (illustration)

Surround Indicator variation according to the Expansion

Preliminary capacity tests using epidemics

•55 nodes

- Average degree = 6~7
 - Uniform distribution
- •1 bundle \rightarrow all nodes
 - Bundle of variable size

Preliminary capacity tests using epidemics: Dissemination delay

Final remarks

Preliminary work on the capacity of DTNs

Proposal: Surround indicator

- Fine representation of dynamics
- High variability of the surround indicator
 - Impact on communication
- Still a lot to analyze
 - Project recently submitted $\textcircled{\odot}$

Current work

• Evolution of the surround through time

– So far, aggregated

 Can I expect future behaviors in function of current state?

- Online surround
- Relationship surround X degree

For different mobility and distribution patterns

THANK YOU!