
i datascience

Thesis submitted to obtain the degree of doctor of philosophy from

Sorbonne Université
École doctorale EDITE de Paris (ED130)
Informatique, Télécommunication et Électronique

Laboratoire d’Informatique de Paris 6 (LIP6)
Thalès SIX - ThereSIS

Temporal Connectivity and Path
Computation for Stream Graph

–
Connectivité Temporelle et Calcul de Chemins dans les Stream

Graphs

Léo RANNOU

Presented on November 9th, 2020 in front of a jury composed of:
Reviewers:

- Christophe CRESPELLE, Associate professor at Université Claude Bernard
Lyon 1, LIP
- Sylvain PEYRONNET, Professor at IX-LABS,

Examiners:
- Lionel LACASSAGNE, Professor at Sorbonne Université, LIP6
- François SAUSSET, Research Engineer at Thales, ThereSIS

Under the supervision of:
- Clémence MAGNIEN, Research Director at CNRS, LIP6
- Matthieu LATAPY, Research Director at CNRS, LIP6

ii

Remerciements

Je tiens à remercier Matthieu Latapy et Clémence Magnien, pour leur accompagne-
ment et conseils tout au long de cette thèse. Les conditions de travail au sein de
l’équipe Complex Networks étaient proches de l’idéal, je tiens donc à en remercier
tous les membres présents et passés qui y ont participé.

L’équipe data science de ThereSIS qui n’a fait que s’agrandir, chaque arrivée con-
tribuant positivement à l’ambiance générale. Pour leur bonne humeur et leur sympa-
thie, j’en remercie tous les membres passés et actuels.

A tout ceux qui m’ont encouragé à rédiger quand j’en avais moyennement envie, un
grand merci, cela a parfois été salvateur.

Et, bien sur, je remercie tout particulièrement Éléonore qui s’est farcie la fastidieuse
relecture de ce manuscrit et m’a moralement accompagné ces dernières années.

iii

iv

Abstract

Keywords: stream graphs, temporal networks, time-varying graphs, dynamic graphs,
dynamic networks, interactions, graphs, networks, connected components, temporal
paths, algorithms, link streams

For a long time, structured data and temporal data have been analysed separately.
Many real world complex networks have a temporal dimension, such as contacts
between individuals or financial transactions. Graph theory provides a wide set of
tools to model and analyze static connections between entities. Unfortunately, this
approach does not take into account the temporal nature of interactions. Stream
graph theory is a formalism to model highly dynamic networks in which nodes and/or
links arrive and/or leave over time. The number of applications of stream graph
theory has risen rapidly, along with the number of theoretical concepts and algorithms
to compute them. Several theoretical concepts such as connected components and
temporal paths in stream graphs were defined recently, but no algorithm was provided
to compute them. Moreover, the algorithmic complexities of these problems are
unknown, as well as the insight they may shed on real-world stream graphs of interest.

In this thesis, we present several solutions to compute notions of connectivity and
path concepts in stream graphs. We also present alternative representations - data
structures designed to facilitate specific computations - of stream graphs. We provide
implementations and experimentally compare our methods in a wide range of practical
cases. We show that these concepts indeed give much insight on features of large-scale
datasets. Straph, a python library, was developed in order to have a reliable library
for manipulating, analysing and visualising stream graphs, to design algorithms and
models, and to rapidly evaluate them.

v

French Abstract

Les données structurelles et les données temporelles ont, pendant longtemps, été
analysées séparément. De nombreux réseaux complexes contiennent une dimension
temporelle, comme les contacts entre individus ou les transactions financières. La
théorie des graphes fournit un large ensemble d’outils pour modéliser et analyser les
connexions entre entités. Malheureusement, cette approche ne prend pas compte la
nature temporelle des interactions. La théorie des stream graphs est un formalisme
permettant de modéliser les réseaux dynamiques dans lesquels les nœuds et/ou les
liens arrivent et/ou partent au fil du temps. Plusieurs concepts théoriques tels que les
composantes connexes dans les stream graphs ont été définis récemment, mais aucun
algorithme n’a été proposé pour les calculer. De plus, la complexité algorithmique de
ces problèmes est inconnue, ainsi que les connaissances qu’ils peuvent apporter sur
les stream graphs de terrain.

Dans cette thèse, nous proposons plusieurs solutions pour le calcul de notions de
connectivité et de chemins dans les stream graphs. Nous présentons également des
représentations alternatives - des structures de données conçues pour faciliter cer-
tains calculs - des stream graphs. Nous fournissons également des implémentations
et comparons expérimentalement nos méthodes sur une grande variété de cas pra-
tiques. Nous montrons que ces concepts apportent beaucoup d’informations sur les
caractéristiques de ces ensembles de données. Straph, une bibliothèque python, a
été développée afin de disposer d’une ressource fiable afin de manipuler, analyser et
visualiser les stream graphs.

vi

Résumé

Nos sociétés hyperconnectées fourmillent de réseaux, que ce soit dans les échanges
(transactions financières, flux logistique) ou les télécommunications, s’immisçant dans
tous les aspects de nos relations sociales (messagerie, mails, réseaux sociaux, appli-
cations de rencontres). Il est primordial de disposer d’outils permettant de modéliser
la richesse de ces structures connectées en perpétuelle évolution. Quelle qu’en soit
la perspective, comprendre et analyser ces objets complexes est devenu un enjeux
majeur.

La science des réseaux est un domaine de recherche bien établi, nombre de problèmes
susmentionnés ont déjà été abordés efficacement, en fournissant des algorithmes et des
outils pour l’analyse et la modélisation des réseaux [14, 19, 104, 106, 72, 9]. Cepen-
dant, la science des réseaux a longtemps été limitée à des phénomènes statiques.
Plus précisément, elle a été appliquée aux réseaux sans tenir compte de la nature
temporelle intrinsèque de nombreux phénomènes. Si nous considérons l’exemple des
relations et communications entre individus, il est impossible d’ignorer la nature tem-
porelle des interactions humaines sans perdre de l’information. L’approche guidant
notre travail consiste à introduire cette dimension temporelle dans la modélisation
sous forme de réseaux. Le formalisme que nous utilisons dans cette thèse est celui des
stream graphs [59]. De même que la théorie des séries temporelles fournit des outils
mathématiques et une modélisation spécifique pour analyser les signaux sous forme
de séquences continues de points de données, la théorie des stream graphs fournit
des outils pour l’analyse et la modélisation de séquences continues de liens, ou de
graphes. En outre, ce formalisme est conforme à la théorie des graphes: si un stream
graph n’évolue pas, ne possède pas de dynamique, il est équivalent à un graphe et ses
propriétés sont les mêmes que celles de ce graphe [59].

Le but de cette thèse est double : il s’agit de tirer profit du formalisme des stream
graphs afin d’analyser la dynamique et la structure des données du monde réel ; et
en retour de tirer profit de ces applications pratiques pour étendre et améliorer le
formalisme, en particulier pour résoudre les défis algorithmiques associés à sa mise en
œuvre sur des données massives.

vii

Objectifs

• Résoudre les questions algorithmiques liées au calcul des concepts de con-
nexité et de chemins dans les stream graphs, en particulier sur les ensem-
bles de données massifs.

• Développer une bibliothèque python pour analyser et manipuler les stream
graphs. Il s’agit de développer des structures de données spécifiques ainsi
que d’utiliser des implémentations parallèles et/ou en streaming afin de
faire passer à l’échelle les différentes méthodes sur des ensembles de don-
nées de terrain.

• Utiliser les concepts définis dans le formalisme pour analyser la structure
et la dynamique des données du monde réel.

Dans la suite, nous allons présenter succinctement le contenu des différents chapitres
de cette thèse ainsi que les principales contributions réalisées. Le lecteur peut se
référer aux chapitres en anglais pour plus de détails.

Chapitre 1 : Modélisation de réseaux temporels par Stream Graphs

Dans cette partie nous présentons tout d’abord des concepts et propriétés élémen-
taires de la théorie des graphes ainsi que les concepts et propriétés équivalents pour
les stream graphs. Nous introduisons les notations, les définitions et le matériel de
base qui seront utilisés dans le cadre de cette thèse. Nous passons également en revue
les différentes approches de l’état de l’art pour modéliser les réseaux temporels et
soulignons leurs similitudes et leurs différences avec les nôtres. Enfin, nous montrons
comment les stream graphs sont particulièrement bien adaptés pour modéliser des
données structurelles dynamiques. Nous décrivons et présentons également les prin-
cipales propriétés de certains ensembles, représentatifs et de différentes échelles, de
données de terrain.

Chapitre 2 : Straph: Une bibliothèque Python pour les Stream
Graphs

Contributions

• Une bibliothèque python open source pour la manipulation, la modélisa-
tion, l’analyse et la visualisation des stream graphs : Straph

• Des structures de données efficaces pour gérer les stream graphs
• Deux générateurs de stream graphs aléatoires à partir des modèles

d’Erdős-Rényi et de Barabási-Albert

Straph est un paquet Python 3 open source, sous licence Apache 2.0, pour l’exploration

viii

et l’analyse de stream graphs réels et artificiels. Cette bibliothèque fournit des struc-
tures de données spécifiques pour représenter différents types de stream graphs, des
algorithmes pour calculer des propriétés et des mesures de base, des connecteurs pour
divers formats de données ainsi que des générateurs similaires aux modèles Erdős-
Rényi [30] et Barabási-Albert [7]. À long terme, nous espérons fournir l’équivalent de
Networkx ou Networkit, en termes de fonctionnalités, pour les stream graphs. Straph
peut être utilisé pour enseigner la théorie des stream graphs, illustrer des concepts
particuliers ou encore mener des expériences. Cet outil peut aussi être utilisé par
des utilisateurs ou des développeurs qui ne sont pas nécessairement des experts en
programmation ou en théorie des stream graphs.

Dans ce chapitre, nous détaillons les paradigmes guidant le développement de Straph
et nous donnons un aperçu de l’architecture de la bibliothèque ainsi que des structures
de données employées. Nous présentons ensuite les nombreuses caractéristiques et
possibilités de Straph et nous illustrons comment les utiliser en pratique. Toutefois,
au moment de l’écriture de ces lignes, de nombreuses fonctionnalités doivent être
rigoureusement testées et documentées. Straph n’est pas suffisamment mûr pour être
utilisé en production.

Enfin, nous discutons des caractéristiques potentielles et futures. À l’avenir, nous
avons l’intention d’étendre Straph afin de traiter différents types de stream graphs :
possédant des liens pondérés, où emprunter un lien correspond à un temps de par-
cours, avec une structure bipartite. L’ajout d’autres algorithmes tels que la détection
de communauté, les mesures de centralité, la prédiction de liens et de nœuds sont
envisagés, afin de relever de nombreux défis pratiques.

Chapitre 3 : Connexité

Contributions

• Des algorithmes pour calculer les notions de connexité dans les stream
graphs

• Une analyse de la connexité de stream graphs réels de grande taille

Le concept de connexité est fondamental en théorie des graphes. Il est d’usage de
décomposer un graphe en ses composantes connexes distinctes. De nombreuses pro-
priétés, qui impliquent le calcul de chemins ou de communautés, peuvent être cal-
culées indépendamment sur chaque composante connexe, permettant ainsi l’exécution
en parallèle de nombreuses méthodes.

Dans ce chapitre, nous présentons des notations et des définitions clés et introduisons
des algorithmes, linéaires et polynomiaux, pour calculer les composantes faiblement et
fortement connexes dans les stream graphs. Nous appliquons ensuite ces algorithmes
à plusieurs ensembles de données du monde réel à grande échelle, afin d’étudier leurs
performances en pratique et démontrer leur capacité à décrire de tels ensembles de

ix

données.

Ces algorithmes peuvent traiter des flux de dizaines de millions d’événements et peu-
vent retourner les composantes connexes en streaming. Ils rendent les composantes
connexes utilisables en pratique. À notre connaissance, c’est la première fois qu’une
partition des nœuds temporels en composantes connexes est calculée à une telle
échelle.

Chapitre 4 : Représentations Alternatives des Stream Graphs

Contributions

• Une représentation des données basée sur des concepts de connex-
ité réduisant considérablement la complexité des calculs de requêtes
d’accessibilité : la condensation d’un stream graph

• Une représentation alternative des données permettant un calcul parallèle
efficace de nombreuses propriétés des stream graphs : le graphe orienté
acyclique stable d’un stream graph

• Une méthode d’approximation accélérant le calcul de nombreuses méth-
odes en pratique tout en préservant les propriétés de connexité d’un stream
graph : la Δ-approximation

Dans ce chapitre, nous présentons des représentations alternatives - des structures
de données conçues pour faciliter certains calculs - des stream graphs. La principale
motivation est de pouvoir effectuer certaines tâches de manière efficace (répondre
à différents types de requêtes, faciliter le calcul de certaines mesures et/ou de pro-
priétés).

Notre première représentation alternative, la condensation, utilise les composantes
fortement connexes comme blocs de construction et réduit la complexité des requêtes
d’accessibilité. Après avoir défini cette représentation, nous proposons une méthode
pour calculer la condensation à partir d’un stream graph, basée sur un algorithme de
connexité, défini précédemment. Ensuite, nous utilisons ses principales propriétés
pour concevoir des algorithmes répondant aux requêtes d’accessibilité, en temps
linéaire, et nous procédons à leur évaluation sur des stream graphs réels. Nous définis-
sons la notion de graphe orienté acyclique stable et utilisons ses propriétés pour con-
cevoir une méthode calcul parallèle efficace pour le calcul des nombreuses propriétés
des stream graphs. Troisièmement, nous proposons une méthode d’approximation,
la Δ-approximation, qui préserve la connexité d’un stream graph tout en diminuant
le temps de calcul de plusieurs méthodes. Enfin, nous concluons en proposant des
idées pour améliorer ces représentations de stream graphs et en suggérant d’autres
applications potentielles.

x

Chapitre 5 : Chemins Temporels

Contributions

• Un algorithme générique en temps polynomial calculant tout type de
chemin temporel optimal dans les stream graphs : le L-algorithme

• Des algorithmes en temps linéaire reposant sur la condensation d’un
stream graph pour le calcul des chemins arrivant le plus tôt ainsi que
des chemins les plus rapides.

Ce chapitre est dédié aux chemins, un concept majeur de la théorie des graphes, aux
problèmes associés et aux algorithmes les résolvant. Les applications sont nombreuses
et d’une importance capitale, comme le calcul du chemin le plus court, ou le plus
rapide, d’une entité à une autre dans un réseau de communication. Des notions de
chemin dans les réseaux temporels ou dynamiques ont été proposées [12, 47, 112,
109] ainsi que des algorithmes les calculant [109, 112, 78, 21, 96]. Cependant, la
modélisation par stream graphs diffère des formalismes de réseaux temporels existants.
Par conséquent, différentes notions de chemins de stream graphs ont été proposées
dans [59] mais il reste à relever les défis algorithmiques qui en découlent.

Tout d’abord, après avoir détaillé les notions de chemins temporels dans les stream
graphs, nous présentons différents types de problèmes de chemins temporels optimaux
survenant dans les stream graphs. Nous montrons qu’un problème de chemin optimal
peut être abordé comme un problème d’optimisation reposant sur une fonction objec-
tive et une autre de domination. Nous proposons ensuite une procédure unique, un
algorithme polynomial générique - qui peut être considéré comme une généralisation
du célèbre algorithme de Dijkstra - le L-Algorithm, pour calculer efficacement tout
type de chemin temporel optimal.

Nous présentons également des algorithmes utilisant la condensation d’un stream
graph, défini au chapitre précédent, pour réduire la complexité algorithmique. Nous
montrons que ces algorithmes sont plus rapides ou équivalents à nos L-Algorithmes
pour les problèmes de chemins arrivant le plus tôt et des plus rapides, au prix d’un pré-
traitement polynomial. Enfin, nous évaluons nos algorithmes sur quatorze ensembles
de données du monde réel, démontrant leur efficacité pratique sur des stream graphs
de dizaines de millions d’évènements.

Conclusion

Dans cette thèse, nous avons exploré des concepts généralisés, cohérents avec la théorie
des graphes, afin de prendre en compte une dimension temporelle. Nous avons, en
sus, établi et fourni des structures de données ainsi que leur implémentations afin
d’analyser et de manipuler des stream graphs réels ou synthétiques.

Toutefois, le travail nécessaire pour parvenir à des algorithmes efficaces pour chaque

xi

concept des stream graphs reste important. Pour mener à bien des applications con-
crètes, il est essentiel de concevoir et de mettre en œuvre des outils pour calculer
efficacement les propriétés des stream graphs. Un pas dans cette direction a été effec-
tué dans cette thèse par la conception d’algorithmes de connexité et de chemins ainsi
que leurs implémentations dans Straph.

Comme mentionné, la théorie des stream graphs se situe à l’intersection de deux
domaines scientifiques : la théorie des graphes et les séries temporelles. Dans le cadre
de cette thèse, nous n’avons pas exploré les concepts de séries temporelles. Cependant,
nous considérons que cet aspect est important et nous espérons fournir des avancées
dans cette direction, notamment grâce à notre méthode permettant, pour différents
types de propriétés dépendantes du temps, le calcul des séries temporelles associées.

xii

Contents

Remerciements iii

Abstract v

Résumé vii

List of Figures xv

List of Tables xix

Introduction 1

1 Modeling of Temporal Networks: the Stream Graph Approach 5
1.1 Graph Theory . 5
1.2 Stream Graphs . 6

1.2.1 Definitions and Notations . 8
1.2.2 Related Works . 9

1.3 Real-World Stream Graphs . 12

2 Straph: A Python Library for Stream Graphs 15
2.1 Development Paradigms . 16
2.2 Data Structures . 17

2.2.1 In-Memory Structures . 17
2.2.2 Streaming Formats . 19
2.2.3 File Formats . 20

2.3 Functionalities . 20
2.3.1 Installation and Dependencies 22
2.3.2 Visualisation . 22
2.3.3 Straph Generators . 24

2.4 Real-World Use Case: High School Friends 31
2.5 Discussion: development choices and future features 33

3 Connectivity 35
3.1 Weak Connectivity . 36
3.2 Strong Connectivity . 37

3.2.1 Direct Approach . 39
3.2.2 Fully Dynamic Approach . 41

xiii

3.2.3 Union-Find Approach . 42
3.3 Experiments and Applications . 44

3.3.1 Algorithm performances . 44
3.3.2 Connectedness analysis of IP traffic 47

3.4 Related Work . 50
3.5 Conclusion . 51

4 Alternative Stream Graph Representations 53
4.1 Condensation . 54

4.1.1 Definitions . 55
4.1.2 Algorithm . 58
4.1.3 Connectivity Properties . 59
4.1.4 Reachability Queries . 62
4.1.5 Experiments . 63

4.2 Stable Directed Acyclic Graph . 66
4.2.1 Definitions . 66
4.2.2 Algorithm . 68
4.2.3 Experiments . 69
4.2.4 DAG Parallel Framework . 71

4.3 Δ-Approximation . 76
4.3.1 Approximate Strongly Connected Components 76
4.3.2 Experiments . 77
4.3.3 Application to Latency Approximation 78

4.4 Discussion . 80

5 Temporal Paths 81
5.1 Definitions . 82
5.2 Optimal Temporal Paths Problems 82

5.2.1 Multi-criteria optimal temporal paths 84
5.2.2 Dominated Paths . 87

5.3 L-Algorithm . 90
5.4 Condensation Based Algorithms . 98

5.4.1 Time to reach and foremost paths 98
5.4.2 Latency and fastest paths . 104

5.5 Experiments . 106
5.6 Conclusion . 112

Conclusion 115

Bibliography 121

xiv

List of Figures

1-1 An example of stream graph. We display time 𝑇 = [0, 10] on the
horizontal axis and nodes 𝑉 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹} on the vertical one.
We represent each node segment by a colored horizontal segment, with
one color per node; and each link segment in grey by a vertical line
between the two involved nodes at the link segment starting time, and
a horizontal line from this time to its ending time. For instance, node 𝐴
corresponds to two node segments: ([0, 5], 𝐴) and ([7, 10], 𝐴), meaning
that 𝑇𝐴 = [0, 5] ∪ [7, 10]. There are two links segments between 𝐴
and 𝐵: ([0, 4], 𝐴𝐵) and ([7, 8], 𝐴𝐵), meaning that 𝑇𝐴𝐵 = [0, 4] ∪ [7, 8].
There is an instantaneous link segment: ([4, 4], 𝐵𝐸) = ({4}, 𝐵𝐸), and
it is the only link between 𝐵 and 𝐸, therefore 𝑇𝐵𝐸 = [4, 4] = {4}. . . 7

2-1 Diagram summing up Straph’s functionalities 21
2-2 Straph drawings of a stream graph (left) and its aggregated graph (right) 23
2-3 Illustration of an animated drawing of a stream graph. The left view

features a moving cursor over the time axis on the stream graph’s global
drawing, here at 𝑡 = 2.5. On the right view, an induced graph is drawn
corresponding to the cursor’s position. 23

2-4 Illustrations of clustering visualisations in Straph. The instant degree
value of each node (left) and clusters corresponding to the distinct
strongly connected components of the stream graph (right). 24

2-5 Straph drawing of the temporal nodes degree (brighter the color higher
the degree) in a subset of the High School dataset (substream of the
first fifty nodes on the second day of recording). 25

2-6 An Erdo-Rényi generated stream graph (left) along with the visualisa-
tion of the degree of its temporal nodes (brighter the color higher the
degree) . 27

2-7 Degree distribution of a randomly generated Erdős-Rényi stream graph
with parameters T = (0, 1000), nb_nodes = 100000, occurrence_param_node
= 4, presence_param_node = 200, occurrence_param_link = 3, pres-
ence_param_link = 150, p =

√
𝑛𝑏_𝑛𝑜𝑑𝑒𝑠/nb_nodes. 28

2-8 A Barabási-Albert generated stream graph (left) along with the visu-
alisation of the degree of its temporal nodes (brighter the color higher
the degree) . 29

xv

2-9 Degree distributions (top: histogram, bottom: log-log scatter plot)
of a randomly generated Barabási-Albert stream graphs with param-
eters T = (0, 1000), nb_nodes = 100000, occurrence_param_node =
3, presence_param_node = 500, occurrence_param_link = 3, pres-
ence_param_link = 250, m0 = 2, m= 2 30

2-10 Substream induced by nodes ’275’, ’312’, ’612’, ’886’ in the High
School dataset. 32

2-11 Substream induced by nodes ’884’, ’3’,’339’ and ’147’ in the High
School dataset. 33

3-1 The two weakly connected components of the stream graph of Figure 1-
1, each component having its own color. 36

3-2 The 17 strongly connected components of the stream graph of Figure 1-
1. Each component is numbered and has its own color. 38

3-3 SCC UF algorithm illustration: The addition of a link ([2, 9],CD) be-
tween C and D causes component unions (𝑈0, 𝑈1, 𝑈2, 𝑈3 and 𝑈4).
Components 𝐶0 and 𝐶1 are split at the begin of the link (instant 2)
and component 𝐶10 remains unchanged. 42

3-4 Time cost of SCC Direct, SCC UF, SCC FD in seconds, along with
the number 𝑀 of link segments and the number of strongly connected
components, for each considered stream (horizontal axis, ordered with
respect to 𝑀). 46

3-5 Relation between the number of strongly connected components (hori-
zontal axis) and 𝑛*𝑀 , the number of event times, and the running time
of SCC Direct. Each dataset leads to three vertically aligned points,
the color of which indicating the considered variable. 46

3-6 Number of nodes in the whole stream graph and in the giant weakly
connected component over time in the mawilab dataset. 47

3-7 Number of nodes and number of strongly connected components over
time in the mawilab dataset. 48

3-8 Distribution of the size (top left), duration (top right) and span (bot-
tom) of strongly connected components in Mawilab. 48

3-9 Duration of each strongly connected component as a function of its size
in Mawilab dataset, in log-log scales. We added 10−6 to each duration
in order to display instantaneous SCC on a log scale. 49

4-1 The 17 strongly connected components of the stream graph of Figure 1-
1 (top) and the corresponding Condensation Directed Acyclic Graph
(bottom). 56

4-2 Illustration of the impact of a link’s beginning on condensation links. 57
4-3 Relaxed Condensation Directed Acyclic Graph corresponding to the

stream graph of Figure 1-1 . 59
4-4 A temporal path from (0, 𝐹) to (6, 𝐶) in the stream graph (top and

middle) and the equivalent path in its condensation ((1, 2, 8, 4, 9, 5))
(bottom). 61

xvi

4-5 Number of nodes in 𝐺C , 𝑛𝑐, along with the number of node segments
in 𝑆, 𝑁 , (left) and number of links in 𝐺C , 𝑚𝑐, along with the number
of link segments in 𝑆, 𝑀 , (right) for each considered real world stream
graph (horizontal axis, ordered with respect to 𝑀). 64

4-6 Running time of SCC-Condensation Direct in seconds along with the
number of link segments, 𝑀 , node segments, 𝑁 , and event times, 𝑇 , in
𝑆 for each considered real world stream graph (horizontal axis, ordered
with respect to 𝑀). 65

4-7 Stable connected components of the stream graph of Figure 1-1. . . . 67
4-8 Illustration of the decomposition into snapshots. Colors indicate dis-

tinct snapshots and numbers indicate connected components in snap-
shots. 67

4-9 Number of nodes in 𝐺S , 𝑛𝑠 along with the number of node segments
in 𝑆, 𝑁 (left) and number of links in 𝐺S , 𝑚𝑠 along with the number
of link segments in 𝑆, 𝑀 (right) for each considered real world stream
graph (horizontal axis, ordered with respect to 𝑀). 70

4-10 Running Time of SCC-Condensation Direct and SCC-Stable Direct in
seconds along with the number of link segments 𝑀 , node segments 𝑁
and event times 𝑇 in 𝑆 for each considered real world stream graph
(horizontal axis, ordered with respect to 𝑀). 70

4-11 Number of nodes in 𝐺C , 𝑛𝑐, and in 𝐺S , 𝑛𝑠 (left) - Number of links in
𝐺C , 𝑚𝑐, and in 𝐺S , 𝑚𝑠 (right) for each considered real world stream
graph (horizontal axis, ordered with respect to 𝑀). 71

4-12 K-cores in a subset of the Facebook dataset (from the 01/07/2008 to
the 22/01/2009). 74

4-13 Coreness distribution in the facebook dataset 75
4-14 Core Number of nodes ’1055’ (left) and ’2420’ (right) over time in the

facebook dataset. 75
4-15 Running time of SCC Direct, number of SCC and number of event

times in MawiLab, as a function of Δ (here, 𝛿 = 2𝑠). 77
4-16 Box plots representing the distribution of the size (left), duration (mid-

dle) and span (right) of strongly connected components in Mawilab,
for various values of Δ (here, 𝛿 = 2𝑠). We indicate the mean, minimal,
and maximal values with dots connected by horizontal lines, as well as
the median and percentiles with vertical boxes. 78

4-17 Evolution of the LRMSE, the average difference between latencies and
the average latency stretch with respect to Δ in Mawilab. We indi-
cate the number of missing paths and represent it as a disk of area
proportional to this number. 79

5-1 Examples of optimal temporal paths (top to bottom): foremost path
from (0, 𝐴) to 𝐹 , fastest path from 𝐴 to 𝐹 , shortest path from 𝐴 to 𝐷. 85

5-2 Examples of multi-criteria optimal temporal paths (top to bottom):
Shortest Foremost Path (0, 𝐴) to 𝐹 , Shortest Fastest Path 𝐴 to 𝐹 ,
Fastest Shortest Path 𝐴 to 𝐷. 86

xvii

5-3 Illustration of shortest fastest paths complexity 98
5-4 Running Times (s) of the L-Algorithm for the foremost, shortest fastest,

shortest foremost, fastest shortest and shortest fastest path problems
(top: random sources, bottom: high degree sources). 109

5-5 Running Times (s) of the L-Algorithm and of condensation algorithms
for the foremost and fastest path problems (top: random sources, bot-
tom: high degree sources). 110

xviii

List of Tables

1.1 Notations . 10
1.2 Key features of the real-world stream graphs we consider, ordered with

respect to their number 𝑀 of link segments (K indicates thousands,
M millions). 𝑛 the number of distinct nodes, 𝑚 the number of distinct
links, |𝑇 | the considered time window, 𝑁 the number of node segments,
𝑀 the number of link segments, Ω the number of distinct event times
and 𝑑𝑚 the maximal instantaneous degree. 14

3.1 Number of WCC (|W |) - Number of SCC (|C |) - Algorithms running
time in seconds (K = 103, M=106) 45

4.1 Running time in seconds of algorithm SCC-Condensation Direct - Char-
acteristics of the condensations of real world stream graphs (𝑛𝑐 = |C)
the number of nodes (and of SCC), 𝑚𝑐 the number of links, 𝑑𝑐 the
mean out degree) - 𝛼 =

∑︀
𝑢∈C

𝑑𝑜𝑢𝑡(𝑢)2

𝑛𝑐
the complexity parameter in

Heuristic 4.1.1 - |W | the number of weakly connected components. . . 64
4.2 Running time in seconds of algorithm SCC-Stable Direct - Character-

istics of the stable DAG of real world stream graphs (𝑛𝑠 the number of
nodes, 𝑚𝑠 the number of links,𝑑𝑠 the mean out-degree) - Total number
of connected components in the whole sequence of snapshots 69

4.3 Characteristics of the 3-core, 2-shell and 1-shell in the Facebook dataset.
The total running time of the DAG parallel framework, with 8 cores,
was 32.04𝑠. 73

5.1 Example of L-Algorithm for shortest paths (ℱ𝑆𝑃 and 𝒬𝑆𝑃). 93
5.2 L-Algorithm running times in seconds (random sources) (missing val-

ues correspond to the timeout of a procedure, set to 15000𝑠) 108
5.3 L-Algorithm running times in seconds (high degree sources) (missing

values correspond to the timeout of a procedure, set to 15000𝑠) . . . 111
5.4 L-Algorithm and condensation algorithms running times in seconds

(random sources) (missing values correspond to the timeout of a pro-
cedure, set to 15000𝑠) . 111

5.5 L-Algorithm and condensation algorithms running times in seconds
(high degree sources) (missing values correspond to the timeout of a
procedure, set to 15000𝑠 . 112

xix

Introduction

A network is composed of actors and connections between these actors. Actors are
called nodes and connections links. The term network refers to real-world complex
systems where nodes are complex entities. The term graph refers to the abstract
mathematical object modeling relations between these entities.

Networks are ubiquitous in our modern societies. Every aspect of our social life is a
network, whether it is a social network, a messaging or dating app, a purchase or a
sale, or even physical proximity between individuals. Relationship networks are the
most obvious domain where these data shine, as they provide meaningful information
to model and understand social interactions.
Analyzing academic collaborations, e-mail exchanges and, more generally, social net-
works is a major concern. For instance, the increase and spread of fake news has a
growing and worrying influence on public opinion. Data collection is accelerating due
to technological advances in recent years. The entailed risks and the wide range of
applications from marketing, to military, to health care of these data require a better
understanding of networks.
Likewise, the analysis of infrastructure networks such as road or telecommunication
networks, has a plethora of applications. Even data that does not inherently contain
any network structure can be analyzed from a network science perspective. Consider,
for example, text data: a network of terms can be built by assigning links between
adjacent words (terms). Many scientific problems can be reduced to a specific graph
problem in a similar way. DNA sequencing from small DNA fragments consists in
finding a topological sort of a directed graph built from these fragments. Graph
modeling of biological data, from DNA sequencing to molecule similarity, has already
numerous applications. Such abstract representations of real-world problems have
proven to be decisive in our understanding of many phenomena. Furthermore, from
a practical point of view, graph algorithms have demonstrated their efficiency for
solving or approximating many problems. For instance, finding the cheapest route
from a town to another one consists in solving a classical graph problem: the shortest
path problem in a weighted graph.

Network science is a long-existing field of research and has already tackled efficiently
many of the above problems, providing algorithms and tools for the analysis and
modeling of networks, see for instance [14, 19, 104, 106, 72, 9]. However, network

1

science has, for a long time, been limited to static phenomena. More precisely, it
has been applied to networks without taking into account the intrinsic temporal
nature of many phenomena. However, if we focus on relations between individuals
it is impossible to ignore the temporal nature of human interactions without losing
information. The approach guiding our work is to bring this temporal dimension into
the modeling in the form of networks. The formalism we use in this thesis is the stream
graph theory [59]. Similarly to time series theory providing mathematical tools and
a specific modeling to analyze signals as continuous sequences of data points, stream
graph theory provides tools for the analysis and modeling of sequences of links or,
continuous sequences of graphs. In addition, this formalism is consistent with graph
theory: if a stream has no dynamics, it is equivalent to a classical graph and its
properties are same as those of this graph [59].

Thesis Aims and Objectives

The goal of this thesis is twofold: it is to take benefit from the stream graph formalism
in order to analyze the dynamics and structure of real-world data; and in return to
benefit from these practical applications to extend and improve the formalism, in
particular to solve the algorithmic challenges associated with its implementation on
massive data.

Numerous stream graph notions, such as connected components or paths, were de-
fined recently in [59], but no algorithm was provided to compute them. Consequently,
no experimental evaluation of these concepts have been performed and whether these
concepts are suitable for describing real-world temporal networks was an open ques-
tion.
In this thesis we aim to provide efficient algorithms to compute these concepts, analyze
their algorithmic complexities and their practical performances. These implementa-
tions and the design of appropriate data structure(s) for the efficient handling of
stream graphs will provide an advanced tool in the form of a python library: Straph.
In addition to these algorithmic issues, we will endeavour to describe real-world stream
graphs with these concepts and evaluate how they help us understanding the struc-
ture and dynamics of these complex objects. We also aim at identifying the most
relevant notions introduced, in the sense that they are calculable in practice and
bring significant insight into the data. This will allow us to evaluate the added value
of the stream graph approach and to explore its limits.

2

Main objectives and Challenges

• Solve algorithmic questions related to the computation of connectivity
and path concepts in stream graphs, especially on massive datasets.

• Develop a python library to analyze stream graphs, using parallel and/or
streaming implementations in order to scale on real-world datasets.

• Use the concepts defined in the formalism to analyze the structure and
dynamics of real-world large-scale data.

Thesis Outline and Contributions

In Chapter 1 we present the stream graph formalism and detail why it is particularly
conducive to model highly dynamic networks in which nodes and/or links arrive
and/or leave over time.

Then we present, in Chapter 2, the software that we have developed during this
thesis: the python library Straph. This tool was specifically designed to handle stream
graphs. We will explain the motivation for such a tool, overview its core functionalities
and provide practical examples throughout this thesis. Along with this tool, we
introduce several data structures suited to handle different stream graph concepts
as well as random stream graph generators based on the Erdős-Rényi and Barabási-
Albert models.

In Chapter 3 we focus on connectivity concepts in stream graphs. We propose several
algorithms, with polynomial time and space complexities, to compute connectivity
concepts. We provide an implementation and experimentally compare the algorithms
in a wide variety of practical cases. We then conduct the first connectivity analysis
of a representative large-scale dataset and show that connected components indeed
give much insight on its features. In particular, we show and explain that real-world
stream graphs generally do not have a huge strongly connected component that stands
out of the crowd.

In order to answer some issues raised in Chapter 2 about the data structures used to
handle stream graphs, we propose, in Chapter 4, two alternative data structures: the
condensation and the stable directed acyclic graphs. These objects benefits from the
connectivity notions and algorithms previously defined in Chapter 3. We show that
these objects can be used to compute reachability queries in linear time and provide
a parallel framework to efficiently compute numerous stream graph properties using
graph algorithms. In addition, we propose an approximation scheme that significantly
reduces computation costs, and gives even more insight on the dataset.

Finally, Chapter 5 is dedicated to temporal path problems arising in stream graphs.
After presenting a theoretical overview of the different kind of algorithmic path prob-
lems, we propose a new generic algorithm able to compute optimal temporal paths in
polynomial time. In a second time, using results from Chapters 3 and 4, we will pro-

3

vide the first linear algorithms solving two optimal path problems in stream graphs.
We conclude this thesis by discussing the practical usage and improvement of our
work as well as the impact it could have in many scientific fields.

4

1 Modeling of Temporal Networks: the
Stream Graph Approach

Many real world complex networks have a temporal dimension, such as contacts be-
tween individuals, financial transactions or network traffic. Graph theory provides a
wide set of tools to model and analyze static connections between entities. Unfortu-
nately, this approach does not take into account the temporal nature of interactions.
One fallback consists in decomposing these interactions into a sequence of static
graphs (by aggregation over a period of time or by adding temporal attributes on
edges and nodes). However, this solution either leads to a reduction of information
or to a potentially huge sequence of graphs (see section 1.2.2). In the frame of our
work, we use the stream graph formalism [59] to directly cope with interactions over
time without loss of information.

First we present common and relevant graph concepts as well as their key properties,
in section 1.1. Then we present equivalent concepts for stream graphs, that were
defined in [59], along with their key properties in section 1.2. We will provide the
basic notations, definitions and material that will be used through this thesis. We will
also review different approaches designed to model temporal networks and point out
their similarities and differences with ours. Finally, in section 1.3 we show how the
stream graph is particularly well suited to model highly dynamic structural data. We
also describe and present key properties of some representative real world datasets of
different scales.

1.1 Graph Theory

Given any two sets 𝐴 and 𝐵, we denote by 𝐴× 𝐵 the set of couples (𝑎, 𝑏) such that
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. We denote by 𝐴⊗𝐵 the set of pairs 𝑎𝑏 such that 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and
𝑎 ̸= 𝑏. Couples are ordered, while pairs are unordered: (𝑎, 𝑏) ̸= (𝑏, 𝑎) while 𝑎𝑏 = 𝑏𝑎.

Definition 1.1.1. A graph is a pair 𝐺 = (𝑉, 𝐸), where 𝑉 is a set whose elements
are called nodes and 𝐸 ⊆ 𝑉 ⊗ 𝑉 a set of two-sets (sets with two distinct elements)
whose elements are called edges.

5

A graph is a representation of entities linked by some relationships. These relation-
ships can differ a lot depending on the application domain (see section 1.3). The
number of nodes in a graph is equal to 𝑛 = |𝑉 | and the number of edges is 𝑚 = |𝐸|.
Also a graph can be directed, undirected, bipartite, multipartite, can have weighted
or unweighted edges, and nodes can have labels or attributes.

Definition 1.1.2. A subgraph of a graph 𝐺 = (𝑉, 𝐸) is formed from a subset of
nodes, 𝐶, and from all the edges that have both endpoints in the subset. A subgraph
induced by a set 𝐶 ⊆ 𝑉 is denoted by 𝐺(𝐶) = (𝐶, 𝐸𝐶).

Definition 1.1.3. A path 𝑃 from 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉 of a Graph 𝐺 = (𝑉, 𝐸) is a sequence
(𝑢0, 𝑣0), (𝑢1, 𝑣1), ..., (𝑢𝑘, 𝑣𝑘) of elements of 𝑉 ×𝑉 such that 𝑢0 = 𝑢, 𝑣𝑘 = 𝑣, and for all
𝑖, 𝑢𝑖 = 𝑣𝑖−1 and (𝑢𝑖, 𝑣𝑖) ∈ 𝐸. The length of the path 𝑃 = (𝑢0, 𝑣0), (𝑢1, 𝑣1), ..., (𝑢𝑘, 𝑣𝑘)
is the number of its elements : 𝑘 + 1. The path 𝑃 is a shortest path from 𝑢 to 𝑣 if
there is no path from 𝑢 to 𝑣 in 𝐺 of length lower than 𝑘. The distance between 𝑢 and
𝑣 is the length of the shortest path between them.

Definition 1.1.4. A connected component of a graph 𝐺 = (𝑉, 𝐸) is a maximal set
𝐶 ⊆ 𝑉 such that ∀𝑢, 𝑣 ∈ 𝐶 there exists a path from 𝑢 to 𝑣 in the induced subgraph
𝐺(𝐶).

A disconnected graph is disconnected if there exists two nodes 𝑢, 𝑣 ∈ 𝑉 such that
there is no path from 𝑢 to 𝑣 in 𝐺. The nodes set of such a graph can be partitioned
into a set of distinct connected components.

Definition 1.1.5. The k-core of a graph 𝐺 = (𝑉, 𝐸) is its largest subset 𝐶𝑘 ⊆ 𝑉 such
that ∀𝑣 ∈ 𝐶𝑘, 𝑑(𝑣) ≥ 𝑘 in the induced subgraph 𝐺(𝐶𝑘) = (𝐶𝑘, 𝐸𝐶𝑘).

Definition 1.1.6. The k-shell of a graph 𝐺 = (𝑉, 𝐸) is the subset 𝐶𝑘 ∖𝐶𝑘+1. (defined
only if the (k+1)-core is not empty : 𝐶𝑘+1 ̸= ∅).

Definition 1.1.7. A clique of a graph 𝐺 = (𝑉, 𝐸) is a subset 𝐶 ∈ 𝑉 such that all
pairs of nodes involved in 𝐶 are linked together in 𝐺. A clique involving 𝑘 nodes
is called a 𝑘-clique. A clique 𝐶 is maximal if there is no other clique 𝐶 ′ such that
𝐶 ⊂ 𝐶 ′.

Graph theory is a long-existing research field. Many graph concepts have been defined
as well as algorithms to compute them. These concepts have led to numerous real-
world applications. We refer to [14, 19, 104, 106, 72, 9] for a detailed survey of graph
theory notions and their practical applications.

1.2 Stream Graphs

Definition 1.2.1. A stream graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸) is defined [59] by a finite set
of nodes 𝑉 , a time interval 𝑇 ⊆ R, a set of temporal nodes 𝑊 ⊆ 𝑇 × 𝑉 , and a set of
links 𝐸 ⊆ 𝑇 × 𝑉 ⊗ 𝑉 such that (𝑡, 𝑢𝑣) ∈ 𝐸 implies (𝑡, 𝑢) ∈ 𝑊 and (𝑡, 𝑣) ∈ 𝑊 .

6

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

No
de

s

Figure 1-1: An example of stream graph. We display time 𝑇 = [0, 10] on the horizontal
axis and nodes 𝑉 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹} on the vertical one. We represent each node
segment by a colored horizontal segment, with one color per node; and each link
segment in grey by a vertical line between the two involved nodes at the link segment
starting time, and a horizontal line from this time to its ending time. For instance,
node 𝐴 corresponds to two node segments: ([0, 5], 𝐴) and ([7, 10], 𝐴), meaning that
𝑇𝐴 = [0, 5] ∪ [7, 10]. There are two links segments between 𝐴 and 𝐵: ([0, 4], 𝐴𝐵)
and ([7, 8], 𝐴𝐵), meaning that 𝑇𝐴𝐵 = [0, 4] ∪ [7, 8]. There is an instantaneous link
segment: ([4, 4], 𝐵𝐸) = ({4}, 𝐵𝐸), and it is the only link between 𝐵 and 𝐸, therefore
𝑇𝐵𝐸 = [4, 4] = {4}.

7

Figure 1-1 shows an example of a Stream Graph. In this example, nodes may rep-
resent individuals, their presence reflects the fact that they are in the same room
and interactions between individuals could represent a conversation. The node 𝐶 is
present from 0 to 1, is absent between 1 and 6, and present again from 6 to 10. Nodes
𝐴 and 𝐵 are continuously connected from 0 to 4 and from 7 to 8. Interactions can
be instantaneous like between 𝐵 and 𝐸 at time 4.

1.2.1 Definitions and Notations

The following stream graph properties are consistent: if one considers a stream
graph with no dynamics - nodes are present all the time, and two nodes are either
linked all the time or not at all - then the stream graph is equivalent to a graph and
its stream properties are equivalent to the properties of the corresponding graph [59].

Definition 1.2.2. In a stream graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸) a path 𝑃 from (𝛼, 𝑢) ∈ 𝑊 to
(𝜔, 𝑣) ∈ 𝑊 is a sequence (𝑡0, 𝑢0, 𝑣0), (𝑡1, 𝑢1, 𝑣1), ..., (𝑡𝑘, 𝑢𝑘, 𝑣𝑘) of elements of 𝑇×𝑉 ×𝑉
such that 𝑢0 = 𝑢, 𝑣𝑘 = 𝑣, 𝑡0 ≤ 𝛼, 𝑡𝑘 ≥ 𝜔 for all 𝑖, 𝑡𝑖 ≤ 𝑡𝑖+1, 𝑣𝑖 = 𝑢𝑖+1 and
(𝑡𝑖, 𝑢𝑖𝑣𝑖) ∈ 𝐸, [𝛼, 𝑡0]× 𝑢 ⊆ 𝑊 , [𝑡𝑘, 𝜔]× 𝑣 ⊆ 𝑊 , and for all 𝑖, [𝑡𝑖, 𝑡𝑖+1]× 𝑣𝑖 ⊆ 𝑊 .

Definition 1.2.3. A path 𝑃 = (𝑡0, 𝑢0, 𝑣0), (𝑡1, 𝑢1, 𝑣1), ..., (𝑡𝑘, 𝑢𝑘, 𝑣𝑘) has length 𝑘 + 1
and duration 𝑡𝑘 − 𝑡0.

Definition 1.2.4. A stream 𝑆 ′ = (𝑇 ′, 𝑉 ′, 𝑊 ′, 𝐸 ′) is a substream of a stream graph
𝑆 = (𝑇, 𝑉, 𝑊, 𝐸) if 𝑇 ′ ⊆ 𝑇 , 𝑉 ′ ⊆ 𝑉 , 𝑊 ′ ⊆ 𝑊 and 𝐸 ′ ⊆ 𝐸. It is denoted by 𝑆 ′ ⊆ 𝑆.

Definition 1.2.5. A cluster 𝐶 of a Stream Graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸) is a subset of
𝑊 .
The set of links between nodes involved in 𝐶 is denoted by 𝐸(𝐶) = {(𝑡, 𝑢𝑣) ∈
𝐸, (𝑡, 𝑢) ∈ 𝐶 and (𝑡, 𝑣) ∈ 𝐶}, the substream of 𝑆 induced by 𝐶 is denoted by
𝑆(𝐶) = (𝑇 , 𝑉, 𝐶, 𝐸(𝐶)).

Definition 1.2.6. A weakly connected component of a Stream Graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸)
is a maximal cluster 𝐶 ⊆ 𝑊 where ∀(𝛼, 𝑢), (𝜔, 𝑣) ∈ 𝑊 2

𝐶, (𝛼, 𝑢) - - - (𝜔, 𝑣) (There
exists an undirected path between (𝛼, 𝑢) and (𝜔, 𝑣)) in the induced sub-stream 𝑆(𝐶) =
(𝑇𝐶 , 𝑉𝐶 , 𝑊𝐶 , 𝐸𝐶).

Definition 1.2.7. A strongly connected component of a Stream Graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸)
is a maximal compact cluster 𝐶 ⊆ 𝑇×𝑉 such that 𝑉𝐶 is a connected component of 𝐺𝑡,
the induced static graph of S at time 𝑡, for all 𝑡 in 𝑇𝐶. This implies that ∀𝑢, 𝑣 ∈ 𝑉 2

𝐶

and ∀𝑡 ∈ 𝑇𝐶 there exists a path between 𝑢 and 𝑣 in 𝐺𝑡.

Definition 1.2.8. The k-core of a stream graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸) is its largest cluster
𝐶𝑘 ⊆ 𝑊 such that ∀(𝑡, 𝑣) ∈ 𝐶𝑘, 𝑑𝑡(𝑣) ≥ 𝑘 in the induced sub-stream 𝑆(𝐶𝑘).

Definition 1.2.9. The k-shell of a stream graph is the cluster 𝐶𝑘 ∖𝐶𝑘+1 (the k-shell
is defined only if the (k+1)-core is not empty : 𝐶𝑘+1 ̸= ∅).

Definition 1.2.10. A clique of stream graph 𝑆 is a cluster 𝐶 of 𝑆 of density 1.
In other words, all pairs of nodes involved in 𝐶 are linked in 𝑆 whenever both are

8

involved in 𝐶. A clique 𝐶 is maximal if there is no other clique 𝐶 ′ such that 𝐶 ⊂ 𝐶 ′.
A clique involving 𝑘 distinct nodes is called a 𝑘-clique.

For the sake of clarity, we do not present an exhaustive list of stream graphs defini-
tions. We refer to [59] for a detailed presentation of stream graph theory. Additional
definitions will be recalled in appropriated sections of this thesis.

For any 𝑢 and 𝑣 in 𝑉 , 𝑇𝑢 = {𝑡, (𝑡, 𝑢) ∈ 𝑊} denotes the set of time instants at which
𝑢 is present, and 𝑇𝑢𝑣 = {𝑡, (𝑡, 𝑢𝑣) ∈ 𝐸} denotes the set of time instants at which 𝑢
and 𝑣 are linked together. We assume here that both 𝑇𝑢 and 𝑇𝑢𝑣 are unions of a finite
number of disjoint closed intervals (possibly singletons) of 𝑇 .

We call node segment a couple ([𝑏, 𝑒], 𝑢) such that [𝑏, 𝑒] is a maximal interval in 𝑇𝑢,
and we denote by 𝑊 the set of all node segments in 𝑊 . We say that 𝑏 is an arrival
of 𝑢, and 𝑒 a departure. We denote by 𝑁 = |𝑊 | the number of node segments in the
stream.
Likewise we call link segment a couple ([𝑏, 𝑒], 𝑢𝑣) such that [𝑏, 𝑒] is a maximal interval
in 𝑇𝑢𝑣, and we denote by 𝐸 the set of all link segments in 𝐸. We say that 𝑏 is an
arrival of 𝑢𝑣, and 𝑒 a departure. We denote by 𝑀 = |𝐸| the number of link segments
in the stream.
Notice that the intervals considered above may be singletons. Then, 𝑏 = 𝑒 and
[𝑏, 𝑒] = {𝑏} = {𝑒}.

We call all time instants that correspond to a node or link arrival or departure an
event time. The number of distinct event times is denoted by Ω. There are at most
2 ·𝑁 + 2 ·𝑀 event times in a stream graph.

The induced graph 𝐺(𝑆) = (𝑉 (𝑆), 𝐸(𝑆)) is defined by 𝑉 (𝑆) = {𝑣,∃𝑡, (𝑡, 𝑣) ∈ 𝑊}
and 𝐸(𝑆) = {𝑢𝑣,∃𝑡, (𝑡, 𝑢𝑣) ∈ 𝐸}. We denote by 𝑛 = |𝑉 (𝑆)| and 𝑚 = |𝐸(𝑆)| its
number of nodes and links, respectively.

We denote by 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡) the graph such that 𝑉𝑡 = {𝑣, (𝑡, 𝑣) ∈ 𝑊} and 𝐸𝑡 =
{𝑢𝑣, (𝑡, 𝑢𝑣) ∈ 𝐸}. We denote by 𝐺−

𝑡 the graph that corresponds to the nodes and
links present between 𝑡 and the event time just before it: 𝐺−

𝑡 = (𝑉 −
𝑡 , 𝐸−

𝑡) where
𝑉 −

𝑡 = {𝑣,∃𝑡′ ̸= 𝑡, [𝑡′, 𝑡] ⊆ 𝑇𝑣} and 𝐸−
𝑡 = {𝑢𝑣,∃𝑡′ ̸= 𝑡, [𝑡′, 𝑡] ⊆ 𝑇𝑢𝑣}.

In this thesis we will use the notations of Table 1.1 to ease the explanation of several
methods and algorithms.

1.2.2 Related Works

Sequences of interactions are preponderant in numerous fields, and they have been
studied for a long time. Although many variations exist, the most common approach is
to model them by sequences of graphs (each graph aggregating interactions occurring
during a period of time), by labeled graphs (each link being labeled with its presence
times), or other augmented graphs. This makes it possible to use graph theory to
study these sequences of graphs, labeled graphs, and other variants. Other works deal
directly with higher-level methods for studying graphs, like stochastic block models

9

Notation Definition Explanation

𝑉 (𝑆) {𝑣,∃𝑡, (𝑡, 𝑣) ∈𝑊} Set of distinct nodes

𝑊 𝑊 ⊆ 𝑇 × 𝑉 Set of temporal nodes

𝑊 {([𝑏, 𝑒], 𝑣) s.t. [𝑏, 𝑒] × {𝑣} ⊆
𝑊 and [𝑏, 𝑒] is maximal}

Set of node segments

𝑊 * {([𝑏, 𝑒], 𝑣), (𝑒, 𝑣) s.t. ∃([𝑏, 𝑒], 𝑣) ∈𝑊} Temporally ordered set of node
events

𝐸 𝐸 ⊆ 𝑇 × (𝑉 ⊗ 𝑉) Set of temporal links

�̂� {𝑢𝑣 s.t. ∃𝑡, (𝑡, 𝑢𝑣) ∈ 𝐸} Set of distinct links

𝐸 {([𝑏, 𝑒], 𝑢𝑣)𝑠.𝑡.[𝑏, 𝑒] × {𝑢𝑣} ⊆
𝐸 and [𝑏, 𝑒] is maximal}

Set of link segments

𝐸(𝑆) {([𝑏, 𝑒], 𝑢𝑣), (𝑒, 𝑢𝑣) s.t. ∃([𝑏, 𝑒], 𝑢𝑣) ∈
𝐸}

Temporally ordered set of link events

Π 𝑊 * ∪ 𝐸* Temporally ordered set of events

𝑇𝑢 {𝑡, (𝑡, 𝑢) ∈𝑊} ⊆ 𝑇 Set of time instants at which 𝑢 is
present

𝑇𝑢 {[𝑏, 𝑒] s.t. ∃([𝑏, 𝑒], 𝑢) ∈ 𝑊 and [𝑏, 𝑒]
is maximal }

Set of maximal distinct intervals of
presence of 𝑢

𝑇 *
𝑢 {𝑏, 𝑒 s.t. ∃[𝑏, 𝑒] ∈ 𝑇𝑢} Set of time instants at which 𝑢 ar-

rives or departs

𝑇𝑢𝑣 {𝑡, (𝑡, 𝑢𝑣) ∈ 𝐸} ⊆ 𝑇 Set of time instants at which 𝑢𝑣 is
present

𝑇𝑢𝑣 {[𝑏, 𝑒] s.t. ∃([𝑏, 𝑒], 𝑢𝑣) ∈ 𝐸 and [𝑏, 𝑒]
is maximal }

Set of maximal distinct intervals of
presence of 𝑢𝑣

𝑇 *
𝑢𝑣 {𝑏, 𝑒 s.t. ∃[𝑏, 𝑒] ∈ 𝑇𝑢𝑣} Set of time instants where 𝑢𝑣 begins

or ends

Ω |Π| Set of event times

𝑛 |𝑉 | Number of distinct nodes

𝑚 |�̂�| Number of distinct links

𝑁 |𝑊 | Number of distinct node segments

𝑀 |𝐸| Number of distinct link segments

Table 1.1: Notations

10

for instance, and extend them to cope with the dynamics. Finally, a few works define
specific properties combining temporal and structural information. We detail these
various works below.

Studying interactions over time is crucial in a wide variety of contexts, such as studies
of phone call [56, 17], contacts between individuals [10, 65, 101], messaging [39, 35],
or internet traffic [45, 102]. In each practical context, researchers face the challenge of
analyzing the both temporal and structural nature of interactions, and they develop
ad hoc methods and tools to do so. Several surveys of these works are available from
various perspectives [58, 90, 97, 91, 47, 38, 28]. The most classical approach consists
in splitting time into slices and then building a graph, called snapshot, for each time
slice: its nodes and links represent the interactions that occurred during this time
slice. One obtains a sequence of snapshots (one for each slice), and may study the
time evolution of their properties, see for instance [88, 61, 83, 41, 18, 99], among
many others. In [12], the authors even design a general framework to combine and
aggregate wide classes of temporal properties, thus providing a unified approach for
snapshot sequence studies.

However, these approaches need time slices large enough to ensure that each snapshot
captures significant information. But large slices lead to losses of temporal informa-
tion, since all interactions within a same slice are merged. In addition, several or even
varying slice durations may be relevant. As a consequence, choosing appropriate time
slices is a research topic in itself [64, 80, 57]. To avoid these issues, several authors pro-
pose to encode the full information into various kinds of augmented graphs. In [22, 12]
for instance, authors consider the graph of all nodes and links occurring within the
data, and label each node and link with its presence times. In [105, 55, 68], the
authors duplicate each node into as many copies as its number of occurrences (they
assume discrete time steps); then, an interaction between two nodes at a given time
is encoded by a link between the copies of these nodes at this time, and each copy of
a node is connected to its copy at the next time step. All these approaches have a
clear advantage: once the data is transformed into one or several graphs, it is possible
to use graph tools and concepts to study the interactions under concern.

Various powerful methods for graph studies are extended to cope with the dynamics.
This leads for instance to algebraic approaches for temporal network analysis [12],
dynamic stochastic block models [111, 67, 25], dynamic Markovian models [92, 91],
signals on temporal networks [44] or adjacency tensors [94, 37]. These works extend
higher-level methods to the temporal setting. Complementary to these approaches
that extend methods, some works extend various graph concepts to deal with time [12,
47, 74], similarly to the stream graph approach.

Whereas there is a very rich body of works and theoretical modeling of temporal net-
works (time-varying graphs, longitudinal networks, stochastic block models, marko-
vian models, . . .) none of these works aims at extending basic graph theory concepts
where time and structure are equally important which is the main focus of the stream
graph approach.

11

1.3 Real-World Stream Graphs

Stream graphs are particularly suited to model temporal networks with a highly
internal dynamics. In order to explore the performances of our algorithms in a wide
variety of situations, we considered 14 publicly available datasets that we shortly
present below.
First notice that most available datasets record instantaneous interactions only, either
because of periodic measurements, or because only one timestamp is available. In
such situations, one resorts to 𝛿-analysis [59]: one considers that each interaction
lasts for a given duration 𝛿. More precisely, if a dataset consists in a set 𝐷 of
triplets (𝑡, 𝑢𝑣) indicating a link between 𝑢 and 𝑣 at time 𝑡, then we consider 𝐸 =
∪(𝑡,𝑢𝑣)∈𝐷[𝑡, 𝑡 + 𝛿] × {𝑢𝑣}. We also define 𝑉 as the set of nodes that occur in 𝐷, 𝑇
as the smallest interval of R that contains all times occurring in 𝐸, and 𝑊 as the
set of all (𝑡, 𝑣) in 𝑇 × 𝑉 such that ∃𝑢, (𝑡, 𝑢𝑣) ∈ 𝐸. This transforms 𝐷 into a stream
graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸) in which all link segments last for at least 𝛿, and all links
in 𝐷 separated by a delay lower than 𝛿 lead to a unique link segment. Nodes are
considered as present only when they have at least one link.

The key stream graph properties of the 14 considered datasets are given in Table 1.2,
together with the value of 𝛿 we used. It either corresponds to a natural value under-
lying the dataset or is determined by the original timestamp precision.

UC Message (UC) [75]: is a capture of messages between University of California
students in an online community. A node represents a user. An edge represents a
sent message.

High School 2012 (HS 2012) [33]: is a recording of interactions between students
of 5 classes during 7 days in a high school in Marseille, France in 2012. An interaction
consists in a physical proximity between two students, captured by a sensor.

Digg [24, 2]: is the reply network of the social news website Digg. Each node in the
network is a user of the website, and each edge denotes that a user replied to another
user.

Infectious [50]: is a recording of face-to-face contacts between visitors of the IN-
FECTIOUS: STAY AWAY exhibition in 2009, Dublin. Nodes represent exhibition
visitors; edges represent face-to-face contacts that were active for at least 20 seconds.

Twitter Higs (Twitter) [27, 62]: is a recording of user activities in Twitter (retweet-
ing, replying to existing tweets, mentioning other users, friends/followers social re-
lationships among users involved in the above activities) for one week around the
discovery of the Higgs boson in 2012.

Linux Kernel mailing list (Linux) [4]: represents the email replies between users
on the Linux kernel mailing list. Nodes are users (identified by their email addresses),
and each edge represents a reply from a user to another.

Facebook wall posts (Facebook) [103] : Messages exchanged between users on

12

Facebook. The nodes of the network are Facebook users, and each edge represents
one post, linking the user writing a post to the user whose wall the post is written
on.

Epinions [3, 66]: is the trust and distrust network of Epinions, an online product
rating site. The network consists of individual users connected by trust and distrust
links.

Amazon [1, 63]: is a bipartite network containing product ratings from the Amazon
online shopping website. Nodes represent users and products, and edges represent
individual ratings.

Youtube [69]: is a social network of YouTube users and their friendship connections.

Movielens [40]: This bipartite network contains ten million movie ratings from
Movielens. Left nodes are users and right nodes are movies. An edge between a
user and a movie indicates that the user has rated the movie.

Wiki Talk En (Wiki) [95]: is a recording of discussions between contributors to
the English Wikipedia. Nodes represent users of the English Wikipedia, and an edge
from user A to user B denotes that user A wrote a message on the talk page of user
B at a certain timestamp.

Mawilab 2020-03-09 (Mawilab) [32]: is a 15 minutes capture of network traffic
on a backbone trans-pacific router in Japan on March 3, 2020. Each link represents
a packet exchanged between two internet addresses.

Stackoverflow [77, 62]: is a recording of interactions on the stack overflow website.

We have chosen a panel of datasets that we consider to be representative of publicly
available datasets. They represent several real-world phenomena, providing differ-
ent types of interactions at various frequencies. These interactions can represent
email exchanges (Enron), conversations and following relationship on social networks
(Twitter, Facebook, Youtube, Digg), discussions on online forums (Wikipedia, Stack-
overflow, Linux, UC Message), ratings of products (Movielens, Amazon), network
traffic (Mawilab) as well as human contacts (High School, Infectious).

As presented in Table 1.2, these datasets are of various sizes, span different periods
of time, have repeated interactions (𝑚 << 𝑀) or not (𝑚 ∼ 𝑀), have different
connectivity profiles (𝑑𝑚 the maximal instantaneous degree varying from 11 to 28
710) and have various number of distinct event times (Ω ranging from 205 to 56
millions).

13

𝛿 𝑛 𝑚 |𝑇 | 𝑁 𝑀 Ω 𝑑𝑚

UC 1h 2K 14K 189d 43K 34K 67K 98
HS 2012 60s 327 6K 4d 48K 46K 7K 11
Digg 1h 30K 85K 14.5d 110K 86K 158K 19
Infectious 60s 11K 45K 80d 85K 133K 63K 12
Twitter 600s 304K 452K 7d 543K 488K 271K 1 435
Linux 10h 27K 160K 8y 450K 544K 913K 67
Facebook 10h 46K 183K 4.3y 957K 588K 1.2M 56
Epinions 10h 132K 711K 2.6y 404K 743K 2K 2 827
Amazon 1h 2.1M 5.7M 9.5y 9.9M 5.8M 7K 272
Youtube 24h 3.2M 9.4M 226d 6.7M 9.4M 205 28 710
Movielens 1h 70K 10M 14y 8.5M 10M 14M 1 426
Wiki 1h 2.9M 8.1M 14.3y 18.3M 14.5M 27M 28 710
Mawilab 2s 940K 9.1M 902s 17M 18.8M 35.1M 16 384
Stackoverflow 10h 2.6M 28.2M 7.6y 30M 33.5M 56M 110

Table 1.2: Key features of the real-world stream graphs we consider, ordered with
respect to their number 𝑀 of link segments (K indicates thousands, M millions). 𝑛
the number of distinct nodes, 𝑚 the number of distinct links, |𝑇 | the considered time
window, 𝑁 the number of node segments, 𝑀 the number of link segments, Ω the
number of distinct event times and 𝑑𝑚 the maximal instantaneous degree.

14

2 Straph: A Python Library for Stream
Graphs

Contributions

• The most advanced open source python library for the manipulation,
modeling, analysis and visualisation of stream graphs: Straph

• Efficient data structures to handle stream graphs
• Two random stream graph generators based on the Erdős-Rényi and

Barabási-Albert models

The number of applications of stream graph theory has risen rapidly, as shown in
chapter 1, along with the number of theoretical concepts and algorithms to compute
them. These needs motivate the development of an advanced tool to manipulate,
analyse and visualise stream graphs. Straph [79] was developed in order to have a
reliable library for handling stream graphs, to design algorithms and models, and to
rapidly evaluate them.

At the time of development, alternative libraries were unsatisfactory. Either these
libraries did not model time as continuous or they did not scale up on large datasets.
The main challenge, in order to handle huge temporal networks, resides in choosing
the right data structure to manipulate these kinds of networks. Focusing on graph
libraries, we can distinguish two approaches: in NetworkX [43] nodes are modeled by
python objects and in NetworKit [93] by integers. Consequently, links are represented
by a pair of references to python object or by a pair of integers. This design choice is
critical: the first option leads to a flexible framework where nodes can be as complex
as one desires, the second option allows more compact representations.

Many libraries handling temporal networks focus on information diffusion and epi-
demic spreading. A comparison of these libraries can be found in [82]. The most
complete one, DyNetx [82], uses a NetworkX graph object as a basic structure and
overloads it to handle the temporal dimension. Hence, this library has the same flaw
as NetworkX: it cannot handle huge datasets.
Two other libraries aim at modelling temporal networks: Pathpy [84] and Teneto [98].
However, in both of them, time is modeled as discrete therefore they cannot be used

15

in the stream graph case.
Stream_graph [87] is a library specifically designed to handle stream graphs. It uses
Numpy arrays and Pandas dataframes to represent nodes and links as well as their
intervals of presence. As we will show in section 2.2 this choice may be more user-
friendly but degrades overall performances in practice.

Straph is an open source Python 3 package, under the licence Apache 2.0, for explo-
ration and analysis of real and artificial stream graphs. This library provides specific
data structures for representing different types of stream graphs, algorithms to com-
pute basic properties and measures, readers and writers for various data formats as
well as generators similar to Erdős-Rényi [30] and Barabási-Albert [7] models. In
the long term, we are hoping to provide the equivalent of Networkx or Networkit, in
terms of functionalities, for stream graphs.
Straph can be used to teach stream graph theory or illustrate particular concepts.
Several Jupyter notebooks have been written in order to demonstrate its functional-
ities. Straph can be used by users or developers that are not necessarily experts in
programming or in stream graph theory.

In this chapter we will detail the paradigms behind the development of Straph (Sec-
tion 2.1) and we will overview the architecture of the library as well as the employed
data structures (Section 2.2). Then we present the many features and possibilities of
Straph (Section 2.3) and illustrate how to use them in practice (Section 2.4). Finally,
we will discuss potential and future features (Section 2.5).

2.1 Development Paradigms

The choice of the programming language, Python, was motivated by its popularity,
flexibility and compatibility with other existing frameworks. Moreover, Python is
easy to read, write and use, hence, facilitates community contribution. Straph is
based on several paradigms, each one having its advantages and drawbacks:

• The fewer dependencies the better: in order to facilitate its usage and to allow
a better compatibility over time.

• Efficient and compact data structures: as the main objective is to handle stream
graphs with millions of interactions the basic data structures of Straph should
be as compact as possible while preserving a low querying complexity.

• Comprehensive and user-friendly API: we avoid framework code and keep the
number of different objects to a minimum. We also provide an API similar to
NetworkX to facilitate its usage by the graph community.

• Support growth and improvement: as an open source tool it must be easy for
developers to contribute to functionalities of Straph.

16

2.2 Data Structures

The data structures used as basic blocks in a computational library are critical from
a performance and memory consumption point of view. In the following we detail the
data structures used in Straph as well as supported file and data formats.

2.2.1 In-Memory Structures

A stream graph can be composed of tens of millions of links and nodes. Each link and
node having its own event times, this leads to the construction of numerous structures.
For the sake of efficiency and simplicity, in Straph, we choose to limit basic data
structure to built-in python objects. Temporal nodes or links could have been stored
in more efficient data structures such as Numpy arrays, but the construction of these
objects is time consuming and adds a layer of complexity.

Stream Graph Object

A stream graph being a complex structure evolving through time, several data struc-
tures are necessary to computationally represent one. The topological structure is
encoded in two arrays nodes and links. The dynamics is encoded in two arrays of
arrays node presence and link presence. The time window of a stream graph, 𝑇 , is
encoded by its bounds, a couple: times.

For efficiency reasons, nodes in Straph are encoded by integers typically from 0 to
𝑛 − 1, 𝑛 being the number of distinct nodes (|𝑉 |) in the stream graph. However it
is possible to assign any label, a string or a number and even an object to each node
using a python dictionary. Consequently, a link in Straph is encoded by a couple of
integers.

Node dynamics is encoded in the array of arrays node presence. Each array cor-
responds to a node’s event times. Elements with an even index correspond to an
arrival time and elements with an odd index to a departure time. Link dynamics is
represented similarly in link presence.

The space complexity of this representation is in Θ(𝑀 + 𝑁), 𝑀 and 𝑁 being the
number of distinct link and node segments (see chapter 1). A node and its sequence
of event times are accessible in 𝑂(1) while a link and its sequence of event times are
accessible in 𝑂(𝑀).

For instance, a stream graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸) where 𝑇 = [0, 10], 𝑉 = {𝐴, 𝐵},
𝑊 = ([0, 5]∪ [6, 10])×𝐴∪ [1, 10]×𝐵, 𝐸 = ([1, 4]∪ [6, 7])× (𝐴, 𝐵) will be encoded by:

17

1 nodes = [0 ,1]
2 links = [(0 ,1)]
3 node_to_label = {0: ’A’, 1:’B’}
4 node_presence = [[0 ,5 ,6 ,10] ,[1 ,10]]
5 link_presence = [[1 ,4 ,6 ,7]]
6 S = stream_graph (times = (0 ,10) ,
7 nodes = nodes ,
8 links = links ,
9 node_to_label = node_to_label ,

10 node_presence = node_presence ,
11 link_presence = link_presence
12)

This compact representation allows us to manipulate, in-memory, stream graphs with
more than one hundred millions of temporal links, such as Mawilab datasets or Stack-
overflow, on a modern Laptop computer.

Another compact encoding of a stream graph consists in the above structures node
and node presence associated to a temporal adjacency list in which each node is
linked to its neighbors and their corresponding times of interactions. For instance, 𝑆,
as defined previously, could be represented by 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦_𝑙𝑖𝑠𝑡 = {0 : [1, [1, 4, 6, 7]], 1 :
[0, [1, 4, 6, 7]]}. The memory space allocated to the interactions between nodes would
be at least twice as large compared to the first encoding.

Other representations are possible such as a sequence of sparse adjacency matrices
(𝐴𝑡)𝑡∈𝑇 ∈ ℳ𝑛×𝑛, where an isolated temporal node (𝑡, 𝑢) ∈ 𝑊 could be encoded
by 𝐴𝑡(𝑢, 𝑢) = −1, an absent node (𝑡, 𝑣) /∈ 𝑊 by 𝐴𝑡(𝑣, 𝑣) = 0 and a temporal link
(𝑡, 𝑢𝑤) ∈ 𝐸 by 𝐴𝑡(𝑢, 𝑤) = 1. In the worst case, the according space complexity is in
𝑂(Ω𝑁2) making this encoding prohibitive, Ω being the number of event times.

Clusters

Numerous algorithms in Straph will output stream graph properties regarding a set
of temporal nodes, a cluster. A cluster in Straph will always be encoded by an array
of triples, corresponding to a set of node segments, (𝑏, 𝑒, 𝑢). For instance, nodes in
the stream graph 𝑆 can be partitioned into clusters 𝐶 ⊆ 𝑊 in which the degree of
every temporal node (𝑡, 𝑣) ∈ 𝐶 is identical. In this case, this partition into equal
degree elements will be represented by a python dictionary associating a degree value
to the corresponding cluster.

1 d = {1:[(1 ,4 , ’A’) ,(1,4,’B’) ,(6,7,’A’) ,(6,7,’B’)],
2 0:[(0 ,1 , ’A’) ,(4,5,’A’) ,(4,6,’B’) ,(7,10,’A’) ,(7,10,’B’)]}
3 # This partition of W can be obtained using:
4 d = S. degrees_partition ()

Connected Component Object

A connected component in Straph is a flexible structure covering several theoreti-
cal concepts such as strongly connected components (addressed in more details in

18

chapter 3).

A connected component is composed of a couple times corresponding to its time
window, by a python set of nodes or segmented nodes (named nodes). An optional
array of segmented links involving nodes in the set nodes can be added as well as an
identifier, id, to deal with a decomposition of a stream graph, or a substream, into a
set of connected components.

1 from straph import connected_component as comp
2 # A connected component corresponding to temporal nodes with a

degree equal to 1
3 C = comp. connected_component (id=0,
4 times = [1,7],
5 nodes = {(1,4,’A’) ,(6,7,’A’) ,(1,4,’B’) ,(6,7,’B’)}
6)

DAG Object

Straph provides another useful data structure, a Directed Acyclic Graph (DAG) where
nodes are connected component objects. A DAG object consists of an identifier id, a
couple times, an array of connected components objects c_nodes, an array of links -
a couple of connected components identifiers - c_links as well as a python dictionary
linking an id to the corresponding connected component object. This structure and
its applications are presented and detailed in chapters 4 and 5.

2.2.2 Streaming Formats

In order to manipulate huge stream graphs we provide a streaming format called
temporally ordered events. Events are processed in a streaming fashion. This
means that we read the data describing a stream graph in a time-ordered manner.
We do not store it into central memory, and we output results as soon as they are
available. Therefore, we do not store output in central memory either.

More precisely, we consider in input a time-ordered sequence of node or link arrivals or
departures. For events occurring at a same time instant, we assume that arrivals are
before departures, that node arrivals are before link arrivals, and that link departures
are before node departures. In this way, if we read the input until a given event time 𝑡
and then add artificial link and node departures at time 𝑡, the data we have processed
until then is a consistent set of node and link segments.

In addition, we maintain the set of present nodes and links at the current time instant
𝑡, i.e. the graph 𝐺𝑡; in addition, we store their latest arrival time seen so far. This
has a Θ(𝑁 + 𝑀) time and Θ(𝑛 + 𝑚) space cost for the whole processing of input
data. Therefore, these worst-case complexities are lower bounds for our streaming
algorithms.

In practice, this format consists in a temporally ordered sequence of events, repre-
sented by a tuple. In order to deal with simultaneous events, we associate a code to

19

each type of event. A node arrival is coded by 2, its departure by −2, a link arrival by
1 and its departure by −1. For instance, 𝑆, of Figure 1-1 will be encoded as follows:

1 # temporally ordered events
2 (2,0,’A’)
3 (2,1,’B’)
4 (1,1,(’A’,’B’))
5 (-1,4,(’A’,’B’))
6 (-2,5,’A’)
7 (2,6,’A’)
8 (1,6,(’A’,’B’))
9 (-1,7,(’A’,’B’))

10 (-2,10,’A’)
11 (-2,10,’B’)

2.2.3 File Formats

A wide range of real-world datasets are logged in .𝑐𝑠𝑣 or .𝑡𝑠𝑣 files.

1 # stream_graph .tsv
2 1 A B
3 6 A B

Each line of these files is under the form 𝑡𝑠 𝑢 𝑣 corresponding to an interaction between
nodes 𝑢 and 𝑣 recorded at the timestamp 𝑡𝑠. They may also record the duration of
the interactions, under the form 𝑡𝑠 𝑙 𝑢 𝑣, meaning that the interaction between 𝑢 and
𝑣 has started at time 𝑡𝑠 and finished at time 𝑡𝑠 + 𝑙. We provide flexible readers to
parse these formats. It is possible to modify or input a new duration for the recorded
interactions and to aggregate overlapping ones (see section 1.3).

Nonetheless, this format does not allow the storage of nodes’ arrival and departure
times. We propose another format .𝑠𝑔 where a stream graph is written in two separate
files: one for the presence times of nodes (𝑛𝑜𝑑𝑒𝑠.𝑠𝑔) and another for the links and
their interactions times (𝑙𝑖𝑛𝑘𝑠.𝑠𝑔).

1 # nodes.sg
2 A 0 5 6 10
3 B 1 10
4

5 # links.sg
6 A B 1 4 6 7

2.3 Functionalities

Figure 2-1 presents an overview of a typical usage of Straph. Most available real-
world datasets are stored in one of the formats supported by Straph, csv, tsv, json
or pcap. Once a dataset has been parsed, we can apply Straph algorithms, extract

20

.csv .tsv .json .sg .pcap

.csv

.json

.sg

Stream GraphStraph Al-
gorithms

DAG
Representations

Connected
Components

Substreams Snapshots

Clusters
Third Party
Algorithms

Input Formats

O
ut

pu
t

Fo
rm

at
s

Alternative Representations

Parsers

Writers

Writers

Figure 2-1: Diagram summing up Straph’s functionalities

21

results under different kinds of representations - and apply third party algorithms,
such as NetworX’s ones, if it is a snapshot - these results can easily be outputted to
common file formats such as csv or json.

Straph’s API is similar to the one of NetworkX. A stream graph is easily editable.

1 S = stream_graph ()
2 S. add_node (’D’ ,[2 ,3 ,4 ,5]) # We add ’C’ from time 2 to 3 and 4 to 5
3 S. add_edge ((’C’,’D’) ,[0 ,10]) # We add (’C ’,’D ’) from time 0 to 10

Extracting a snapshot or an aggregate graph and analyse it with NetworkX is simple.

1 # Return the diameter of the snapshot at instant 2.5.
2 import networkx
3 S = stream_graph ()
4 G = S. instant_graph (2.5 , to_networkx =True)
5 networkx . diameter (G)

Straph provides a wide range of algorithms to compute basic and more complex
features: degrees, k-cores, k-cliques, temporal paths, weakly connected components,
strongly connected components, clustering coefficient, ... Several algorithms and their
practical applications using Straph will be addressed in other chapters (3 and 5).

2.3.1 Installation and Dependencies

Straph is easy to install as long as a python environment is installed. We recommend
using the Anaconda distribution. Straph can be installed using pip either from the
python wheel or from Github (https://github.com/StraphX/Straph).

1 pip install straph

The main dependencies of Straph are Matplotlib, for the visualisations functionalities
and Networkx for the support of (static) graph algorithms.

2.3.2 Visualisation

Straph provides several visualisations of stream graphs. Figure 2-2, created by the
snippet of code below, allows a user to have a global view of a given stream graph.

1 S.plot ()
2 S. plot_aggregated_graph ()

The right part shows aggregated topology of the stream graph and the left one the
dynamics of nodes and links.

As a stream graph is, by essence, an evolving structure, Straph also provides a dy-
namic visualisation consisting of two views side by side. One representing the whole
stream graph, as in the first visualisation, accompanied by an animated cursor. The

22

https://github.com/StraphX/Straph

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F
No

de
s

A

BC

D

E F

Figure 2-2: Straph drawings of a stream graph (left) and its aggregated graph (right)

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

No
de

s

Time : 2.5

A

BC

D

E F

Figure 2-3: Illustration of an animated drawing of a stream graph. The left view
features a moving cursor over the time axis on the stream graph’s global drawing,
here at 𝑡 = 2.5. On the right view, an induced graph is drawn corresponding to the
cursor’s position.

second view represents the induced static graph at the time instant corresponding
to the position of the cursor. An illustration of this visualisation is presented in
Figure 2-3.

1 S.plot(animated =True)
2 S. plot_induced_graphs ()

Numerous properties in Stream Graph properties assign a value to a node segment,
its degree for instance, or to a group of node segments (a cluster) as the 3-core of a
stream graph. Therefore we also provide visualisations for this purpose, as illustrated
on Figure 2-4. It was obtained using the following snippet of code.

1 d = S. degrees_partition ()
2 S. plot_dict_clusters (dict_clusters = d)
3

4 scc = S. strongly_connected_components (format =" cluster ")
5 S.plot(clusters = scc)

23

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

N
o

d
es

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

N
o

d
es

Figure 2-4: Illustrations of clustering visualisations in Straph. The instant degree
value of each node (left) and clusters corresponding to the distinct strongly connected
components of the stream graph (right).

As visualisations of stream graphs possessing many links tend to be messy, due to
many crossing elements, we can disable links’ display. Figure 2-5 shows the degree of
temporal nodes in the High School dataset.

2.3.3 Straph Generators

Simulating random temporal graphs is a difficult task, we refer to [36] for a survey
of existing methods. But no algorithm was provided to generate random stream
graphs. We propose a simple way to adapt Erdős-Rényi and Barabási-Albert models
for stream graphs.

The dynamic nature of stream graphs calls for a new procedure which consists in
simulating random occurrences and durations of node and link segments. Occurrences
of a node or a link, the number of corresponding node or link segments, follows a
Poisson law. Arrivals and departures of node and link segments are randomly drawn
following a uniform law with parameter (𝑎, 𝑏), the time window of the stream graph.
The duration of a node or link segment follows a uniform law. The probability
determining the existence of a given link depends on the chosen model.

Our generators are quite complex, they need several parameters to generate a stream
graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸):

• 𝑇 : The time window of 𝑆.

• nb_nodes: The number of nodes composing 𝑉 .

• occurrence_param_node: The parameter of the Poisson law determining the
number of occurrences of a node, its number of segmented nodes.

• presence_param_node: The parameter of the Uniform law determining the
duration of each segmented node.

• occurrence_param_node: The parameter of the Poisson law determining the

24

2013-12-03 07:31:20

2013-12-03 08:19:12

2013-12-03 09:07:04

2013-12-03 09:54:56

2013-12-03 10:42:48

2013-12-03 11:30:40

2013-12-03 12:18:32

2013-12-03 13:06:24

2013-12-03 13:54:16

2013-12-03 14:42:08

2013-12-03 15:30:00

t

454
640
939
185
258

55
170

9
453

45
14

190
400
637
255
275
176
533
116
151
866
280
484
243
687

54
364
374
441
101
425

47
241
179
202

63
564
577
265
494
443
209
843
205
894

1359

N
o

d
es

Figure 2-5: Straph drawing of the temporal nodes degree (brighter the color higher
the degree) in a subset of the High School dataset (substream of the first fifty nodes
on the second day of recording).

25

number of occurrences of a link, its number of segmented links.

• presence_param_node: The parameter of the Uniform law determining the
duration of each segmented link.

In the following models, we aggregate overlapping nodes or links segments, we trun-
cate any node or link segment exceeding the time window 𝑇 and truncate link seg-
ments involving absent nodes.

Erdős-Rényi

In the Erdős-Rényi model, denoted by 𝐺(𝑛, 𝑝), a graph is constructed by connecting
𝑛 nodes randomly with probability 𝑝. The main property of this model is that the
distribution of a node’s degree follows a binomial law.

This model leads to another parameter, p_link, which is the probability of a random
link between two nodes in a stream graph. We verify the existence of a common pres-
ence interval between extremities of a randomly drawn link. If it exists we simulate
its occurrences and presence times as defined previously otherwise we ignore it.

The following snippet of code shows how easy it is to simulate a random stream graph
using Straph. Figure 2-6 shows an Erdős-Rényi like randomly generated stream graph.

1 from straph . generators import erdos_renyi
2

3 T = [0, 100]
4 nb_node = 21
5 occurrence_law_node = ’poisson ’
6 presence_law_node = ’uniform ’
7 occurrence_param_node = 3
8 presence_param_node = 25
9 occurrence_law_link = ’poisson ’

10 presence_law_link = ’uniform ’
11 occurrence_param_link = 5
12 presence_param_link = 15
13 p_link = np.sqrt(nb_nodes)/ nb_nodes
14 S = erdos_renyi (T,
15 nb_nodes ,
16 occurrence_law_node ,
17 occurrence_param_node ,
18 presence_law_node ,
19 presence_param_node ,
20 occurrence_law_link ,
21 occurrence_param_link ,
22 presence_law_link ,
23 presence_param_link ,
24 p_link)

26

0 10 20 30 40 50 60 70 80 90 100
t

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

N
o

d
es

0 10 20 30 40 50 60 70 80 90 100
t

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

N
o

d
es

Figure 2-6: An Erdo-Rényi generated stream graph (left) along with the visualisation
of the degree of its temporal nodes (brighter the color higher the degree)

The definition of a node’s degree has been proposed in [59] (we refer to chapter 1 for
more details):

𝑑(𝑣) = |𝑁(𝑣)|
|𝑇 |

=
∑︁
𝑢∈𝑉

|𝑇𝑢𝑣|
|𝑇 |

Figure 2-7 shows the nodes degree distribution in the Erdős-Rényi model. This distri-
bution follows a Beta distribution, which is the continuous counterpart of the Binomial
law, being consistent with graph theory results presented in [30].

Barabási-Albert

In the Barabási-Albert model, also called preferential attachment model, a graph begins
with 𝑚0 connected nodes. Then 𝑛 −𝑚0 new nodes are added to the graph one at a
time. Each new node will be connected to 𝑚 - a parameter of the model - existing
nodes with a probability proportional to their degree. The probability 𝑝𝑖 that the new
node is connected to the existing node 𝑖 is: 𝑝𝑖 = 𝑑𝑖∑︀

𝑗∈𝑉
𝑑𝑗

, where 𝑑𝑖 denotes the degree
of the node 𝑖 and 𝑉 is the set of existing nodes. The resulting degree distribution is
scale free: it follows a power law.

This model leads to two additional parameters 𝑚0 and 𝑚. In this model we connect
a new node to 𝑚 existing nodes, therefore if a randomly drawn link cannot exist, due
to the absence of a common presence interval between its extremities, we proceed
to draw another link. Then, occurrences and presence times of links are randomly
drawn as previously.

27

0 10 20 30 40 50 60 70
Degree

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f N
od

es

Figure 2-7: Degree distribution of a randomly generated Erdős-Rényi stream graph
with parameters T = (0, 1000), nb_nodes = 100000, occurrence_param_node = 4,
presence_param_node = 200, occurrence_param_link = 3, presence_param_link =
150, p =

√
𝑛𝑏_𝑛𝑜𝑑𝑒𝑠/nb_nodes.

28

0 10 20 30 40 50 60 70 80 90 100
t

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

N
o

d
es

0 10 20 30 40 50 60 70 80 90 100
t

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

N
o

d
es

Figure 2-8: A Barabási-Albert generated stream graph (left) along with the visuali-
sation of the degree of its temporal nodes (brighter the color higher the degree)

1 from straph . generators import barabasi_albert
2

3 T = [0, 100]
4 nb_node = 21
5 occurrence_law_node = ’poisson ’
6 presence_law_node = ’uniform ’
7 occurrence_param_node = 3
8 presence_param_node = 25
9 occurrence_law_link = ’poisson ’

10 presence_law_link = ’uniform ’
11 occurrence_param_link = 5
12 presence_param_link = 15
13 m0 = 3
14 m = 3
15 S = generators . barabasi_albert (T,
16 nb_nodes ,
17 occurrence_law_node ,
18 occurrence_param_node ,
19 presence_law_node ,
20 presence_param_node ,
21 occurrence_law_link ,
22 occurrence_param_link ,
23 presence_law_link ,
24 presence_param_link ,
25 m0 ,
26 m)

Figure 2-9 shows the degree distribution in the Barabási-Albert model. This dis-
tribution follows a power law being consistent with graph theory results presented
in [7].

29

0 1000 2000 3000 4000 5000 6000 7000
Degree

100

101

102

103

104

105
Nu

m
be

r o
f N

od
es

100 101 102 103 104

Degree
100

101

102

103

104

Nu
m

be
r o

f N
od

es

Figure 2-9: Degree distributions (top: histogram, bottom: log-log scatter plot) of a
randomly generated Barabási-Albert stream graphs with parameters T = (0, 1000),
nb_nodes = 100000, occurrence_param_node = 3, presence_param_node = 500,
occurrence_param_link = 3, presence_param_link = 250, m0 = 2, m= 2

30

2.4 Real-World Use Case: High School Friends

Now, we demonstrate how useful Straph can be for the exploration of the High
School 2012 (HS 2012) [33] dataset. It is the temporal network of interactions
between students of 5 classes during 7 days in a high school in Marseille, France in
2012. An interaction consists in a physical proximity between two students, captured
by a sensor. For more details on the processing of the data into a stream graph we
refer to chapter 4.

Let us focus on the largest group of friends in this high school. We define this group
as the largest group where each individual interacts with every other. We point out
that we do not prioritize a period of time over another, break time and class time
are considered equally. In other words, it is about finding the largest clique with the
longest duration.

The definition of clique, for stream graphs, has been introduced in [59] and we recalled
it in chapter 1.

1 # ’S’ is a stream graph object containing the ’High School 2012 ’
dataset

2 cliques = S. all_cliques ()
3 # ’cliques ’ is a dictionary : ’clique size ’ -> ’clusters ’
4 max(cliques)
5 -> 6
6 cliques [6]
7 -> [[(1386148020.0 , 1386148040.0 , 173) ,
8 (1386148020.0 , 1386148040.0 , 125) ,
9 (1386148020.0 , 1386148040.0 , 99) ,

10 (1386148020.0 , 1386148040.0 , 169) ,
11 (1386148020.0 , 1386148040.0 , 316) ,
12 (1386148020.0 , 1386148040.0 , 176)]]

In this stream graph, the maximum clique size is 6 and there is only one 6-clique, with
a 20 seconds duration. The longest 5-clique lasts for 140 seconds. These durations
are too short relatively to the time window of the dataset, therefore we consider these
cliques as non significant and focus on 4-cliques.

1 counter_clique = {}
2 for c in cliques [4]:
3 t0 ,t1 ,_ = c[0]
4 members = tuple(sorted ([n for _,_,n in c]))
5 if members in counter_clique :
6 counter_clique [members] += t1 -t0
7 else:
8 counter_clique [members] = t1 -t0
9 suspects , duration = max(counter_clique .items (), key = lambda x:x[1])

10 [S. node_to_label [s] for s in suspects]
11 -> [’275 ’, ’312 ’, ’612 ’, ’886 ’]

We found that a 4-clique occurs 59 times in 𝑆, for a total duration of 3300 seconds.

31

2013-12-02 12:00:20

2013-12-02 22:06:22

2013-12-03 08:12:24

2013-12-03 18:18:26

2013-12-04 04:24:28

2013-12-04 14:30:30

2013-12-05 00:36:32

2013-12-05 10:42:34

2013-12-05 20:48:36

2013-12-06 06:54:38

2013-12-06 17:00:40

t

275

312

612

886

N
o

d
es

Figure 2-10: Substream induced by nodes ’275’, ’312’, ’612’, ’886’ in the High School
dataset.

It includes the following nodes: ’275’, ’312’, ’612’, ’886’. In Figure 2-10 we draw the
substream induced by this clique. We observe that the node ’275’ does not have the
same number of interactions as the other members of the clique. We can explain this
difference by the fact that ’275’ is not in the same class as the others (confirmed by
the metadata of the dataset).

The assumption that a group of friends is necessary a clique may be a bit too strong,
given the conditions of the interactions’ recording. Nevertheless, we can suppose that
this group of friends gather frequently and when it happens they are connected with
each other: they are in the same strongly connected component. Let us find the
groups of nodes of at least 4 members which are strongly connected for the longest
period of time.

1 scc = S. strongly_connected_components (format =" cluster ")
2 counter_scc = {}
3 for c in scc:
4 t0 ,t1 ,_ = c[0]
5 members = tuple(sorted ([n for _,_,n in c]))
6 if len(members) >= 4:
7 if members in counter_scc :
8 counter_scc [members] += t1 -t0
9 else:

10 counter_scc [members] = t1 -t0
11 suspects , duration = max(counter_scc .items (), key = lambda x:x[1])
12 [S. node_to_label [s] for s in suspects]
13 -> [’3’, ’884 ’, ’339 ’, ’147 ’]

We found a group of 4 students, ’884’, ’3’,’339’ and ’147’ that are connected with

32

2013-12-02 12:00:20

2013-12-02 22:06:22

2013-12-03 08:12:24

2013-12-03 18:18:26

2013-12-04 04:24:28

2013-12-04 14:30:30

2013-12-05 00:36:32

2013-12-05 10:42:34

2013-12-05 20:48:36

2013-12-06 06:54:38

2013-12-06 17:00:40

t

3

884

339

147

N
o

d
es

Figure 2-11: Substream induced by nodes ’884’, ’3’,’339’ and ’147’ in the High School
dataset.

each other for a total period of 9620s. In Figure 2-11, we observe that these stu-
dents interact every day and that they are equally involved in the total number of
interactions.

We have shown that with the help of Straph it is possible to bring an answer to
this complex question with only a dozen lines of code. Other approaches based on
Straph functionalities, such as k-cores, could have been used to address this problem.
Another solution consists in finding the longest and densest substream. However this
problem has a huge complexity and no known algorithm exists to solve it.

2.5 Discussion: development choices and future features

In this chapter, we have presented the numerous functionalities of Straph and its
usefulness in practice. However many functionalities must be extensively tested and
documented. Straph needs further development to be used in an industrial context.

In the future we aim to expand Straph in order to handle different kinds of stream
graphs: with weighted links, where it takes time to cross a link, with a bipartite
structure. The addition of other algorithms such as community detection, centrality
measures (closeness, betweenness), links and nodes prediction or classifications, would
render Straph sufficient to tackle many real word challenges.

33

34

3 Connectivity

Contributions

• Algorithms to compute connectivity notions in stream graphs
• Connectivity analysis of large scale real-world stream graphs

Connected components are among the most basic, useful and important concepts of
graph theory. It is common usage to decompose a graph into its connected compo-
nents. If a graph is not connected, it can be divided into distinct connected com-
ponents. Many properties, which involve computation of paths or communities, can
be computed independently on each connected component, thus enabling parallel
execution of numerous methods.

Connected components were recently generalized to stream graphs [59]. These gener-
alized connected components have a crucial feature: like graph connected components
and unlike other generalizations available in the literature, they partition the set of
temporal nodes. This means that each node at each time instant is in one and only one
connected component. This makes these generalized connected components particu-
larly appealing to capture important features of the vast variety of objects modeled
by stream graphs.

However, actual computation of connected components in stream graphs has not been
explored yet. Therefore, up to this date, they remain a formal object with no practical
use. In addition, the algorithmic complexity of the problem is unknown, as well as
the insight they may shed on real-world stream graphs of interest.

We introduce key notations and definitions and present an algorithm for weakly con-
nected components in stream graphs (Section 3.1). Then we propose three algo-
rithms for the more complex case of strongly connected components, together with
their complexity (Section 3.2). We then apply these algorithms to several large-scale
real-world datasets, in order to study their performances in practice, and to demon-
strate their ability to describe such datasets (Section 3.3). After discussing related
work in Section 3.4, we conclude this chapter and discuss potential improvements and

35

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F
No

de
s

Figure 3-1: The two weakly connected components of the stream graph of Figure 1-1,
each component having its own color.

extensions 3.5.

3.1 Weak Connectivity

In a Stream Graph, weakly connected components (WCC) represent elements of 𝑊
connected together without any constraint on time.

Definition 3.1.1. A weakly connected component of 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸) is a max-
imal subset 𝐶 of 𝑊 such that ∀(𝛼, 𝑢), (𝜔, 𝑣) ∈ 𝐶, there is a sequence (𝑡0, 𝑢0, 𝑣0),
(𝑡1, 𝑢1, 𝑣1), . . ., (𝑡𝑘, 𝑢𝑘, 𝑣𝑘) of elements of 𝑇 × 𝑉 × 𝑉 such that:

𝑢0 = 𝑢 and [min(𝛼, 𝑡0), max(𝛼, 𝑡0)] ⊆ 𝑇𝑢

𝑣𝑘 = 𝑣 and [min(𝑡𝑘, 𝜔), max(𝑡𝑘, 𝜔)] ⊆ 𝑇𝑣

∀𝑖 ∈ {0, . . . , 𝑘 − 1}, 𝑣𝑖 = 𝑢𝑖+1, (𝑡𝑖, 𝑢𝑖𝑣𝑖) ∈ 𝐸 and [min(𝑡𝑖, 𝑡𝑖+1), max(𝑡𝑖, 𝑡𝑖+1)] ⊆ 𝑇𝑣𝑖

Intuitively, the weakly connected components correspond to the disconnected parts
of a drawing of a stream graph (see Figure 3-1). For instance, the stream graph of
Figure 1-1 has two weakly connected components: [0, 1]×{𝐶, 𝐷} and ([0, 5]∪[7, 10])×
{𝐴} ∪ [0, 10]× {𝐵, 𝐸} ∪ [6, 10]× {𝐶, 𝐷, 𝐹} ∪ [2, 3]× {𝐷} ∪ [0, 3]× {𝐹}.

36

The weakly connected components form a partition of 𝑊 . They can be computed eas-
ily from the graph 𝐺𝑊 = (𝑊, 𝐸𝑊) where two node segments ([𝑏, 𝑒], 𝑢) and ([𝑏′, 𝑒′], 𝑣)
in 𝑊 are linked together if there is a link (𝑡, 𝑢𝑣) in 𝐸 with 𝑡 ∈ [𝑏, 𝑒]∩[𝑏′, 𝑒′]. Indeed, the
connected components of this graph are exactly the sets of node segments composing
weakly connected components of 𝑆. These elements can be analysed separately to
observe some properties, as we will show in the following.

Connected components of 𝐺𝑊 may be obtained through any graph algorithm for this
purpose. The simplest ones are search algorithms, like for instance depth-first search
(DFS). They obtain the weakly connected components of 𝑆 in 𝑂(𝑁 + 𝑀) time and
space, since 𝐺𝑊 can be computed in this time and space, and the search cost is the
same. We call this method WCC DFS.

An alternative is the Union-Find algorithm [34], that starts with isolated nodes,
then processes the graph link by link and merges the connected components of its
extremities computed so far. Here, we start with node segments, and we compute the
weakly connected components by processing the stream graph link segment by link
segment. Each link segment ([𝑏, 𝑒], 𝑢𝑣) connects two node segments ([𝑏𝑣, 𝑒𝑣], 𝑣) and
([𝑏𝑢, 𝑒𝑢], 𝑢), and we merge their connected components computed so far. One may
consider link segments in the temporal order, thus obtaining a streaming algorithm.
Like all other WCC streaming algorithms, though, we can output a WCC only after
the end of all its node segments. Indeed, in the worst case, nodes may be present
until the end of the stream, and then each WCC must stay in memory until the
termination of the method. Its time complexity is 𝑂(𝑀 · 𝛼(𝑁)), where 𝛼(.) is the
inverse of Ackermann function, since it performs at most 𝑀 unions of sets of size at
most 𝑁 , see [34] for details. Its space complexity is 𝑂(𝑁). We call this method WCC
UF.

3.2 Strong Connectivity

Definition 3.2.1. A strongly connected component of 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸) is a
maximal subset 𝐶 = 𝐼×𝑋 of 𝑊 such that 𝐼 is an interval of 𝑇 and 𝑋 is a connected
component of 𝐺𝑡 for all 𝑡 in 𝐼. It is denoted by (𝐼, 𝑋).

This definition is consistent with the one used in graph theory: for any time instant, if
we take the induced Graph 𝐺𝑡 the SCC at 𝑡 corresponds to the connected components
of 𝐺𝑡. Using this definition one can observe that the set of all strongly connected
components of 𝑆 is a partition of 𝑊 , see [59].

Inside a strongly connected component all nodes are reachable from any other at any
time instant. This strong property means that many properties can be computed
independently in each strongly connected component. This will enable the design of
a parallel framework in Chapter 4.

In Figure 3-2, we represent the 17 strongly connected components of the stream graph
of Figure 1-1. Notice that some component time intervals are closed, some are open

37

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F
N

o
d

es 0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

Figure 3-2: The 17 strongly connected components of the stream graph of Figure 1-1.
Each component is numbered and has its own color.

and some are a combination of the two. For instance, ([0, 1], {𝐶, 𝐷}) is a closed
component, (]4, 6[, {𝐵}) is an open one, ([6, 7[, {𝐵, 𝐶}) is a left-closed and right-open
one, and ([4, 4], {𝐴, 𝐵, 𝐶}) is a closed and instantaneous component.

Since the time intervals of components may be open or closed, we introduce the nota-
tion ⟨𝑏, 𝑒⟩ to indicate an interval that can be either open or closed on its extremities.
This interval contains]𝑏, 𝑒[and may or may not contain 𝑏 and/or 𝑒. We will also use
mixed notation: ⟨𝑏, 𝑒] for instance designates an interval that may or may not contain
𝑏, but does contain 𝑒.

We present below several algorithms for computing the strongly connected compo-
nents of a stream graph, using notations of Table 1.1 and the ones above.

Proposition 3.2.1. The maximal number of strongly connected components in a
stream graph is in 𝑂(𝑁 + 𝑀).

Proof. There can be one component per node segment, and each link segment may
induce up to four components. Indeed, each beginning of link segment may correspond
to the beginning of two components: one instantaneous at the link segment beginning
and one that starts just after; and each link segment ending may correspond to the
beginning of two connected components if the corresponding component becomes
disconnected.

38

Explicitly writing a component to the output is done in linear time with respect to
its number of nodes; therefore we obtain the following.

Proposition 3.2.2. Any algorithm explicitly listing the strongly connected compo-
nents of a stream graph is in time Ω(𝑁 + 𝑛 ·𝑀).

Proof. Consider for instance a stream graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸) with 𝑊 = 𝑇 × 𝑉 , and
assume there is a node 𝑣 such that all nodes of 𝑉 ∖ {𝑣} belong to the same connected
component of 𝐺𝑡 for all 𝑡. Assume 𝐸 is composed of 𝑛−2 link segments between nodes
in 𝑉 ∖ {𝑣} that last for all 𝑇 , and many short link segments between 𝑣 and another
given node 𝑣′ in 𝑉 . In this case, the number of components is equal to the number
of short link segments plus the number of intervals between these link segments, and
each of these components will have either 𝑛 or 𝑛− 1 nodes.

3.2.1 Direct Approach

One may compute strongly connected components directly from their definition, by
processing event times in increasing order and by maintaining the set of strongly
connected components that begin before or at current event time, and end after it.
We represent each such component as a couple (⟨𝑏, 𝐶), meaning that it starts at 𝑏
(included or not) and involves nodes in 𝐶.

More precisely, we start with a set C containing ([𝛼, 𝐶) for each connected component
𝐶 of the graph 𝐺𝛼 at the first event time 𝛼. Then, for each event time 𝑡 > 𝛼
in increasing order we consider the connected components of 𝐺−

𝑡 . For each such
component 𝐶, if there is no component (⟨𝑏, 𝑋) with 𝑋 = 𝐶 in C then we add (]𝑡′, 𝐶)
to C , where 𝑡′ is the event time preceding 𝑡. For each element (⟨𝑏, 𝑋) of C , if 𝑋 is not
a connected component of 𝐺−

𝑡 , then we remove it from C and we output (⟨𝑏, 𝑡′], 𝑋).
We then turn to the connected components of 𝐺𝑡: for each such component 𝐶, if there
is no component (⟨𝑏, 𝑋) with 𝑋 = 𝐶 in C then we add ([𝑡, 𝐶) to C ; and for each
element (⟨𝑏, 𝑋) of C , if 𝑋 is not a connected component of 𝐺𝑡, then we remove it
from C and we output (⟨𝑏, 𝑡[, 𝑋). Finally, when the last event time 𝑡 = 𝜔 is reached,
we output (⟨𝑏, 𝜔], 𝑋) for each element (⟨𝑏, 𝑋) of C .

Clearly, this algorithm outputs all strongly connected components of the considered
stream graph. Computing the connected components of each graph is in 𝑂(𝑛 + 𝑚)
time and space. The considered set families (the graph connected components, as
well as the elements of C) form partitions of 𝑉 . Therefore, their storage and all
set comparisons processed for each event time have a cost in 𝑂(𝑛) time and space.
There are 𝑂(𝑀 + 𝑁) event times, therefore, the time complexity of this method is
𝑂((𝑁 + 𝑀) · (𝑛 + 𝑚)), and it needs 𝑂(𝑛 + 𝑚) space.

Without changing its time complexity, this algorithm may be improved by ignoring
event times 𝑡 such that all events occurring at 𝑡 are link arrivals between nodes already
in the same connected component. However, one still has to compute graph connected
components at each event time with link departures. Therefore, this improvement is
mostly appealing if many link departures occur at the same event times.

39

More generally, the approach above is efficient only if many events (node and/or
links arrivals and/or departures) occur at each event time. Then, many connected
components may change at each event time, and computing them from scratch makes
sense. Instead, if only few events occur at most event times, managing each event
itself and updating current connected components accordingly is appealing.

This leads to the following algorithm, which starts with an empty set C , considers
each event time 𝑡 in increasing order, and performs the following operations.

1. For each node segment ([𝑏, 𝑒], 𝑢) such that 𝑏 = 𝑡 (node arrival), add ([𝑏, {𝑢}) to
C .

2. For each link segment ([𝑏, 𝑒], 𝑢𝑣) such that 𝑏 = 𝑡 (link arrival), let 𝐶𝑢 = (⟨𝑏𝑢, 𝑋𝑢)
and 𝐶𝑣 = (⟨𝑏𝑣, 𝑋𝑣) be the elements of C such that 𝑢 ∈ 𝑋𝑢 and 𝑣 ∈ 𝑋𝑣; if
𝐶𝑢 ̸= 𝐶𝑣 then replace 𝐶𝑢 and 𝐶𝑣 by ([𝑡, 𝑋𝑢 ∪𝑋𝑣) in C . Then: if ⟨𝑏𝑢 ̸= [𝑡 then
output (⟨𝑏𝑢, 𝑡[, 𝑋𝑢); if ⟨𝑏𝑣 ̸= [𝑡 then output (⟨𝑏𝑣, 𝑡[, 𝑋𝑣).

3. Let 𝐺′
𝑡 = 𝐺𝑡; then for each link segment ([𝑏, 𝑒], 𝑢𝑣) such that 𝑒 = 𝑡 (link de-

parture), let 𝐶𝑣 = 𝐶𝑢 = (⟨𝑏𝑢, 𝑋𝑢) be the element of C such that 𝑢 ∈ 𝑋𝑢 and
𝑣 ∈ 𝑋𝑢; remove the link 𝑢𝑣 from 𝐺′

𝑡; if there is no path between 𝑢 and 𝑣 in 𝐺′
𝑡

then replace 𝐶𝑢 by 𝐶 ′
𝑢 = (]𝑡, 𝑋 ′

𝑢) and 𝐶 ′
𝑣 = (]𝑡, 𝑋 ′

𝑣) in C where 𝑋 ′
𝑢 and 𝑋 ′

𝑣 are
the connected components of 𝑢 and 𝑣 in 𝐺′

𝑡, respectively; if ⟨𝑏𝑢 ̸=]𝑡 then output
(⟨𝑏𝑢, 𝑡], 𝑋𝑢).

4. For each node segment ([𝑏, 𝑒], 𝑢) such that 𝑒 = 𝑡 (node departure), let 𝐶𝑢 =
(⟨𝑏𝑢, 𝑋𝑢) be the element of C such that 𝑢 ∈ 𝑋𝑢; remove 𝐶𝑢 from C ; if ⟨𝑏𝑢 ̸=]𝑡
then output (⟨𝑏𝑢, 𝑡], {𝑢}).

We call this algorithm SCC Direct. It clearly outputs the strongly connected compo-
nents of the considered stream, like the previous algorithm.

It performs 2(𝑀 + 𝑁) of the steps above, corresponding to 𝑁 node arrivals and de-
partures and 𝑀 link arrivals and departures. One easily deals with node arrivals and
departures in constant time. If a link arrival induces a merge between two compo-
nents, the smallest component may contain up to 𝑛/2 nodes and computing their
union is in 𝑂(𝑛), as is outputting both components if needed. Thus the complexity
for link arrival steps is in 𝑂(𝑀 · 𝑛). Each link departure calls for a computation of
the connected components of a graph, and writing a component to the output is in
𝑂(𝑛). Thus the complexity for link departure steps is in 𝑂(𝑀 · (𝑚 + 𝑛)). We obtain
a total time complexity in 𝑂(𝑀 · (𝑚 + 𝑛) + 𝑁).

The space complexity is still in 𝑂(𝑛+𝑚) as above, and we obtain the following result.

Proposition 3.2.3. SCC Direct computes the strongly connected components of a
stream graph in 𝑂(𝑀 · (𝑛 + 𝑚) + 𝑁) time and 𝑂(𝑚 + 𝑛) space.

40

3.2.2 Fully Dynamic Approach

The SCC Direct algorithm presented above is strongly related to one of the most clas-
sical algorithmic problems in dynamic graph theory, called fully dynamic connectivity
[53, 110, 51, 8, 48, 52, 46], which aims at maintaining the connected components of
an evolving graph. More precisely, dynamic connectivity algorithms consider a se-
quence of link additions and deletions, and maintain a data structure able to tell if
two nodes are in the same connected components (query operation) and to merge or
split connected components upon link addition or removal (update operation).

This data structure and the corresponding operations can be used in the above al-
gorithm: we can use the data structure to store C , the set of current connected
components (we also need to store the beginning time of each component, which has
negligible cost). Then, at each link arrival or departure, we can use the query opera-
tion to test whether the two nodes are in the same component or not, and the update
operation to add or remove the current link to the data structure, while keeping an
up-to-date set of connected components. When we observe a node appearance it is
necessarily isolated, so we have to add the current time to its component. All the
other steps (mainly, writing the output) are unchanged. We call this algorithm SCC
FD.

Several methods efficiently solve the dynamic connectivity problem, the key challenge
being to know if updates and queries may be performed in 𝑂(log(𝑛)) time, where 𝑛
is the number of nodes in the graph. Current exact solutions perform updates in
𝑂

(︂√︂
𝑛·(log log(𝑛))2

log(𝑛)

)︂
worst time [53], or in log2(𝑛)

log log(𝑛) amortized worst time [110]. Proba-
bilistic (exact or approximate) methods perform even better, but they remain above
the 𝑂(log(𝑛)) time cost [48, 52, 46].

It is well acknowledged that these algorithmic time and space complexities hide big
constants, and that the underlying algorithms and data structures are very intricate.
As a consequence, implementing these algorithms is an important challenge in itself
[8, 51], and the results above should be considered as theoretical bounds. In practice,
the implemented algorithms typically have 𝑂(log(𝑛)3) amortized time and linear space
complexities, still with large constants [8, 51].

In SCC FD, we perform 𝑂(𝑀) updates and queries, which leads to a 𝑂(𝑀 ·polylog(𝑛))
overall time cost for these operations, with any of the polylog dynamic connectivity
algorithms cited above. This cost is dominated by the cost of outputting the results,
which is in 𝑂(𝑀 ·𝑛). An additional 𝑁 factor is needed to deal with node arrivals and
departures. The space cost of dynamic connectivity methods is in 𝑂(𝑚 + 𝑛 · log 𝑛),
and we do not store significantly more information. We therefore obtain the following
result.

Proposition 3.2.4. SCC FD computes the strongly connected components of a stream
graph in 𝑂(𝑀 · 𝑛 + 𝑁) time and 𝑂(𝑚 + 𝑛 · log 𝑛) space.

This algorithm is particularly appealing if large connected components are quite sta-

41

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E
N

o
d

es

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

N
o

d
es

C0

C1

U0

U1

U2

U3

U4

C10

Figure 3-3: SCC UF algorithm illustration: The addition of a link ([2, 9],CD) between
C and D causes component unions (𝑈0, 𝑈1, 𝑈2, 𝑈3 and 𝑈4). Components 𝐶0 and 𝐶1
are split at the begin of the link (instant 2) and component 𝐶10 remains unchanged.

ble, i.e. if most of the largest strongly connected components in the stream have a
long duration. Indeed, in this case, fully dynamic update operations are much faster
than updates used in SCC Direct, and the output is much smaller than the maxi-
mum Ω(𝑁 + 𝑀 · 𝑛) bound. The cost of SCC FD is then dominated by fully dynamic
operations, and its time complexity is reduced to 𝑂(𝑀 · polylog(𝑛)).

3.2.3 Union-Find Approach

We propose here another approach, inspired by the classical union-find graph algo-
rithm. It starts with each node segment as a strongly connected component in its
own, and it handles each link segment one by one by merging and splitting previously
computed connected components. See Figure 3-3 for an illustration.

We start with a set C that contains ([𝑏, 𝑒], {𝑣}) for all node segment ([𝑏, 𝑒], 𝑣) in 𝑊
and set 𝐼 = [𝑏, 𝑒]; then for each link segment ([𝑏, 𝑒], 𝑢𝑣):

1. we consider the elements 𝐶𝑢 = (𝐼𝑢 = ⟨𝑏𝑢, 𝑒𝑢⟩, 𝑋𝑢) and 𝐶𝑣 = (𝐼𝑣 = ⟨𝑏𝑣, 𝑒𝑣⟩, 𝑋𝑣)
of C such that (𝑏, 𝑢) ∈ 𝑋𝑢 × 𝐼𝑢 and (𝑏, 𝑣) ∈ 𝑋𝑣 × 𝐼𝑣; then

• if 𝐶𝑢 = 𝐶𝑣 = (𝐼𝑢𝑣, 𝑋𝑢𝑣) then set 𝐼 = [𝑏, 𝑒] ∖ 𝐼𝑢𝑣; if 𝐼 = ∅ then there is
nothing to do because 𝑢 and 𝑣 already belong to the same component
during the whole interval [𝑏, 𝑒]; stop here

• if 𝐶𝑢 ̸= 𝐶𝑣 and 𝑏𝑢 < 𝑏 then replace 𝐶𝑢 by (𝐼𝑢∖ [𝑏, 𝑒], 𝑋𝑢) and (𝐼𝑢∩ [𝑏, 𝑒], 𝑋𝑢)
in C (if 𝐼𝑢 ∖ [𝑏, 𝑒] is composed of two maximum intervals 𝐼1 and 𝐼2 because
[𝑏, 𝑒] (𝐼𝑢 then add (𝐼1, 𝑋𝑢) and (𝐼2, 𝑋𝑢) to C)

• if 𝐶𝑢 ̸= 𝐶𝑣 then proceed likewise for 𝐶𝑣

2. we consider the elements 𝐶𝑢 = (𝐼𝑢 = ⟨𝑏𝑢, 𝑒𝑢⟩, 𝑋𝑢) and 𝐶𝑣 = (𝐼𝑣 = ⟨𝑏𝑣, 𝑒𝑣⟩, 𝑋𝑣)
of C such that (𝑒, 𝑢) ∈ 𝐼𝑢 ×𝑋𝑢 and (𝑒, 𝑣) ∈ 𝐼𝑣 ×𝑋𝑣; then

• if 𝐶𝑢 = 𝐶𝑣 = (𝐼𝑢𝑣, 𝑋𝑢𝑣) then set 𝐼 = 𝐼 ∖ 𝐼𝑢𝑣

42

• if 𝐶𝑣 ̸= 𝐶𝑢 and 𝑒 < 𝑒𝑢 then replace 𝐶𝑢 by (𝐼𝑢∩[𝑏, 𝑒], 𝑋𝑢) and (𝐼𝑢∖[𝑏, 𝑒], 𝑋𝑢)
in C ;

• if 𝐶𝑢 ̸= 𝐶𝑣 then proceed likewise for 𝐶𝑣

3. let 𝐿𝑢 be the list of components (𝐼𝑢, 𝑋𝑢) ∈ C such that 𝐼𝑢 ⊂ 𝐼 and 𝑢 ∈ 𝑋𝑢; let
𝐿𝑣 be the list of components (𝐼𝑣, 𝑋𝑣) ∈ C such that 𝐼𝑣 ⊂ 𝐼 and 𝑣 ∈ 𝑋𝑣; both
lists are sorted by the natural order of their (open or closed) intervals; notice
that the set of the intervals of the components of either list is a partition of 𝐼.

While both lists are non-empty, take and remove their first elements 𝐶𝑢 and
𝐶𝑣. By construction, these components both begin at the same time and their
interval are both open or both closed on the left; i.e. we have 𝐶𝑢 = (𝐼𝑢 =
⟨𝑏𝑢𝑣, 𝑒𝑢⟩, 𝑋𝑢) and 𝐶𝑣 = (𝐼𝑣 = ⟨𝑏𝑢𝑣, 𝑒𝑣⟩, 𝑋𝑣), and either 𝑏𝑢𝑣 ∈ 𝐼𝑢 and 𝑏𝑢𝑣 ∈ 𝐼𝑣, or
𝑏𝑢𝑣 ̸∈ 𝐼𝑢 and 𝑏𝑢𝑣 ̸∈ 𝐼𝑣;

• if 𝐼𝑢 ̸= 𝐼𝑣 then without loss of generality we can assume 𝐼𝑢 ⊂ 𝐼𝑣; then
change 𝐶𝑣 to 𝐶𝑣 = (𝐼𝑢, 𝑋𝑣) and add (𝐼𝑣 ∖ 𝐼𝑢, 𝑋𝑣) at the beginning of 𝐿𝑣.

Notice now that 𝐶𝑢 and 𝐶𝑣 cover exactly the same interval 𝐼𝑢𝑣 = ⟨𝑏𝑢𝑣, 𝑒𝑢𝑣⟩; then

• if 𝐶𝑢 ̸= 𝐶𝑣 then add their union (𝐼𝑢, 𝑋𝑢 ∪𝑋𝑣) to C .

Now we have that 𝑢 and 𝑣 belong to the same element 𝐶𝑢𝑣 = (𝐼𝑢𝑣, 𝑋𝑢𝑣) of C .
At this point this element may have the same vertex set than the element just
before; we then have to merge their time intervals:

• let 𝐶𝑝
𝑢 = (𝐼𝑝

𝑢, 𝑋𝑝
𝑢) be the element preceding 𝐶𝑢𝑣 for 𝑢, i.e. the one such

that 𝑢 ∈ 𝑋𝑝
𝑢 and 𝐼𝑝

𝑢 is just before 𝐼𝑢𝑣 in the natural ordering of all elements
containing 𝑢. If 𝑋𝑝

𝑢 = 𝑋𝑢𝑣 then we remove it and 𝐶𝑢𝑣 from C and we add
(𝐼𝑝

𝑢 ∪ 𝐼𝑢𝑣, 𝑋𝑢𝑣) to C .

Finally the element just after the last one we dealt with may have the same
vertex set; we also merge their time intervals:

4. let 𝐶𝑓
𝑢 = (𝐼𝑓

𝑢 , 𝑋𝑓
𝑢) be the element of C following 𝐶𝑢𝑣 for 𝑢, i.e. the one such

that 𝑢 ∈ 𝑋𝑓
𝑢 and 𝐼𝑓

𝑢 is the one just after 𝐼𝑢𝑣 in the natural ordering of all the
elements of C containing 𝑢. If 𝑋𝑓

𝑢 = 𝑋𝑢𝑣 then we remove it and 𝐶𝑢𝑣 from C
and we add (𝐼𝑓

𝑢 ∪ 𝐼𝑢𝑣, 𝑋𝑢𝑣) to C .

Figure 3-3 illustrates one step of the algorithm: the addition of link ([2, 9],CD). It
causes 𝐶1 = ([1, 3], 𝑋1) to be split into ([1, 2[, 𝑋1) and ([2, 3[, 𝑋1); 𝐶0 = ([0, 3], 𝑋0) to
be split into (]0, 2[, 𝑋0) and ([2, 3[, 𝑋0); 𝐼 is equal to [2, 9[; 𝐿𝐶 contains components
([2, 3[, 𝑋1), 𝐶3, 𝐶5, 𝐶6 and 𝐶8; and 𝐿𝐷 contains components ([2, 3[, 𝑋0), 𝐶2, 𝐶4, 𝐶6, 𝐶7
and 𝐶9.

The space complexity of SCC UF is 𝑂(𝑁 + 𝑛 ·𝑀) since, as explained above, there
may be at most 𝑁 components induced by node segments, and each link segment may
correspond to the beginning of at most four components, each containing no more
than 𝑛 nodes.

43

The initialisation step takes 𝑂(𝑁) time. For each considered link segment ([𝑏, 𝑒], 𝑢𝑣),
Steps 1 and 2 involve replacing one element of C with two elements, both with the
same node set as the original. This may be done in 𝑂(𝑛). Step 4 involves a set
comparison, which may also be done in 𝑂(𝑛). In Step 3, the number of elements of
𝐿𝑢 and 𝐿𝑣 may be in 𝑂(𝑀) (𝑢 and 𝑣 each belong to a single node segment during
the whole interval [𝑏, 𝑒]). Finding the first elements of 𝐿𝑢 and 𝐿𝑣 may be done in
𝑂(log 𝑀) by logarithmic search. At each iteration of the loop over the first elements
of 𝐿𝑢 and 𝐿𝑣, one element is removed from each list, and at most one is added to
one of those lists, so the number of element pairs considered in this loop is at most
|𝐿𝑢|+ |𝐿𝑣|. The union of the (disjoint) node sets of two elements of C may be done
in linear time with their sizes, so in 𝑂(𝑛), and replacing an element with two copies
of itself as well. Finally, the total number of operations performed in Step 3 is in
𝑂(𝑛 ·𝑀2), leading to the following result.

Proposition 3.2.5. Algorithm SCC UF computes the strongly connected components
of a stream graph in 𝑂(𝑁 + 𝑛 ·𝑀2) time and 𝑂(𝑁 + 𝑛 ·𝑀) space.

3.3 Experiments and Applications

In this section, we first present experiments that show the practical usability of our
algorithms in real-world cases. We also present an in-depth analysis of a typical large-
scale real-world case, and apply our algorithms to approximate latency computations.

We publicly provide Python 3 implementations of our algorithms in the Straph li-
brary [79] (see Chapter 2). We used these implementations for all our experiments,
and ran them on an Intel Core i5 3.4 GHz CPU and 32 GB RAM Linux machine.
The following snippet of code illustrates a practical usage in Straph.

1 S = stream_graph ()
2 # The algorithm used to compute WCC is "WCC DFS"
3 wcc = S. weakly_connected_components (format = " cluster ")
4 # "SCC - Direct " is the default algorithm
5 scc = S. strongly_connected_components (format = " cluster ",
6 method = " Direct ")
7 # SCC can also be computed using "SCC FD" or "SCC UF" algorithms
8 scc = S. strongly_connected_components (format = " cluster ",
9 method ="FD")

10 scc = S. strongly_connected_components (format = " cluster ",
11 method ="UF")

3.3.1 Algorithm performances

We conducted thorough experiments with the datasets described in Section 1.3 and
our different algorithms. In all cases, SCC Direct was significantly faster than
others, and in many cases only SCC Direct was able to perform the com-
putation in main memory. It was able to handle datasets of several dozens

44

|W | |C | WCC
UF

SCC Di-
rect

SCC FD SCC UF

UC 11K 54K 0.35 0.47 6.83 25.14
HS 2012 13K 50K 0.45 0.41 5.11 6.34

Digg 26K 144K 1.0 1.34 19.4 78.89
Infectious 16.9K 106.3K 0.80 1.18 16.0 18.1
Twitter 113K 580K 3.94 33.89 9.98K -
Linux 63K 698K 3.8 11.6 227.0 -

Facebook 373K 795.0K 10.36 7.96 55.3 109.23
Epinions 75.6K 75.6K 5.6 3.3 - -
Amazon 4.1M 4.1M 117.3 102.3 691.1 -
Youtube 738.6K 1.2M 96.2 150.8 - -

Movielens 282K 12.5M 93.3 340.0 - -
Wiki 4.2M 23.5M 247.34 247 - -

Mawilab 1.1M 30M 430 90K - -
Stackoverflow 5.2M 45.9M 410.7 36.7K - -

Table 3.1: Number of WCC (|W |) - Number of SCC (|C |) - Algorithms running time
in seconds (K = 103, M=106)

of millions of link segments. Instead, both SCC UF and SCC FD have prohibitive
memory space requirements, at least in their current versions. Notice that, even in
the cases where SCC FD was able to handle the data, the constants hidden in its
time complexity made it slower than SCC Direct. We therefore focus on SCC Direct
here.

Table 3.1 shows the number of weakly and strongly connected components as well
as the running times of connectivity algorithms. (The exact numbers of WCC and
SCC in the stream graphs of the first twelve datasets are presented in the Table 4.1
of Chapter 4).

Figure 3-4 presents the time cost for each dataset, and show a strong relation between
the number of link segments, the number of connected components, and computation
time. Notice, however, that Wiki and Mawilab have similar numbers of link and node
segments but SCC Direct is several orders of magnitude faster on Wiki. This difference
comes from their quite different structure regarding connected components: Mawilab
has more than 21𝑀 SCC involving at least 30𝐾 nodes, whereas Wiki has only 2𝐾
such SCC. As explained in Section 3.2, the computational cost of SCC Direct mainly
depends on the number of nodes in each SCC, which is observed in this experiment.

Going further, Figure 3-5 displays the relations between the number of strongly con-
nected components and other features of interest. It shows that the running time
depends strongly on the number of strongly components, but other factors play a
role, as explained above for Wiki and MawiLab.

45

UC
 m

es
sa

ge

Hi
gh

 S
ch

oo
l

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

ip
ed

ia

M
aw

ila
b

St
ac

ko
ve

rfl
ow

101

103

105

107

N+M
Nb of SCC
SCC UF (s)
SCC FD (s)
SCC Direct (s)

Figure 3-4: Time cost of SCC Direct, SCC UF, SCC FD in seconds, along with the
number 𝑀 of link segments and the number of strongly connected components, for
each considered stream (horizontal axis, ordered with respect to 𝑀).

105 106 107
Number of SCC

100

103

106

109

1012

1015

1018
n*M
Number of event times
SCC Direct (s)

Figure 3-5: Relation between the number of strongly connected components (horizon-
tal axis) and 𝑛 *𝑀 , the number of event times, and the running time of SCC Direct.
Each dataset leads to three vertically aligned points, the color of which indicating the
considered variable.

46

0 200 400 600 800
Time (s)

0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f n
od

es

Stream Graph
Giant WCC

Figure 3-6: Number of nodes in the whole stream graph and in the giant weakly
connected component over time in the mawilab dataset.

3.3.2 Connectedness analysis of IP traffic

We take the MawiLab IP traffic capture as a typical instance of large real-world
dataset modeled by a stream graph, and we use it to illustrate the relevance of
connected component analysis.

First notice that this stream graph contains a giant weakly connected component (see
Figure 3-6), spanning 82.86% of 𝑊 , involving 73.20% of all nodes in 𝑉 and spanning
the whole 𝑇 duration. The second largest weakly connected component represents
only 2.57% of 𝑊 , and the 1, 138, 096 other ones account for 14.57% of 𝑊 all together.
This extends to stream graphs the classical observation that real-world undirected
complex networks generally have a giant connected component [71].

As we can observe in Figure 3-6 for nodes, if we observe a given dynamic over time in
the stream graph - several surges in the number of nodes for instance - this dynamic
can be solely connected to the dynamic of the giant weakly connected component.
Therefore dynamics present in smaller WCC can be totally eclipsed in an overall
observation, thus motivating the need to analyse each WCC independently.

While the number of nodes fluctuates greatly over time, the number of SCC existing
at a given instant remains stable, as observed in Figure 3-7.

The situation of strongly connected components is quite different. Indeed, the stream
has 30, 062, 184 such components, with no giant one. Let us define the span 𝜎(𝐶)
of a connected component 𝐶 = (⟨𝑏, 𝑒⟩, 𝑋) as the fraction of 𝑊 that it contains:

47

0 200 400 600 8000

2000

4000

6000

8000

10000

Nu
m

be
r o

f S
CC

0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f N
od

es

Nb of SCC
Nb of Nodes

Figure 3-7: Number of nodes and number of strongly connected components over
time in the mawilab dataset.

0 10000 20000 30000 40000 50000
Size of SCC

103

104

105

106

0 100 200 300 400 500
Duration of SCC

100
101

102

103
104

105

106
107

0.000000 0.000005 0.000010 0.000015 0.000020 0.000025
Span of SCC

100
101

102

103
104

105

106
107

Figure 3-8: Distribution of the size (top left), duration (top right) and span (bottom)
of strongly connected components in Mawilab.

48

100 101 102 103 104
Size of SCC

10 6
10 5
10 4
10 3
10 2
10 1
100
101
102

Du
ra

tio
n

of
 S

CC

Figure 3-9: Duration of each strongly connected component as a function of its size
in Mawilab dataset, in log-log scales. We added 10−6 to each duration in order to
display instantaneous SCC on a log scale.

𝜎(𝐶) = (𝑒−𝑏)·|𝑋|
|𝑊 | . We call the number of involved nodes |𝑋| its size, and the length of

its time interval 𝑒 − 𝑏 its duration. We display in Figure 3-8 the strongly connected
component span distribution, as well as the size and duration distributions.

These distributions clearly show that the span of strongly connected components is
very limited, the highest being 0.000027 of 𝑊 . Many small components exist, but
several have a span quite close to this maximal: 7 have a span larger than 0.0000049,
for instance. Therefore, no component significantly stands out of the crowd. This is
confirmed by component size and duration distributions: the largest component (in
terms of number of nodes) involves 49, 791 nodes (only 5.3% of the whole), and lasts
for 0.000082 seconds (only 0.0000091% of the whole).

We also display in Figure 3-9 the duration of components as a function of their
size. The correlation coefficient between size and duration of SCC is −0.15, therefore
they are not linearly dependant. However, Figure 3-9 clearly shows that there is
no component with both a long duration and a large size; instead, large strongly
connected components have a very short duration, and, conversely, long components

49

have a small size. For instance, all components involving at least 2 thousand nodes
have a duration lower than 10−3 seconds, and all components that last for more than
two seconds involve less than ten nodes.

More generally, these plots show that there are many strongly connected components
with very short duration: 90% last less than 0.14 seconds. These components are
due to the frontier effect, that we define as follows. Consider a set 𝑋 of nodes, and
assume that link segments that start close to a given time 𝑏 and end close to a given
time 𝑒 connect them. However, they all start at different times and end at different
times. This leads to a connected component ([𝑏′, 𝑒′], 𝑋), with 𝑏′ close to 𝑏 and 𝑒′ close
to 𝑒, but also to many short strongly connected components that both start and end
close to 𝑏, or close to 𝑒. These components make little sense, if any, but they account
for a huge fraction of all strongly connected components, and so they have a crucial
impact on computation time as explained in the previous section. In Chapter 4, we
will introduce an approximation scheme to get rid of such components while keeping
crucial information.

3.4 Related Work

First of all, we point out that the stream graph approach differs from the fully-
dynamic approach. Here, we focus on the whole history of nodes and links, our
objective being to retrieve all connected components that were present at any instant
in time. It does not consist in maintaining the current state of a graph after insertions
and deletions of links. Regarding connected components in fully-dynamic formalisms
we refer to [60] and [15] (see Section 3.2.2 for an adaptation of those methods).

We focus here on connected components defined in [59], but other notions of connected
components in dynamic graphs have been proposed. Several of them rely on the
notion of reachability, which, in most cases, induces components that may overlap
and are NP-hard to enumerate, see for instance [16, 73, 42, 49]. This makes them
quite different from the connected components considered here. The fact that they
form a partition of temporal nodes, and may be computed in polynomial time and
space, are two important features.

Akradi and Spirakis [6] study and propose an algorithm for testing whether a given
dynamic graph is connected at all times during a given time interval. If it is not
connected, their algorithm looks for large connected components that exist for a long
duration. Vernet et al. [100] propose an algorithm for computing all sets of nodes that
remain connected for a given duration, and that are not dominated (either regarding
their size or duration) by others such sets. Unlike our work, these papers do not look
for a partition of the set of temporal nodes, as not all temporal nodes belong to a
component, and in the case of [100] two components may overlap.

Finally, [23] computes 𝑡-interval connectivity in dynamic graphs. It tests whether the
intersection of graphs existing during 𝑡 consecutive time steps is connected, which
does not directly lead to a notion of connected components.

50

The distinction between strongly and weakly connected components is classical for
directed graphs. It has in particular been observed that, while there is a giant weakly
connected component in the case of the web, the strongly connected components are
smaller [20]. Nicosia et al. [73] study weakly and strongly connected components
in time-varying graphs, with a notion of connectivity based on reachability through
temporal paths, which is not symmetric. Therefore they have a component for each
node, which may overlap. They study in several real-world datasets how the size of
these components evolve when varying the length of the time interval considered.

3.5 Conclusion

We proposed, implemented, and experimentally assessed a family of polynomial al-
gorithms to compute the connected components of stream graphs. These algorithms
handle streams of dozens of millions of events, and output all connected components
in a streaming fashion. They make connected components usable in practice, as we
illustrate on a large-scale real-world dataset. Up to our knowledge, it is the first time
that a partition of temporal nodes into connected components is computed at such
scales.

Interestingly, our algorithms leave room for heuristics in the order in which events are
processed. In the case of UF SCC, for instance, link segments may be considered in
any order, and handling long segments first would speed up computations. Likewise,
choosing appropriate links for data structure updates in FD SCC may have a strong
impact.

Another promising direction is to enumerate connected components without listing
them: one may for instance output only component size, duration and span in this
way. Fully dynamic algorithms are particularly appealing to this regard, as their
complexity is dominated by the explicit component listing. Similarly, one may encode
connected components in ways that make listing more compact, and so faster; one may
for instance only list component changes, or output components with non-contiguous
time spans. These directions call for extended definitions, though.

51

52

4 Alternative Stream Graph Representations

Contributions

• A connectivity based data representation of a stream graph which greatly
reduces the complexity of computing reachability queries: the condensa-
tion of a stream graph

• An alternative data representation paving the way to an efficient parallel
framework for the computation of numerous properties on stream graphs:
the stable directed acyclic graph of a stream graph

• An approximation method speeding up numerous methods in practice
while preserving the connectivity properties of a stream graph: the Δ-
approximation

In this chapter we present alternative representations - data structures designed to
facilitate specific computations - of stream graphs. The main motivation, as for graph
representations, is to be able to perform certain tasks efficiently. In order to do so, we
design data structures to address different types of queries or to ease the computation
of particular measures and properties.

For instance, in chapter 2 we introduced a compact data structure to represent stream
graphs. This representation allows constant time access to nodes and presence times
of a given node, and linear time to links and presence times of a given link. However,
this representation, as shown in chapter 3, does not allow efficient reachability queries.
In the following we propose several structures supporting different kind of queries
efficiently - like reachability queries - at the expense of a preprocessing time and a
greater memory consumption.

To our knowledge, no other work has addressed alternative representations of tempo-
ral graphs with a continuous modeling of the temporal dimension. We can refer to [12]
for alternative representations of snapshot sequences. Specifically, data representa-
tions for reachability queries in temporal graphs have been addressed in [108], [113]
and [85].

53

Our first stream graph representation, the condensation (Section 4.1), uses strongly
connected components as building blocks and reduces the complexity of reachability
queries. After defining this representation, we propose a method to compute the
condensation from a stream graph, based on an algorithm presented in chapter 3.
Then, we use its main properties to design algorithms answering reachability queries
and proceed to evaluate them on real world stream graphs. Second, we present the
stable directed graph (Section 4.2) and use its properties to design a parallel frame-
work which efficiently handles the computation of numerous stream graphs properties.
Third, we propose an approximation method, the Δ-approximation (Section 4.3), pre-
serving a stream graph’s connectivity while improving the computation time of several
methods. Finally, we conclude by proposing ideas to improve these stream graphs
representations and suggesting other potential applications (Section 4.4).

4.1 Condensation

In previous chapters we showed that one can partition a stream graph into weakly or
strongly connected components. We now present a method to take advantage of these
partitions: we use connectivity properties of these structures to build an object which
facilitates the answering of many reachability queries of the form "is (𝑡′, 𝑣) reachable
from (𝑡, 𝑢)?" or "is there a path from 𝑢 to 𝑣?"

Reachability queries constitute a major research field in graph theory due to its nu-
merous applications in biology, transportation or traffic networks. Most approaches
consist in a labelling scheme based on a particular node ordering, applied to the
graph itself or to alternative representations - such as its transitive closure. This
labelling scheme allows the creation of indexes reducing computation time of reacha-
bility queries. We refer to a survey of these methods [114] and for more recent ones
to [115], [116] and [108]. The vast majority of these methods are compatible with
a dynamic approach, as the maintained indexes or representations support dynamic
updates - addition or deletion of nodes and links. However, they cannot be easily
adapted to stream graphs: as shown in chapter 1, a stream graph contains the whole
history of a dynamic graph. A query may involve elements with different tempo-
ralities, therefore an index at a specific instant in time cannot answer these kinds
of queries. In this section we introduce an object supporting numerous reachability
queries and compatible with state-of-the-art indexing methods: the condensation
of a stream graph.

The condensation of a directed graph 𝐺 is the directed acyclic graph where each
strongly connected component is contracted to a single vertex.

Our approach is similar to the ones presented in [113] and [85]. We argue that our
method generalises the concept of condensation graph [5] by taking into account a
continuous temporal dimension. For consistency, we choose to keep the same name.

54

4.1.1 Definitions

Definition 4.1.1. We say that a cluster, defined in 1.2.5, 𝐶 ′ = (𝐼 ′, 𝑋 ′) ∈ 𝑊 follows
another cluster 𝐶 = (𝐼, 𝑋) ∈ 𝑊 if they satisfy the three following conditions:

• ∀𝑡 ∈ 𝐼,∀𝑡′ ∈ 𝐼 ′, 𝑡 < 𝑡′.

• 𝐼 ∩ 𝐼 ′ ̸= ∅ where 𝐼 denote the topological closure of 𝐼.

• 𝑋 ∩𝑋 ′ ̸= ∅.

Less formally, a cluster follows another if we can construct a path of zero length and
duration from the first to the second. They are adjacent in the graphical representa-
tion, for example in Figure 4-1 cluster 2 follows cluster 1.

Using this definition, we construct the condensation of 𝑆. Let us recall that the set
of strongly connected components, denoted by C , of a stream graph, is a partition of
the set of temporal nodes 𝑊 (cf Chapter 3).

Definition 4.1.2. We define 𝐺C = (C , 𝐸C), the condensation of 𝑆 as the graph
with node set C , in which (𝐶, 𝐶 ′) is in 𝐸C if and only if 𝐶 ′ follows 𝐶. We denote by
𝑛𝑐 = |C | and 𝑚𝑐 = |𝐸C | its number of nodes and (directed) links, respectively.

We say that (𝑡, 𝑣) is in 𝐶 = (𝐼, 𝑋) if 𝑡 ∈ 𝐼 and 𝑣 ∈ 𝑋. For any (𝑡, 𝑣) in 𝑊 , we
denote by 𝐶(𝑡, 𝑣) the unique strongly connected component 𝐶 ∈ C such that (𝑡, 𝑣)
is in 𝐶 and by 𝐶(𝑣) = {(𝐼, 𝑋) ∈ C such that 𝑣 ∈ 𝑋} the set of strongly connected
components containing 𝑣.

The upper part of Figure 4-1 represents partition into strongly connected components
- condensation nodes - of the stream graph of Figure 1-1. The lower part of Figure 4-1
shows the condensation graph of the stream. In the following we will often consider
nodes of the condensation graph as "components" in order to facilitate the description
of some methods.

Proposition 4.1.1. The condensation 𝐺C of a stream graph 𝑆 is a Directed Acyclic
Graph.

Proof. One can easily notice that the presence of a cycle in the condensation graph
means that at least one directed link infringes the first condition of definition 4.1.1.

Proposition 4.1.2. The condensation 𝐺C of a stream graph 𝑆 has the following
properties:

1. The number of nodes of 𝐺C , 𝑛𝑐, is in 𝑂(𝑁 + 𝑀).

2. The number of links of 𝐺C , 𝑚𝑐, is in 𝑂(𝑀).

Proof. 1. The number of nodes of 𝐺C is the number of strongly connected com-
ponents of the stream graph. From proposition 3.2.1, it is in 𝑂(𝑁 + 𝑀).

55

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

N
o

d
es 0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10
t

0

1
2

3

4 5
6

78

9

10

11

12

13

14

15

16

Figure 4-1: The 17 strongly connected components of the stream graph of Figure 1-1
(top) and the corresponding Condensation Directed Acyclic Graph (bottom).

56

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

N
o

d
es

0

1

2 3

4

5

0 1 2 3 4 5 6 7 8 9 10
t

0

1

2 3

4

5

Figure 4-2: Illustration of the impact of a link’s beginning on condensation links.

2. A link in 𝐺C corresponds to a following relationship between two strongly con-
nected components. Each link segment can induce up to seven links in 𝐺C .
Indeed the beginning of a link segment may correspond to the beginning of two
components: one instantaneous at the link segment beginning and one starting
just after. As the link segment may connect nodes in two different components
before its beginning, it could lead to five links in 𝐺C : a link between the created
components as they can follow each other and four links from the previous com-
ponents to the created ones, as they can also have a following relationship. The
ending of a link segment may correspond to the beginning of two connected
components, if the current component becomes disconnected, leading to two
other links in 𝐺C .

For instance, in Figure 4-2, the beginning of the link ([5, 10], 𝐵𝐶) leads to the
creation of two components (2 and 3) and to the condensation links (1, 2), (1, 3),
(0, 2), (0, 3) and (2, 3). The ending of links ([0, 5], 𝐴𝐵) and ([0, 5], 𝐶𝐷) creates
the condensation links (0, 4) and (1, 5) as well as other links already mentioned.

57

4.1.2 Algorithm

In Chapter 3 we proposed several algorithms to compute strongly connected compo-
nents, the best one being SCC Direct. It can be adapted to output the condensation
of a stream graph and we call it SCC-Condensation Direct.

We can notice that for a component to follow another it must be consecutive to
either a link arrival or a link departure. A node arrival creates a new component
which cannot follow another one, as it does not share any node with any other. A
node departure ends a component without giving birth to another, discarding any
possibility for a condensation link.

SCC-Condensation Direct is derived from SCC Direct in the following way, during
step 2 (link arrival) of SCC Direct 3.2.1, if components are outputted, we create
condensation links from the outputted components - 𝐶𝑢 = (⟨𝑏𝑢, 𝑡[, 𝑋𝑢) and 𝐶𝑣 =
(⟨𝑏𝑣, 𝑡[, 𝑋𝑣) - to the created one - 𝐶𝑢𝑣 = ([𝑡, 𝑋𝑢 ∪ 𝑋𝑣). Likewise, during step 3
(link departure), if the removal causes components to become disconnected we create
condensation links from the initial component - 𝐶𝑢 = (⟨𝑣𝑢, 𝑡], 𝑋𝑢) - to the disconnected
ones - 𝐶 ′

𝑢 and 𝐶 ′
𝑣.

Proposition 4.1.3. Algorithm SCC-Condensation Direct computes the condensation
of a stream graph in 𝑂(𝑀 · (𝑚 + 𝑛) + 𝑁) time and 𝑂((𝑁 + 𝑀) · 𝑛) space.

Proof. Additional steps are in 𝑂(1) and do not impact the time complexity of SCC
Direct (see 3.2.3). By proposition 4.1.2, a condensation has at most 𝑀 links and
𝑁 + 𝑀 components (condensation nodes) and each of these components contains at
most 𝑛 nodes. Hence, a space complexity in 𝑂((𝑁 + 𝑀) · 𝑛).

Heuristic 4.1.1. One can observe that number of links in the condensation can be
reduced without impacting its connectivity. We can obtain a transitive reduction of
the condensation by removing links (𝑢, 𝑤) ∈ 𝐸C such that ∃(𝑢, 𝑣) and (𝑣, 𝑤) ∈ 𝐸C .

For instance, in Figure 4-2, we can notice that links (1, 5), (1, 3), (0, 4) and (0, 3) can
safely be removed without impacting the connectivity.

To compute this transitive reduction, we build the adjacency list of 𝐺C : 𝐴C - each
node is associated to a set containing its neighbors. Then, for each node 𝐶 ∈ C we
consider every pair (𝐶 ′, 𝐶 ′′) such that 𝐶 ′, 𝐶 ′′ ∈ 𝐴C [𝐶]. If 𝐶 ′ is in 𝐴C [𝐶 ′′] we can
safely remove (𝐶, 𝐶 ′) from 𝐸C . And if 𝐶 ′′ is in 𝐴C [𝐶 ′] we can safely remove (𝐶, 𝐶 ′′)
from 𝐸C .

The time complexity of the above heuristic is in 𝑂(∑︀
𝑢∈C 𝑑𝑜𝑢𝑡(𝑢)2) where 𝑑𝑜𝑢𝑡(𝑢) is

the out-degree of 𝑢 ∈ C in 𝐺C . We can express this complexity according to 𝑛𝑐 by
posing 𝛼 =

∑︀
𝑢∈C

𝑑𝑜𝑢𝑡(𝑢)2

𝑛𝑐
, the complexity of the above heuristic becomes 𝑂(𝛼 · 𝑛𝑐).

In Section 4.1.5 we will show that, in practice, 𝛼 has a small value and that this
heuristic is linear in 𝑛𝑐 making the cost of this heuristic negligible compared to the
one of SCC-Condensation Direct (see Table 4.1).

58

0 1 2 3 4 5 6 7 8 9 10
t

0

1
2

3

4 5
6

78

9

10

11

12

13

14

15

16

Figure 4-3: Relaxed Condensation Directed Acyclic Graph corresponding to the
stream graph of Figure 1-1

Figure 4-3 shows the relaxed condensation graph of the stream graph of Figure 1-
1. Links (3, 9), (3, 13) and (8, 11) were removed. However, this relaxation does not
modify the asymptotic number of condensation links.

4.1.3 Connectivity Properties

The main property of the condensation of a stream graph is the following: any path in
𝑆 corresponds to a path in 𝐺C . We provide an example of this property in Figure 4-4
and we demonstrate this property below.

Lemma 4.1.1. If there is a path from (𝑡, 𝑢) to (𝑡′, 𝑣) in 𝑆 then either 𝐶(𝑡, 𝑢) =
𝐶(𝑡′, 𝑣), or there is a path from 𝐶(𝑡, 𝑢) to 𝐶(𝑡′, 𝑣) in 𝐺C .

Proof. If (𝑡, 𝑢) and (𝑡′, 𝑣) belong to the same strongly connected component we have
𝐶(𝑡, 𝑢) = 𝐶(𝑡′, 𝑣). Otherwise let 𝑃 = (𝑡0, 𝑢0, 𝑣0), . . . , (𝑡𝑘, 𝑢𝑘, 𝑣𝑘) be the path between
(𝑡0, 𝑢0) = (𝑡, 𝑢) and (𝑡𝑘, 𝑣𝑘) = (𝑡′, 𝑣). We can define a sequence (𝐶𝑖)𝑖∈{0,𝑘} ∈ C such
that (𝑡0, 𝑢0), (𝑡0, 𝑣0) ∈ 𝐶0, . . . , (𝑡𝑘, 𝑢𝑘), (𝑡𝑘, 𝑣𝑘) ∈ 𝐶𝑘. Then let us suppose that there
exists 𝑗 ∈ {0, 𝑘 − 1} such that 𝐶𝑗 ̸= 𝐶𝑗+1 and 𝐶𝑗+1 = (𝐼𝑗+1, 𝑋𝑗+1) doesn’t follow
𝐶𝑗 = (𝐼𝑗, 𝑋𝑗) in 𝐺C . Using the properties of 𝑃 we have 𝑡𝑗 < 𝑡𝑗+1 and 𝑣𝑗 = 𝑢𝑗+1 which
means that 𝑣𝑗 is present from 𝑡𝑗 to 𝑡𝑗+1, thus 𝑋𝑗 ∩ 𝑋𝑗+1 ̸= ∅. We can define ℎ ∈ 𝑇
such that 𝑡𝑗 < ℎ < 𝑡𝑗+1 where (ℎ−, 𝑣𝑗) ∈ 𝐶𝑗 and (ℎ+, 𝑣𝑗) ∈ 𝐶𝑗+1, hence 𝐼𝑗 ∩ 𝐼𝑗+1 ̸= ∅.
Using the fact that 𝐶𝑗 and 𝐶𝑗+1 are maximal we also have ∀𝑡, 𝑡′ ∈ 𝐼𝑗, 𝐼𝑗+1, 𝑡 < 𝑡′. By
construction of 𝐺C : 𝐶𝑗+1 must follow 𝐶𝑗 which is a contradiction.

59

Lemma 4.1.2. If there is a path from 𝐶 to 𝐶 ′ in 𝐺C and 𝐶 ̸= 𝐶 ′ then for all (𝑡, 𝑢)
in 𝐶 and (𝑡′, 𝑣) in 𝐶 ′ there is a path from (𝑡, 𝑢) to (𝑡′, 𝑣) in 𝑆.

Proof. Suppose that there is a path 𝑃 = (𝐶0, 𝐶1,. . . ,𝐶𝑘) from 𝐶0 = 𝐶 to 𝐶𝑘 = 𝐶 ′ in
𝐺C and that there exists (𝑡, 𝑢) ∈ 𝐶 and (𝑡′, 𝑣) ∈ 𝐶 ′ such that we cannot reach (𝑡′, 𝑣)
from (𝑡, 𝑢) in 𝑆. Using the fact that 𝐶0 = (𝐼0, 𝑋0) is a SCC we can define a path
from (𝑡, 𝑢) to any node 𝑣0 ∈ 𝐶0. We choose this element 𝑣0 to be in 𝑋0 ∩𝑋1, which
is not empty given the fact that 𝐶1 = (𝐼1, 𝑋1) follows 𝐶0. We also choose an instant
𝑡1 ∈ 𝐼1, a node 𝑢1 ∈ 𝑋1 and we define the path 𝑃0 = (𝑡, 𝑢, 𝑣0), (𝑡1, 𝑣0, 𝑢1). We can
iterate this process for any couple (𝐶𝑖, 𝐶𝑖+1), 𝑖 ∈ {0, 𝑘 − 1} of components in 𝑃 in
order to obtain a sequence (𝑃𝑖)𝑖∈{0,𝑘−1}. If we concatenate this sequence we obtain a
path going from (𝑡, 𝑢) to (𝑡′, 𝑣) which is a contradiction.

These lemmas show that the condensation of a stream graph encodes much infor-
mation about paths and reachability. Indeed all paths corresponds to a sequence
of elements of C , in other words, any path in 𝑆 may be divided into a sequence of
slices, each consisting in a path in - the substream induced by - a strongly connected
component of 𝑆 and so a node of C . This leads to the following theorem:

Theorem 4.1.1 (path slicing). Let us consider a stream graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸), and
two temporal nodes (𝑖, 𝑢) and (𝑗, 𝑣) in 𝑊 . There is a path 𝑃 = (𝑡0, 𝑢0𝑣0), (𝑡1, 𝑢1𝑣1),
. . . ,(𝑡𝑘, 𝑢𝑘𝑣𝑘) from (𝑖, 𝑢) to (𝑗, 𝑣) in 𝑆 if and only if there is a path 𝑃C = 𝐶0, 𝐶1, . . . , 𝐶𝑙

in 𝐺C such that there exists a sequence 𝑥0, 𝑥1, . . . , 𝑥𝑙 s.t. (𝑡0, 𝑢0𝑣0), . . . , (𝑡𝑥0 , 𝑢𝑥0𝑣𝑥0)
is a path in 𝑆(𝐶0), (𝑡𝑥0+1, 𝑢𝑥0+1𝑣𝑥0+1), . . . , (𝑡𝑥1 , 𝑢𝑥1𝑣𝑥1) is a path in 𝑆(𝐶1), and so on
until (𝑡𝑥𝑙−1+1, 𝑢𝑥𝑙−1+1𝑣𝑥𝑙−1 + 1), . . . , (𝑡𝑥𝑙

, 𝑢𝑥𝑙
𝑣𝑥𝑙

) is a path in 𝑆(𝐶𝑙).

Proof. This theorem comes from lemmas 4.1.1 and 4.1.2.

The main consequence of this theorem is that we can encode a potentially infinite
set of paths between two temporal nodes in 𝑆 by a finite set of distinct paths in 𝐺C

(where each path is a finite sequence of components). A path in 𝑆 is denoted by 𝑃𝑆

and its representation in 𝐺C by 𝑃C . In the following we will often speak in terms
of stream graph path and condensation path in order to avoid any confusion.
Consequently, reachability queries - asserting the existence of a path in 𝑆 - can be
answered by browsing 𝐺C .

Remark 4.1.1. We can easily extract an arbitrary stream path from a condensation
path 𝑃C = (𝐶0, 𝐶1, . . . ,𝐶𝑘). Each step in 𝑃C corresponds to a transition from a
𝐶 = (𝐼, 𝑋) to a 𝐶 ′ = (𝐼 ′, 𝑋 ′), with (𝐶, 𝐶 ′) ∈ 𝐸C , in order to keep the coherence of
the path, it must pass through a node belonging to 𝑋 ∩𝑋 ′. For all 𝑖 ∈ {0, 𝑘} we can
construct a subpath 𝑃𝑖 inside 𝑆(𝐶𝑖) where 𝐶𝑖 = (𝐼𝑖, 𝑋𝑖) ∈ 𝑃C : 𝑃𝑖 starts from a node
in 𝑋𝑖−1 ∩𝑋𝑖 and reaches a node in 𝑋𝑖 ∩𝑋𝑖+1. The concatenation of these 𝑃𝑖 results
in a stream path.

The worst-case complexity of this extraction procedure is in 𝑂(|𝑃C |(𝑛+𝑚)) = 𝑂(𝑛𝑐(𝑛+
𝑚)), as lengths of paths in 𝐺C - an acyclic directed graph - cannot exceed 𝑛𝑐. Since

60

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

N
o

d
es

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

N
o

d
es 0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10
t

0

1
2

3

4 5
6

78

9

10

11

12

13

14

15

16

Figure 4-4: A temporal path from (0, 𝐹) to (6, 𝐶) in the stream graph (top and
middle) and the equivalent path in its condensation ((1, 2, 8, 4, 9, 5)) (bottom).

61

a component in C may contain, at most, 𝑛 nodes and 𝑚 links, finding a path in such
a component may require 𝑂(𝑛 + 𝑚).

4.1.4 Reachability Queries

As discussed in chapter 3, a stream graph can be partitioned into distinct weakly
connected components. We can create a distinct condensation for each WCC. An
index associating each node segment to its WCC can be created during WCC DFS (see
Section 3.1) in 𝑂(𝑁) time and 𝑂(𝑁) space. Reachability queries between elements of
different WCC can be answered in 𝑂(1). In the following, without a loss of generality,
we assume that queries involve elements of the same WCC.

Given two temporal nodes (𝑡, 𝑢) and (𝑡′, 𝑣) ∈ 𝑊 and two nodes 𝑤 and 𝑧 ∈ 𝑉 , there
can be four types of reachability queries and each one has its equivalent in 𝐺C :

1. Is there a path from (𝑡, 𝑢) to (𝑡′, 𝑣) in 𝑆 ⇐⇒ is there a path from 𝐶(𝑡, 𝑢) to
𝐶(𝑡′, 𝑣) in 𝐺C .

2. Is there a path from (𝑡, 𝑢) to 𝑧 in 𝑆 ⇐⇒ is there a path from 𝐶(𝑡, 𝑢) to 𝐶(𝑧)
in 𝐺C

3. Is there a path from 𝑤 to (𝑡′, 𝑣) in 𝑆 ⇐⇒ is there a path from 𝐶(𝑤) to 𝐶(𝑡′, 𝑣)
in 𝐺C

4. Is there a path from 𝑤 to 𝑧 in 𝑆 ⇐⇒ is there a path from 𝐶(𝑤) to 𝐶(𝑧) in
𝐺C

Queries 1 and 2 can be answered using a single breadth first search on 𝐺C , in 𝑂(𝑛𝑐 +
𝑚𝑐) time.

Queries 3 and 4 are more complex as 𝐶(𝑤) and 𝐶(𝑣) may contain several nodes of 𝐺C .
We address them in chapter 5 and show that they can also be answered in 𝑂(𝑛𝑐 +𝑚𝑐).

We point out that for these querying algorithms to be efficient the condensation
should be stored in main memory as the time complexity of reading a stream graph’s
condensation exceeds the one of these algorithms.

The data structure used in Straph to encode the condensation of a stream graph has
been detailed in chapter 2.
In Straph, the computation of the condensation of a stream graph as well as reacha-
bility queries is very simple. We give a practical example below.

62

1 S = stream_graph ()
2 # Computation of the condensation of the Stream graph
3 cdag = S. condensation_dag ()
4 t1 , t2 , u, v = 0, 10, ’A’, ’B’
5 # The function ’is_reachable ’ returns a Boolean
6 # Node to Node
7 cdag. is_reachable (source = u, target = v)
8 # Temporal Node to Temporal Node
9 cdag. is_reachable (source = (t1 ,u),target = (t2 ,v))

10 # Node to Temporal Node
11 cdag. is_reachable (source = u, target = (t2 ,v))
12 # Temporal Node to Node
13 cdag. is_reachable (source = (t1 ,u),target = v)

The condensation being a directed acyclic graph, it is possible to significantly improve
reachability queries by applying an indexing method on it such as TopChain [108] or
TOL [116]. We hope to evaluate the benefits of these methods in the future as well
as providing them in Straph.

4.1.5 Experiments

Structural properties of 𝐺C can be decisive, as complexity parameters. We have evalu-
ated them on twelve real world datasets, described in Section 1.3: UC Message (UC),
High School 2012 (HS 2012), Digg, Infectious, Twitter Higs (Twitter), Linux Ker-
nel mailing list (Linux), Facebook wall posts (Facebook), Epinions, Amazon, Youtube,
Movielens and Wiki Talk En (Wiki).

As mentioned previously, to efficiently answer reachability queries, a stream graph
condensation should be stored in main memory. Therefore, as the space complexity of
the condensation is in 𝑂((𝑀 + 𝑁) ·𝑛), some stream graphs exceed our main memory,
such as in Mawilab 2020-03-09 (Mawilab) and Stackoverflow datasets. Consequently
we ignore these two datasets in this section. However, as shown in chapter 3, it is
possible to design a streaming algorithm and output a stream graph’s condensation
in a streaming fashion. In section 4.3, we propose an approximation method reducing
the number of strongly connected components and tackling this issue.

First of all, we notice that in Epinions and Amazon datasets there is no link in
the condensation. This observation can be explained by the fact that each strongly
connected component of these datasets is also a weakly connected component (see
Table 4.1). Therefore, no SCC is adjacent to another - and no condensation link
exists - as they would belong to the same weakly connected component otherwise. It
could be argued that the 𝛿 value we used for the temporal links’ minimal duration is
too short regarding the duration between two logged timestamps.

Real world condensation graphs are very sparse (𝑚𝑐 < 𝑛𝑐), as we can observe in
Table 4.1, the mean out-degree of 𝐺C , 𝑑𝑐, is very low (< 1). The values of 𝛼 are
also low, unless for the youtube dataset, making heuristic 4.1.1 efficient in practice.
Moreover, as observed in Figure 4-5, 𝑛𝑐 ∼ 𝑁 and 𝑚𝑐 ∼𝑀 . Nevertheless the size of the

63

Running
Time (s)

𝑛𝑐 𝑚𝑐 𝑑𝑐 𝛼 |W |

UC 1.130 53 940 43 273 0.802243 0.907 11 276
HS 2012 1.412 50 312 39 060 0.776356 0.993 13 253
Digg 3.400 143 953 118 953 0.826332 0.963 26 078
Infectious 2.543 106 306 95 822 0.901379 1.179 16 990
Twitter 124.879 579 683 472 097 0.814405 0.881 113 200
Linux 32.943 697 704 658 207 0.94339 1.118 62 918
Facebook 25.779 794 986 422 273 0.53117 0.574 373 217
Epinions 6.562 75 648 0 0 0 75 648
Amazon 145.337 4 092 400 0 0 0 4 092 400
Youtube 2970.871 1 168 736 503 666 0.430949 142.286 738 638
Movielens 2212.060 12 480

067
12 214
848

0.978749 1.002 282 043

Wiki 3010.126 23 516
709

19 439
127

0.826609 0.892 4 206 816

Table 4.1: Running time in seconds of algorithm SCC-Condensation Direct - Char-
acteristics of the condensations of real world stream graphs (𝑛𝑐 = |C) the num-
ber of nodes (and of SCC), 𝑚𝑐 the number of links, 𝑑𝑐 the mean out degree) -
𝛼 =

∑︀
𝑢∈C

𝑑𝑜𝑢𝑡(𝑢)2

𝑛𝑐
the complexity parameter in Heuristic 4.1.1 - |W | the number

of weakly connected components.

UC

HS
 2

01
2

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

i

105

106

107
nc

N

UC

HS
 2

01
2

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

i

105

106

107
mc

M

Figure 4-5: Number of nodes in 𝐺C , 𝑛𝑐, along with the number of node segments in
𝑆, 𝑁 , (left) and number of links in 𝐺C , 𝑚𝑐, along with the number of link segments
in 𝑆, 𝑀 , (right) for each considered real world stream graph (horizontal axis, ordered
with respect to 𝑀).

64

UC

HS
 2

01
2

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

i
100
101
102
103
104
105
106
107 Time CDAG

N
M
T

Figure 4-6: Running time of SCC-Condensation Direct in seconds along with the
number of link segments, 𝑀 , node segments, 𝑁 , and event times, 𝑇 , in 𝑆 for each
considered real world stream graph (horizontal axis, ordered with respect to 𝑀).

65

condensation graph is not necessarily lower than the one of the stream graph it stems
from. In our datasets, the size of 𝐺C heavily depends on the nature of interactions:
if they happen at the same time instant or if they begin at close but distinct time
instants. In the first case this leads to bigger SCC resulting in lower 𝑛𝑐 and 𝑚𝑐. In
the second case this results in multiple and successive component insertions leading
to higher 𝑛𝑐 and 𝑚𝑐.
These results will prove to be critical in the design of some algorithms (see chapter 5).

The running time of SCC-Condensation Direct, presented in Table 4.1 and Figure 4-6,
is bigger than the one of SCC Direct due to the fact that we have to build an object
for each SCC whereas in SCC Direct we output the component as soon as computed.
The running times of both algorithms are still correlated to the number of temporal
links in the stream graph (see Section 3.3 for more details).

4.2 Stable Directed Acyclic Graph

The main motivation for the following concepts is to decompose a stream graph into
building blocks in which the dynamic does not play a part. A graph can be decom-
posed into connected components that can be analyzed independently, which allows
parallel implementations of numerous algorithms; stream graphs lack an equivalent
counterpart. As shown in chapter 3, weakly and strongly connected still possess an
internal dynamic. In this section we propose a notion of stable connected compo-
nent which can be seen as the connected component of a static graph and that is,
consequently, independently analyzable.

4.2.1 Definitions

Definition 4.2.1. A stable connected component of a Stream Graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸)
is a maximal cluster 𝐶 = (𝐼, 𝑋) ⊆ 𝑊 such that ∀𝑡 ∈ 𝐼, 𝑋 is a connected component
of 𝐺𝑡 and ∀𝑡′ ∈ 𝐼 we have 𝐺𝑡 = 𝐺′

𝑡. The set of stable connected components of a
stream graph is denoted by S .

In other words, a stable connected component is a cluster 𝐶 = (𝐼, 𝑋), 𝐼 = [𝑏, 𝑒]
where interactions between the nodes have begun before 𝑏 or at the same time and
have ended after 𝑒 or at the same time.

It is trivial to show that a stable connected component is also a subset of a strongly
connected component. The decomposition into stable connected components is a
finer grain decomposition of the stream graph than the one into strongly connected
components.

A stable connected component, 𝐶 = (𝐼, 𝑋), can be reduced to a static graph 𝐺𝐶 =
(𝑋, 𝐸𝐶) spanning 𝐼. In practice, interactions occurring inside a stable connected
component can be considered as static links. The corresponding object only consists
of a time window, 𝐼, and an adjacency list, 𝐴𝐶 .

66

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

N
o

d
es 0

1

2

3

4

5

6

7 89

10

11

12

13

14

15

16

17

Figure 4-7: Stable connected components of the stream graph of Figure 1-1.

0 1 2 3 4 5 6 7 8 9 10
t

0

1

2

3

4

5

N
o

d
es

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Figure 4-8: Illustration of the decomposition into snapshots. Colors indicate distinct
snapshots and numbers indicate connected components in snapshots.

67

This decomposition is different from the one into distinct snapshots. Indeed
the decomposition into snapshots is only "vertical": we take slices of the stream graph
along the time dimension. The decomposition into stable connected components is
both "vertical" and "horizontal", we obtain "rectangles" of different heights (𝑋) and
lengths (𝐼). This difference is illustrated in Figures 4-7 and 4-8: we either obtain 27
connected components in 11 distinct snapshots or 18 stable connected components. In
huge real-world datasets, this difference becomes very important and can be critical
from an algorithmic perspective (see Table 4.2).

Definition 4.2.2. We define 𝐺S = (S , 𝐸S), the stable directed acyclic graph of
𝑆 as the graph with node set S , in which (𝐶, 𝐶 ′) is in 𝐸S if 𝐶 ′ follows 𝐶. We denote
by 𝑛𝑠 = |S | and 𝑚𝑠 = |𝐸S | its number of nodes and (directed) links, respectively.

Propositions 4.1.1 and 4.1.2 also hold for the stable DAG of a stream
graph.

4.2.2 Algorithm

To obtain the stable DAG of a stream graph we can adapt the algorithm SCC Di-
rect proposed in chapter 3 to compute strongly connected components. We call this
adaptation SCC-Stable Direct.

First notice that a link arrival or a link departure necessarily leads to the creation of
a new stable connected component. During step 2 (link arrival) of SCC Direct 3.2.1,
we create stable links from the outputted components to the created one. Likewise,
during step 3 (link departure), if the removal causes components to become discon-
nected we create stable links from the initial component to the disconnected ones but
if the component remains connected we also create a new component and a stable link
between the two. This method can be incorporated as a subroutine of SCC Direct
without altering its time and space complexities.

Proposition 4.2.1. Algorithm SCC-Stable Direct computes the stable DAG of a
stream graph in 𝑂(𝑀 · (𝑚 + 𝑛) + 𝑁) time and 𝑂((𝑁 + 𝑀) · 𝑛) space.

The number of links in the stable DAG can also be decreased by the application of
Heuristic 4.1.1.

If we want to obtain stable connected components directly from strongly connected
components, we proceed as follows. Let 𝐶 = (𝐼, 𝑋) ∈ C , 𝐼 = [𝑏, 𝑒] and 𝑆(𝐶) =
(𝐼, 𝑋, 𝐶, 𝐸𝐶) the substream induced by 𝐶, for each event time corresponding to the
arrival or departure of a temporal link (𝑡, 𝑢, 𝑣) in 𝐸𝐶 we "slice" 𝐶 into 𝐶 ′ = (𝐼 ′, 𝑋)
with 𝐼 ′ = [𝑏, 𝑡] and 𝐶 ′′ = (𝐼 ′′, 𝑋) with 𝐼 ′′ = [𝑡, 𝑒]. Once every event time has been
browsed, sliced components are the stable connected components. The addition of
stable links between sliced component is trivial. We can notice that this procedure is
also highly parallelisable.

In Straph, the stable connected components and the stable DAG inherit from the
same objects as the strongly connected components and the condensation. Below, we

68

Time SDAG 𝑛𝑠 𝑚𝑠 𝑑𝑠 CC in snap-
shots

UC 1.204 56 361 45 694 0.810 756 518
HS 2012 1.221 56 166 44 914 0.799 350 726

Digg 3.459 146 268 121 268 0.829 22 886 293
Infectious 3.093 139 387 128 903 0.925 415 640
Twitter 134.186 589 652 482 066 0.817 126 088 469
Linux 42.062 875 167 835 670 0.955 19 645 948

Facebook 27.423 802 262 429 549 0.535 306 150 715
Epinions 6.494 75 648 0 0 75 648
Amazon 134.280 4 092 400 0 0 4 092 400
Youtube 2908.572 1 169 749 504 679 0.431 2 701 203

Movielens 2575.792 13 998 249 13 733 030 0.981 72 509 577
Wiki 3133.755 24 060 565 19 982 983 0.831 2 213 627 558

Table 4.2: Running time in seconds of algorithm SCC-Stable Direct - Characteristics
of the stable DAG of real world stream graphs (𝑛𝑠 the number of nodes, 𝑚𝑠 the
number of links,𝑑𝑠 the mean out-degree) - Total number of connected components in
the whole sequence of snapshots

provide a snippet of code to obtain these objects in practice.

1 S = stream_graph ()
2 # Computation of the stable connected components of S:
3 stable_cc = S. stable_connected_components ()
4 # Computation of the stable dag of S:
5 sdag = S. stable_dag ()

4.2.3 Experiments

Sizes of real-world stable DAG are presented in Table 4.2. We observe that stable
DAG are very sparse (𝑚𝑠 < 𝑛𝑠). In two datasets, Epinions and Amazon, there is
no link in their stable DAG. The reason is the same as for their condensation (see
section 4.1). Figure 4-9 shows that 𝑛𝑠 ∼ 𝑁 and 𝑚𝑠 ∼ 𝑀 . These results are similar
to the ones observed for their condensations.
We notice, in Figure 4-11, that condensations and stable DAG of real-world stream
graphs have almost the same number of nodes and links. This means that strongly
connected components are, most of the time, also stable connected com-
ponents. The internal dynamic in SCC is very low and the beginning or ending of a
temporal link often breaks the strong connectivity.

The running times of SCC-Condensation Direct and SCC-Stable Direct, presented in
Figure 4-10, are nearly identical, as expected.

69

UC

HS
 2

01
2

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

i

105

106

107

ns

N

UC

HS
 2

01
2

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

i

105

106

107
ms

M

Figure 4-9: Number of nodes in 𝐺S , 𝑛𝑠 along with the number of node segments in
𝑆, 𝑁 (left) and number of links in 𝐺S , 𝑚𝑠 along with the number of link segments
in 𝑆, 𝑀 (right) for each considered real world stream graph (horizontal axis, ordered
with respect to 𝑀).

UC

HS
 2

01
2

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

i

100
101
102
103
104
105
106
107 Time CDAG

Time SDAG
N
M
T

Figure 4-10: Running Time of SCC-Condensation Direct and SCC-Stable Direct in
seconds along with the number of link segments 𝑀 , node segments 𝑁 and event
times 𝑇 in 𝑆 for each considered real world stream graph (horizontal axis, ordered
with respect to 𝑀).

70

UC

HS
 2

01
2

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

i

105

106

107

nc

ns

UC

HS
 2

01
2

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

i

105

106

107
mc

ms

Figure 4-11: Number of nodes in 𝐺C , 𝑛𝑐, and in 𝐺S , 𝑛𝑠 (left) - Number of links in 𝐺C ,
𝑚𝑐, and in 𝐺S , 𝑚𝑠 (right) for each considered real world stream graph (horizontal
axis, ordered with respect to 𝑀).

4.2.4 DAG Parallel Framework

We have shown that a stream graph can be partitioned into stable connected com-
ponents and that a stable connected component can be considered as a static graph
spanning a certain time window.
In this section we present a general method to compute stream graphs properties,
using previous results. Let us consider a graph property, for example a node’s core
number, which is an integer. We will focus on its equivalent in a stream graph: a
time series. Consider 𝒫 a node (or edge) property in graph theory, given a graph
𝐺 = (𝑉, 𝐸), 𝒫 is the following application 𝒫 : 𝑉 → R (or 𝒫 : 𝐸 → R). We recall that
the induced static graph of 𝑆 at time 𝑡 is denoted by 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡). The equivalent
of such a property in a stream graph 𝑆 is the time series (𝒫(𝑉𝑡))𝑡∈𝑇 (or (𝒫(𝐸𝑡))𝑡∈𝑇).

If there exists an algorithm to compute a graph property, this property can be com-
puted in a stream graph, using the following naive method. The stream is divided into
distinct snapshots. Then the graph algorithm can be applied, in a parallel fashion,
to the connected components of these snapshots. By aggregating consecutive results,
we obtain the time series corresponding to the stream graph property.
Previously, we have shown that there can be many more connected components in
snapshots than stable connected components resulting in a prohibitive computation
time. To solve this problem, we propose a parallel framework based on notions of con-
nectedness to efficiently reuse state-of-the-art static algorithms already implemented
in numerous graph libraries, such as NetworkX [43] or NetworKit [93].
Our framework consists in applying an efficient graph algorithm to each stable con-
nected component, represented by an edge list or by an adjacency list/matrix. Each
result will be associated to a time period corresponding to the time window of the
component. Then, results of adjacent stable connected components may need to be
merged together. It can be done by browsing the DAG and aggregated results along

71

the time axis. This framework is highly parallelisable, as graph algorithms can be
computed on each stable connected component independently.

Proposition 4.2.2. Given a stream graph 𝑆 and a graph property algorithm of com-
plexity 𝑂(𝑓(𝑛 + 𝑚)), the DAG Parallel Framework computes the equivalent stream
graph property in 𝐺S in 𝑂((𝑀 + 𝑁)𝑓(𝑛 + 𝑚)).

Proof. As proposition 4.1.2 is also valid for the stable DAG, we have: 𝑚𝑠 = 𝑂(𝑀)
and 𝑛𝑠 = 𝑂(𝑁 + 𝑀). Thus applying an algorithm with complexity 𝑂(𝑓(𝑛 + 𝑚)) on
each stable connected component can be done in 𝑂(𝑓(𝑛 + 𝑚)(𝑁 + 𝑀)). Aggregating
two adjacent results only consists in concatenating intervals, time periods. The whole
aggregation step can be done by browsing 𝐺S , necessitating 𝑂(𝑀 + 𝑁).

K-core Example

We give an example of our method to compute the core number of nodes in a stream
graph. The k-core is the maximal subgraph where all vertices have degree at least
k. Interest in K-cores has risen through the years, they give a notion of density
inside a graph and are "easily computable". These properties have numerous appli-
cations in the detection of patterns of interest, which can be very useful in anomaly
detection [86], for instance.

In a stream graph, the k-core is defined as follows:

Definition 4.2.3. The k-core of a stream graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸) is its largest cluster
𝐶𝑘 ⊆ 𝑊 such that ∀(𝑡, 𝑣) ∈ 𝐶𝑘, 𝑑𝑡(𝑣) ≥ 𝑘 in the induced sub-stream 𝑆(𝐶𝑘).

The k-shell is a complementary notion defined as follows:

Definition 4.2.4. The k-shell of a stream graph is the cluster 𝐶𝑘 ∖𝐶𝑘+1 (the k-shell
is defined only if the (k+1)-core is not empty : 𝐶𝑘+1 ̸= ∅).

Now, we apply our framework to compute the time series corresponding to the core
number of every node in the stream graph:

1. Compute the stable connected components.

2. For each connected component, a static graph is constructed, from the links in
the stream graph induced by the corresponding component.

3. Batagelj’s algorithm [11] is applied on the constructed static graphs which re-
turns the core number of each node.

4. Finally, results for each component are concatenated to obtain the partition of
𝑊 into k-cores.

Below, we provide the snippet of corresponding code in Straph. We use the Networkx
implementation of Batagelj’s algorithm:

72

Algorithm 1 Batagelj
1: Input : 𝐺 = (𝑉, 𝐸), 𝑑𝑒𝑔𝑟𝑒𝑒, 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
2: Order nodes in V in increasing order according to their degree
3: for each 𝑣 ∈ 𝑉 do
4: 𝑐𝑜𝑟𝑒[𝑣] := 𝑑𝑒𝑔𝑟𝑒𝑒[𝑣]
5: for each 𝑤 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣) do
6: if 𝑑𝑒𝑔𝑟𝑒𝑒[𝑤] > 𝑑𝑒𝑔𝑟𝑒𝑒[𝑣] then
7: 𝑑𝑒𝑔𝑟𝑒𝑒[𝑤] = 𝑑𝑒𝑔𝑟𝑒𝑒[𝑤]− 1
8: Reorder V accordingly
9: return 𝑐𝑜𝑟𝑒

𝑘 Nb of node segments % of |𝑊 |
1 967 165 99.4
2 10 377 0.6
3 36 0.00038

Table 4.3: Characteristics of the 3-core, 2-shell and 1-shell in the Facebook dataset.
The total running time of the DAG parallel framework, with 8 cores, was 32.04𝑠.

1 import networkx
2 S = stream_graph ()
3 # Computation of the stable connected components of S:
4 stable_comp = S. stable_connected_components ()
5 # We set the number of processes to 8 with ’n_jobs = 8’
6 kcores = S. graph_property (networkx . algorithms .core. core_number ,
7 stable_components = stable_comp ,
8 n_jobs =8)

We define the coreness of a stream graph node by:

𝑐(𝑣) =
∑︁

𝐶𝑘⊆𝑊

∑︁
(𝐼,𝑋)∈𝐶𝑘,𝑣∈𝑋

|𝐼| · 𝑘
|𝑇 |

Figure 4-12 shows the core number of temporal nodes, we can notice that 2-shell
and 3-core tend to be distributed along horizontal and vertical lines. Horizontal
lines indicate nodes frequently present in the 2 or 3-core and vertical lines represent
specific periods of time. Figure 4-13 shows the distribution of the nodes corenesses in
the Facebook dataset. In Table 4.3, we give the principal characteristics of the 𝑘-cores
and 𝑘-shells.
(We do not provide an advanced analysis of core properties in stream graphs. This
example aims to demonstrate the efficiency of this parallel framework, provided in
Straph, in practice.)

This framework also allows us to easily compute the time series corresponding to a
temporal node’s core number (see Figure 4-14). The corresponding snippet of code
in Straph is presented below:

73

2008-07-01 00:00:00

2008-07-30 09:13:04.428571

2008-08-28 18:26:08.857143

2008-09-27 03:39:13.285714

2008-10-26 11:52:17.714286

2008-11-24 21:05:22.142857

2008-12-24 06:18:26.571429

2009-01-22 15:31:31

t

2

6761

14425

22716

29842

35625

41264

46952

N
o

d
es

1-Shell
2-Shell
3-Core

Figure 4-12: K-cores in a subset of the Facebook dataset (from the 01/07/2008 to the
22/01/2009).

74

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Coreness

100

101

102

103

104

Nu
m

be
r o

f N
od

es

Figure 4-13: Coreness distribution in the facebook dataset

2005-07
2006-01

2006-07
2007-01

2007-07
2008-01

2008-07
2009-01

Time (s)

1.0

1.5

2.0

2.5

3.0

Co
re

 N
um

be
r

2006-01
2006-05

2006-09
2007-01

2007-05
2007-09

2008-01
2008-05

2008-09
2009-01

Time (s)

1.0

1.2

1.4

1.6

1.8

2.0

Co
re

 N
um

be
r

Figure 4-14: Core Number of nodes ’1055’ (left) and ’2420’ (right) over time in the
facebook dataset.

75

1 import networkx
2 S = stream_graph ()
3 # The following line of code returns a python dictionary associating

each node to the time series of its core number over time.
4 node_to_signal = S. graph_property (nx. algorithms .core. core_number ,
5 format =" signal ",postprocess =True)

With this framework we have shown that graph algorithms can be efficiently used to
compute stream graph properties. Any stream graph property consistent regarding
graph theory can be computed using this framework. The corresponding complexities
are bounded by the size of the stream graph and the original complexities of the graph
algorithm. Hence, this framework could be used as a baseline for any stream graph
algorithm aiming to compute a graph theory consistent property.
Furthermore, the obtained complexities make it possible to compute properties that
have not been computed before, up to our knowledge, on datasets with millions of
nodes and links. The extracted time series could be used to better understand a
particular dynamic or a given pattern. We hope to pursue this work in order to
adapt this framework for anomaly detection in stream graphs.

4.3 Δ-Approximation

The main motivation of the approximation scheme, presented below, is to decrease
the size of the condensation of a stream graph and facilitate its analysis. As we
will demonstrate in the following, this approximation also has interesting properties,
allowing many algorithms to perform better.

4.3.1 Approximate Strongly Connected Components

As explained in chapter 3, the fact that link segments start and end at slightly different
times induces many strongly connected components of very low duration, that have
little interest. We therefore propose to consider the following approximation of the
stream graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸).

Let us first remind that 𝛿 is the minimal duration of a node or link segment used in
the stream graph construction, see Section 1.3. Given an approximation parameter
Δ < 𝛿 and any time 𝑡 in 𝑇 , we define ⌊𝑡⌋Δ as Δ · ⌊ 𝑡

Δ⌋ and ⌈𝑡⌉Δ as Δ · ⌈ 𝑡
Δ⌉. We then

define 𝑆Δ = (𝑇, 𝑉, 𝑊Δ, 𝐸Δ) where:

𝑊Δ =
⋃︁

([𝑏,𝑒],𝑣)∈𝑊

[⌈𝑏⌉Δ, ⌊𝑒⌋Δ]× {𝑣}

and
𝐸Δ =

⋃︁
([𝑏,𝑒],𝑢𝑣)∈𝐸

[⌈𝑏⌉Δ, ⌊𝑒⌋Δ]× {𝑢𝑣}

In other words, we replace each node segment ([𝑏, 𝑒], 𝑣) by a shorter node segment that

76

0 /105 /104 /103 /102 /10 /5

90K
82K

63K

20K
11K
600

Ru
nn

in
g

tim
e

(s
ec

on
ds

)
30M

24M

12.5M

5.8M
3.3M

Nu
m

be
r o

f S
CC

35M

19M

4M

2K

Nu
m

be
r o

f e
ve

nt
 ti

m
es

Running time
Number of SCC
Number of event times

Figure 4-15: Running time of SCC Direct, number of SCC and number of event times
in MawiLab, as a function of Δ (here, 𝛿 = 2𝑠).

starts at the first time after 𝑏 and ends at the last time before 𝑒 which are multiples
of Δ. We proceed similarly with link segments.

First notice that 𝑆Δ is an approximation of 𝑆, in the sense that 𝑆Δ may be computed
from 𝑆, but not the converse. In addition, each node or link segment in 𝑆 lasts at
least 𝛿, and since Δ is lower than 𝛿, no node or link segment disappears when 𝑆
is transformed into 𝑆Δ; only their starting and ending times change. Finally, 𝑆Δ is
included in 𝑆: 𝑊Δ ⊆ 𝑊 and 𝐸Δ ⊆ 𝐸. This has an important consequence: all
paths in 𝑆Δ are also paths in 𝑆, and so the approximation does not create any new
reachability relation. It therefore preserves key information contained in the original
stream, and we will show below that this information remains precise.

4.3.2 Experiments

Let us first observe the effect of the approximation, applied on the Mawilab dataset
(see section 1.3), on strongly connected components in Figure 4-15. The number of
components rapidly drops from its initial value of 30 millions (for Δ = 0, i.e. no
approximation) to less than 6 millions for Δ = 𝛿/103 = 0.002. Its decrease is much
slower when Δ grows further, which indicates that the stream does not anymore
contain an important number of irrelevant components due to the frontier effect.
As expected, this has a strong impact on computation time, which we also display;
it also very rapidly drops, from more than one day to less than one hour, making
computations on such large-scale datasets much easier.

Figure 4-16 presents the effect of Δ on size, duration and span distributions of strongly
connected components. Initially, without approximation, the vast majority of com-

77

0 /105 /104 /103 /102 /10 /5

101

102

103

104

Si
ze

 o
f S

CC

0 /105 /104 /103 /102 /10 /5

10 8

10 6

10 4

10 2

100

102

Du
ra

tio
n

of
 S

CC

0 /105 /104 /103 /102 /10 /5
10 9

10 8

10 7

10 6

10 5

10 4

10 3

Sp
an

 o
f S

CC

Figure 4-16: Box plots representing the distribution of the size (left), duration (mid-
dle) and span (right) of strongly connected components in Mawilab, for various values
of Δ (here, 𝛿 = 2𝑠). We indicate the mean, minimal, and maximal values with dots
connected by horizontal lines, as well as the median and percentiles with vertical
boxes.

ponents involve tens of thousands nodes. For Δ = 𝛿/104, we notice that while the
number of components has decreased by half only fifty percent of them involve more
than 30𝐾 nodes. Furthermore, as Δ increases, the number of components tends to be
stable (Figure 4-15) but the number of components involving more than 30𝐾 nodes
continues to drop. For Δ = 𝛿/103, for instance, there are 5.8𝑀 SCC and among
those, 760𝐾 involve more than 30𝐾 nodes. For Δ = 𝛿/102, there are 4.4𝑀 SCC but
among those, only 76𝐾 involve more than 30𝐾 nodes. This explains the differences
observed in the execution time of SCC Direct (Figure 4-15) and confirms that the
approximation eliminates most very short connected components, but not all: the
ones which are not due to the frontier effect are preserved, another wanted feature.

4.3.3 Application to Latency Approximation

Although the approximation above has a strong impact on the number of strongly
connected components, it preserves key information of the stream. We illustrate this
by considering one of the most widely studied features of these objects: the latency
between nodes [54, 112, 109, 47, 22]. Given two nodes 𝑢 and 𝑣 in a stream graph
𝑆 = (𝑇, 𝑉, 𝑊, 𝐸), the latency from 𝑢 to 𝑣 is the minimal time needed to reach 𝑣 from
𝑢 by following links of 𝑆 in a time-respecting manner, and taking into account node
dynamics, see [59] for details.

Notice that latencies in 𝑆Δ are necessarily larger than or equal to latencies in 𝑆, since
paths in 𝑆Δ are also paths in 𝑆. Therefore, latencies in 𝑆Δ are upper bounds of laten-
cies in 𝑆, and we show below that they are actually quite accurate approximations.

Figure 4-17 displays the average difference between latencies in 𝑆 and 𝑆Δ as a function
of Δ for the Mawi dataset: ∑︀

𝑢,𝑣∈𝑉,�̸�=𝑣 ℓΔ(𝑢, 𝑣)− ℓ(𝑢, 𝑣)
𝑛 · (𝑛− 1)

78

0 /105 /104 /103 /102 /10 /5
0

1

2

3

4

5

LR
M

SE

11 14

1767
115

687

1840

1

1.02

1.04

M
ea

n
St

re
tc

h

0

0.25

0.47

M
ea

n
Di

ffe
re

nc
e

LRMSE
Mean Stretch
Mean Difference
Nb of absent paths

Figure 4-17: Evolution of the LRMSE, the average difference between latencies and
the average latency stretch with respect to Δ in Mawilab. We indicate the number
of missing paths and represent it as a disk of area proportional to this number.

It also displays the average latency stretch:∑︀
𝑢,𝑣∈𝑉,𝑢 ̸=𝑣(ℓΔ(𝑢, 𝑣) + 1)/(ℓ(𝑢, 𝑣) + 1)

𝑛 · (𝑛− 1)

and the latency root mean square error (LRMSE):

LRMSE(𝑆, 𝑆Δ) =

⎯⎸⎸⎸⎷
∑︀

𝑢,𝑣∈𝑉,�̸�=𝑣
(ℓ(𝑢, 𝑣)− ℓΔ(𝑢, 𝑣))2

𝑛(𝑛− 1)

The figure also indicates the number of node pairs that were reachable in 𝑆 but
became unreachable in this approximation.

It clearly appears that latencies are not significantly impacted by approximation, thus
confirming that 𝑆Δ, despite its reduced number of strongly connected components,
captures key information available in 𝑆. More precisely, only 11 temporal paths
disappear for Δ = 𝛿/103 and 115 disappear for Δ = 𝛿/102, among a total number of
2, 888, 917. The over-estimate of latencies is very small, with a LRMSE of 0.51 and
1.61, respectively.

This has important consequences. For instance, one may compute latencies in 𝑆Δ from
its strongly connected components, which are much easier to compute and store than
the ones of 𝑆, and obtain this way fast and accurate upper bounds (or approximations)
of latencies in 𝑆, like we did here for the Mawilab dataset.

79

4.4 Discussion

We proposed three alternative representations for stream graphs, each one serving its
own purpose. The condensation allows computing reachability in linear time. The
stable DAG permits the design of a parallel framework to efficiently compute stream
graph properties. Our approximation scheme, the Δ-approximation, enables faster
computations while preserving key properties of the original data.

In the future we hope to provide other data representations with different applica-
tions, specifically toward community detection in stream graphs. As discussed, our
representations also leave room for improvement. The condensation could be com-
bined to a labelling scheme to further speed up queries. It could also be adapted
to support different kinds of queries, by computing additional information and store
it as condensation nodes labels for instance. The stable DAG could be represented
differently, where a stable connected component would be defined relatively to the
ones preceding it in the DAG. One may also push our dataset approximation scheme
further, for instance by discarding node pairs with many (necessarily short) link seg-
ments between them, or nodes that are rarely present. Such approximations may
lead to the emergence of strongly connected components with much larger span, and
would open the way to coarse-grain description of stream graphs similar to the bow-tie
model for the web [20].

80

5 Temporal Paths

Contributions

• The first single source one-pass polynomial time algorithm computing all
kinds of optimal temporal paths in stream graphs: the L-algorithm

• Condensation based linear time algorithms for the computation of fore-
most and fastest paths

In this chapter, we focus on paths, a major concept in graph theory. Path algorithms
and associated challenges are widely addressed in the scientific literature, see for
instance [29, 26, 13] and [31]. Applications are numerous and of critical importance,
such as computing the shortest path from an entity to another in a communication
network [76], or in a transportation network [70].

Path notions in temporal or dynamic networks were proposed in [12, 47, 112, 109].
Temporal paths algorithms have been described in [109, 112, 78, 21, 96]. However, as
mentioned in Chapter 1, the stream graph modelisation differs from existing temporal
network formalisms. Consequently, different notions of stream graph paths have been
proposed in [59] and arising algorithmic challenges have yet to be solved. Some
path algorithms for link streams were proposed in [89] but their complexities were
prohibitive. They cannot be applied on stream graphs with tens of millions of links.

In this chapter several strategies are evaluated in order to propose efficient solutions
for temporal path problems in stream graphs. Many real world complex systems
with a temporal dimension are conducive to a stream graph modelisation (see Chap-
ter 1). Designing efficient stream graph algorithms for path computation is of major
importance in view of the many concepts stemming from it. These concepts, such as
betweenness centrality, among many others, have led to important advances in graph
theory. Consequently, the work presented in this chapter could facilitate the analysis
many real world temporal graphs.

Firstly, after defining stream graph paths (section 5.1), we present different types
of optimal temporal path problems occurring in stream graphs (section 5.2). Then

81

we propose a single procedure, the L-Algorithm (section 5.3), to efficiently compute
every kind of temporal path. We also introduce algorithms using the condensation
of a stream graph, defined in chapter 4, to further reduce complexities of temporal
paths computations (section 5.4). Finally, we evaluate our algorithms on 14 real world
datasets (section 5.5).

5.1 Definitions

The following definitions of stream graph paths were introduced in [59].

Definition 5.1.1. In a stream graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸) a path 𝑃 from (𝛼, 𝑢) ∈ 𝑊
to (𝜔, 𝑣) ∈ 𝑊 is a sequence (𝑡0, 𝑢0, 𝑣0), (𝑡1, 𝑢1, 𝑣1), . . . , (𝑡𝑘, 𝑢𝑘, 𝑣𝑘) of elements of
𝑇 × 𝑉 × 𝑉 such that 𝑢0 = 𝑢, 𝑣𝑘 = 𝑣, 𝑡0 ≥ 𝛼, 𝑡𝑘 ≤ 𝜔, for all 𝑖, 𝑡𝑖 ≤ 𝑡𝑖+1, 𝑣𝑖 = 𝑢𝑖+1
and (𝑡𝑖, 𝑢𝑖𝑣𝑖) ∈ 𝐸, [𝛼, 𝑡0]× 𝑢 ⊆ 𝑊 , [𝑡𝑘, 𝜔]× 𝑣 ⊆ 𝑊 , and for all 𝑖, [𝑡𝑖, 𝑡𝑖+1]× 𝑣𝑖 ⊆ 𝑊 .
The term source refers to an element 𝑢 ∈ 𝑉 , a node which is the beginning of a path
(𝑢 = 𝑢0). A temporal source refers to an element (𝑡, 𝑢) ∈ 𝑊 , a temporal node which
is the beginning of path ([𝑡, 𝑡0]×𝑢 ⊆ 𝑊 and 𝑢 = 𝑢0). The start, refers to the effective
beginning of a path i.e. the temporal node (𝑡, 𝑢) ∈ 𝑊 such as 𝑡 = 𝑡0 and 𝑢 = 𝑢0; 𝑡 is
called the start time.
Respectively, regarding the ending of a path, we use the terms: destination, temporal
destination, arrival and arrival time.

For example, in Figure 5-1 (middle), 𝑃 = (4, 𝐴, 𝐵), (6, 𝐵, 𝐶), (7, 𝐶, 𝐸), (7, 𝐸, 𝐹) is a
path from source 𝐴 to destination 𝐹 . The start is (4, 𝐴) and the arrival is (7, 𝐹); the
start time and arrival time are equal to 4 and 7. In Figure 5-1 (top), 𝑃 = (3, 𝐴, 𝐵),
(6, 𝐵, 𝐶), (7, 𝐶, 𝐸), (7, 𝐸, 𝐹) is a path from the temporal source (0, 𝐴) to the temporal
destination (7, 𝐹): the start is (3, 𝐴) and the arrival is (7, 𝐹).

In a given stream graph there may exist an infinite number of temporal paths
from a temporal source to a temporal destination. For instance, in Figure 1-1, (𝑡, 𝐴, 𝐵),
(4, 𝐵, 𝐸), (7, 𝐸, 𝐹) is a valid path from (0, 𝐴) to (7, 𝐹) for any time 𝑡 ∈ [0, 4]. These
observations are also valid if we consider nodes as source or destination instead of
temporal source or temporal destination.

5.2 Optimal Temporal Paths Problems

The addition of a temporal dimension leads to two paths properties, one relating
to the length of a path, the number of steps in a path - as in graph theory - and
another one relating to the duration of a path, the time it takes to travel the entire
path. Given a temporal path 𝑃 , we define three types of path characteristics: one
for the start time from the source, denoted by 𝒮(𝑃), another for the arrival time
to the destination, 𝒜(𝑃), and a third one for the length of the path, 𝒟(𝑃). The
duration of a temporal path is determined by 𝒜(𝑃) − 𝒮(𝑃). For instance, given
a path 𝑃 = (𝑡0, 𝑢, 𝑣0), . . . , (𝑡𝑘, 𝑢𝑘, 𝑣) from (𝛼, 𝑢) to (𝜔, 𝑣), we have: 𝒜(𝑃) = 𝑡𝑘,

82

𝒮(𝑃) = 𝑡0, its duration is equal to 𝑡𝑘 − 𝑡0 and its length to 𝒟(𝑃) = 𝑘 + 1.

Given a source, 𝑢, and a destination, 𝑣, an optimal temporal path problem
consists in finding paths that minimize a function ℱ of 𝒮, 𝒜, 𝒟 over the set of
existing temporal paths from 𝑢 to 𝑣, denoted by 𝒫𝑢𝑣. We call such a function a path
objective function.

The number of optimal temporal paths between from a source (or a tem-
poral source) to a destination (or a temporal destination) can be infinite.
For instance, in Figure 1-1, (𝑡, 𝐴, 𝐵), (4, 𝐵, 𝐸) is a shortest path from (0, 𝐴) to (4, 𝐸)
for any time 𝑡 ∈ [0, 4]. Thus we focus on the features of such paths and we do
not try to enumerate them.

The notion of temporal path raises several algorithmic questions. One question is to
compute the quickest way to reach a destination (or a temporal destination) from a
temporal source. This leads to the following definition:

Definition 5.2.1. The time to reach (𝑡, 𝑣) from 𝑢 at time 𝛼, denoted by 𝒯𝛼(𝑢, (𝑡, 𝑣)),
is defined as follows: 𝒯𝛼(𝑢, (𝑡, 𝑣)) = 𝜔 − 𝛼 where 𝜔 ≤ 𝑡 is the minimal value such
that there is a path from (𝛼, 𝑢) to (𝜔, 𝑣) in 𝑆 and [𝜔, 𝑡] ⊂ 𝑇𝑣. Such a path is called a
foremost path from (𝛼, 𝑢) to (𝑡, 𝑣).
Similarly, 𝑇𝛼(𝑢, 𝑣) is the time to reach 𝑣 from (𝛼, 𝑢), without a time constraint on
the destination node 𝑣; the associated path is a foremost path from (𝛼, 𝑢) to 𝑣.
A foremost path problem consists in finding a path that minimize ℱ𝐹 𝑜𝑃 = 𝒜.

For instance, on Figure 5-1 (top), 𝑃 = (3, 𝐴, 𝐵), (6, 𝐵, 𝐶), (7, 𝐶, 𝐸), (7, 𝐸, 𝐹) is a
foremost path from (0, 𝐴) to 𝐹 and the corresponding time to reach is 𝒯0(𝐴, 𝐹) = 7.

One may also minimize the duration of a path:

Definition 5.2.2. A path from (𝛼, 𝑢) to (𝜔, 𝑣) is called a fastest path if it has min-
imal duration, and this duration is called the latency from (𝛼, 𝑢) to (𝜔, 𝑣), denoted
by ℓ((𝛼, 𝑢), (𝜔, 𝑣)). The latency ℓ(𝑢, 𝑣) is the minimal latency for all 𝛼, 𝜔 ∈ 𝑇 :

ℓ(𝑢, 𝑣) = 𝑚𝑖𝑛
𝛼∈𝑇,𝜔∈𝑇

(ℓ(𝛼, 𝑢), (𝜔, 𝑣))).

A path that has duration ℓ(𝑢, 𝑣) is a fastest path from 𝑢 to 𝑣.
A fastest path problem consists in finding a path that minimize ℱ𝐹 𝑃 = 𝒜− 𝒮.

For instance, on Figure 5-1 (middle), 𝑃 = (4, 𝐴, 𝐵), (6, 𝐵, 𝐶), (7, 𝐶, 𝐸), (7, 𝐸, 𝐹) is
a fastest path from 𝐴 to 𝐹 and the corresponding latency is ℓ(𝐴, 𝐹) = 3.

As in a static graph, we may want to minimize the number of steps to reach a node
from another:

Definition 5.2.3. A path from (𝛼, 𝑢) to (𝜔, 𝑣) is called a shortest path if it has
minimal length, and this length is called the distance from (𝛼, 𝑢) to (𝜔, 𝑣), denoted

83

by 𝛿((𝛼, 𝑢), (𝜔, 𝑣)). The distance 𝛿(𝑢, 𝑣) is the minimal distance for all 𝛼, 𝜔 ∈ 𝑇 :

𝛿(𝑢, 𝑣) = 𝑚𝑖𝑛
𝛼∈𝑇,𝜔∈𝑇

(𝛿((𝛼, 𝑢), (𝜔, 𝑣))).

A path that has length 𝛿(𝑢, 𝑣) is a shortest path from 𝑢 to 𝑣.
A shortest path problem consists in finding a path that minimize ℱ𝑆𝑃 = 𝒟.

For instance, on Figure 5-1 (bottom) 𝑃 = (4, 𝐴, 𝐵), (6, 𝐵, 𝐶), (9, 𝐶, 𝐷) is a shortest
path from 𝐴 to 𝐷 and the corresponding distance is 𝛿(𝐴, 𝐷) = 3.

In section 5.3 we will propose an algorithm solving the foremost path (FoP), shortest
path (SP) and fastest path (FP) problems. We recall here the according objective
functions:

ℱ𝐹 𝑜𝑃 = 𝒜

ℱ𝑆𝑃 = 𝒟

ℱ𝐹 𝑃 = 𝒜− 𝒮

5.2.1 Multi-criteria optimal temporal paths

Combinations of these definitions make it possible to obtain multi-criteria optimal
temporal paths: paths that minimize two criteria among length, duration and
arrival time. We focus on shortest foremost path (foremost paths with minimal
length, called SFoP), fastest shortest paths (shortest paths with minimal duration,
called FSP) and shortest fastest paths (fastest paths with minimal length, called
SFP).
The result of such functions can be a vector rather than a number. For instance,
given any connected nodes 𝑢, 𝑣 ∈ 𝑉 and a path 𝑃 ∈ 𝒫𝑢𝑣, we can define ℱ(𝑃) =
(𝒮(𝑃),𝒜(𝑃),𝒟(𝑃)). To compare two paths 𝑃 and 𝑃 ′ we compare the first component
of ℱ(𝑃) and ℱ(𝑃 ′); if their values are equal, we compare the values of the second
component of ℱ(𝑃) and ℱ(𝑃 ′) and so on.
The corresponding optimal temporal path problems consist in minimizing:

ℱ𝑆𝐹 𝑜𝑃 (·) = (𝒜(·),𝒟(·))

ℱ𝐹 𝑆𝑃 (·) = (𝒟(·),𝒜(·)− 𝒮(·))

ℱ𝑆𝐹 𝑃 (·) = (𝒜(·)− 𝒮(·),𝒟(·))

On Figure 5-2, 𝑃 = (2, 𝐴, 𝐵), (4, 𝐵, 𝐸), (7, 𝐸, 𝐹) (top) is a shortest foremost path
from (0, 𝐴) to 𝐹 of length 3 and duration 7, 𝑃 = (4, 𝐴, 𝐵), (4, 𝐵, 𝐸), (7, 𝐸, 𝐹)
(middle) is a shortest fastest path from 𝐴 to 𝐹 of length 3 and duration 3 and
𝑃 = (4, 𝐴, 𝐵), (4, 𝐵, 𝐸), (8, 𝐸, 𝐷) (bottom) is a fastest shortest path from 𝐴 to 𝐷 of
length 3 and duration 4.

Remark 5.2.1. Many other multi-criteria optimal temporal paths problems and their
according objective functions can be defined. For instance, we can consider fastest

84

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

N
o

d
es

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

N
o

d
es

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

N
o

d
es

Figure 5-1: Examples of optimal temporal paths (top to bottom): foremost path from
(0, 𝐴) to 𝐹 , fastest path from 𝐴 to 𝐹 , shortest path from 𝐴 to 𝐷.

85

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

N
o

d
es

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

N
o

d
es

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

D

E

F

N
o

d
es

Figure 5-2: Examples of multi-criteria optimal temporal paths (top to bottom): Short-
est Foremost Path (0, 𝐴) to 𝐹 , Shortest Fastest Path 𝐴 to 𝐹 , Fastest Shortest Path
𝐴 to 𝐷.

86

foremost paths (foremost paths with minimal duration, called FFoP) and the according
path problem which consist in minimizing ℱ𝐹 𝐹 𝑜𝑃 (·) = (𝒜(·),𝒜(·)−𝒮(·)). For the sake
of clarity, int the following, we will focus on the paths problems defined previously.

5.2.2 Dominated Paths

The main difficulty in computing optimal temporal paths in stream graphs lies in
the fact that, contrary to static graphs, a subpath of an optimal temporal path
may not be an optimal temporal path.

For instance, in figure 5-1 (top) the subpath 𝑃 ′ = (3, 𝐴, 𝐵), (6, 𝐵, 𝐶), (7, 𝐶, 𝐸) of
the foremost path 𝑃 = (3, 𝐴, 𝐵), (6, 𝐵, 𝐶), (7, 𝐶, 𝐸), (7, 𝐸, 𝐹) is not a foremost path
from (0, 𝐴) to 𝐸. Indeed 𝐸 can be reached from (0, 𝐴) at instant 4 with the following
foremost path: (3, 𝐴, 𝐵), (4, 𝐵, 𝐸).

As a result we cannot use the same strategy as in Dijkstra or Floyd-Warshall algo-
rithms: we cannot extend optimal temporal paths to obtain optimal tem-
poral paths. Therefore we focus on temporal paths that can be extended to obtain
optimal temporal paths - whether or not they are optimal temporal paths themselves.

Definition 5.2.4. Given two temporal paths 𝑃, 𝑃 ′ ∈ 𝒫𝑢𝑣, 𝑃 and 𝑃 are swappable
if and only if: ∃𝑤 ∈ 𝑉 ∖ {𝑣}, ∃𝑅 ∈ 𝒫𝑣𝑤 s.t 𝑃 ⊕𝑅 ∈ 𝒫𝑢𝑤 and 𝑃 ′ ⊕𝑅 ∈ 𝒫𝑢𝑤.
Where ⊕ is the path concatenation operator.

If two paths 𝑃 and 𝑃 ′ are swappable, it means that both these paths can be extended
by the same path. There exists at least one path 𝑂 such that 𝑃 and 𝑃 ′ are both
prefixes of 𝑂.

Remark 5.2.2. Given two paths 𝑃 , 𝑃 ′ ∈ 𝒫𝑢𝑣 if [𝑚𝑖𝑛(𝒜(𝑃), 𝒜(𝑃 ′)), 𝑚𝑎𝑥(𝒜(𝑃),
𝒜(𝑃 ′))] ̸⊆ 𝑇𝑣 then 𝑃 and 𝑃 ′ cannot be swappable.

In the stream graph 𝑆 of Figure 5-1, let us consider 𝑃 ′ = (2, 𝐷, 𝐸), 𝑃 = (8, 𝐷, 𝐸)
and 𝑅 = (9, 𝐸, 𝐹), 𝑃 and 𝑃 ′ are swappable. Indeed, 𝑃 ⊕ 𝑅 = (2, 𝐷, 𝐸), (9, 𝐸, 𝐹)
and 𝑃 ′ ⊕ 𝑅 = (8, 𝐷, 𝐸), (9, 𝐸, 𝐹) both exist in 𝑆. On the other hand, 𝑃 = (2, 𝐸, 𝐹)
and 𝑃 ′ = (7, 𝐸, 𝐹) are not swappable, as [2, 7] ̸⊆ 𝑇𝐹 .

Definition 5.2.5. Given ℱ , a path objective function, and two temporal paths 𝑃, 𝑃 ′ ∈
𝒫𝑢𝑣, 𝑃 ℱ-dominates 𝑃 ′ if and only if:
𝑃 and 𝑃 ′ are swappable and ∀𝑤 ∈ 𝑉 ∖ {𝑣}, ∀𝑅 ∈ 𝒫𝑣𝑤 s.t 𝑃 ⊕𝑅 ∈ 𝒫𝑢𝑤 and 𝑃 ′⊕𝑅 ∈
𝒫𝑢𝑤, we have ℱ(𝑃 ⊕𝑅) ≤ ℱ(𝑃 ′ ⊕𝑅).

For instance, in Figure 5-1, the path from 𝐴 to 𝐸 for the objective function ℱ𝐹 𝑃 =
𝒜 − 𝒮 for fastest paths: 𝑃 ′ = (2, 𝐴, 𝐵), (4, 𝐵, 𝐸) is ℱ𝐹 𝑃 -dominated by the path
𝑃 = (4, 𝐴, 𝐵), (4, 𝐵, 𝐸). Indeed, if we consider any node 𝑤 ∈ 𝑉 and any path
𝑅 ∈ 𝒫𝐸𝑤 s.t 𝒮(𝑅) ≥ 4, we would have ℱ𝐹 𝑃 (𝑃 ⊕𝑅) < ℱ𝐹 𝑃 (𝑃 ′⊕𝑅) as 𝒮(𝑃) > 𝒮(𝑃 ′).

In other words, a dominated path may not be extended to obtain an optimal temporal
path because it can be replaced (swapped) by another path resulting in a better, or
equivalent, solution regarding the minimisation of ℱ .

87

Nevertheless a dominated path can also be an optimal temporal path. In
Figure 5-1, 𝑃 ′ = (7, 𝐵, 𝐶), (7, 𝐶, 𝐸) is a fastest path from 𝐵 to 𝐸 and 𝑃 ′ is ℱ𝐹 𝑃 -
dominated by the path 𝑃 = (8, 𝐵, 𝐶), (9, 𝐶, 𝐷), (9, 𝐶, 𝐷). In addition, we can notice
that 𝑃 is not a fastest path, an optimal temporal path can be dominated by a non-
optimal temporal path.

Definition 5.2.6. Given ℱ a path objective function, 𝒬 is a domination function
if and only if: ∀𝑢, 𝑣 ∈ 𝑉 , ∀𝑃, 𝑃 ′ ∈ 𝒫𝑢𝑣 s.t 𝑃 and 𝑃 ′ are swappable and 𝒬(𝑃) ≤ 𝒬(𝑃 ′)
⇐⇒ 𝑃 ℱ-dominates 𝑃 ′.

For each type of optimal temporal paths problem, we will define a domination function
𝒬 of 𝒮,𝒜,𝒟.

Lemma 5.2.1. (Fastest Path) 𝒬𝐹 𝑃 = −𝒮 is a domination function for the fastest
path problem.

Proof. =⇒ Suppose that 𝑃 and 𝑃 ′ ∈ 𝒫𝑢𝑣 are swappable, that 𝒬𝐹 𝑃 (𝑃) ≤ 𝒬𝐹 𝑃 (𝑃 ′)
and that there exists 𝑤 ∈ 𝑉 ∖ {𝑣} and 𝑅 ∈ 𝒫𝑣𝑤, such that:

ℱ𝐹 𝑃 (𝑃 ⊕𝑅) > ℱ𝐹 𝑃 (𝑃 ′ ⊕𝑅)

𝒜(𝑃 ⊕𝑅)− 𝒮(𝑃 ⊕𝑅) > 𝒜(𝑃 ′ ⊕𝑅)− 𝒮(𝑃 ′ ⊕𝑅)

As 𝒮(𝑃) ≥ 𝒮(𝑃 ′), we have 𝒮(𝑃 ⊕𝑅) ≥ 𝒮(𝑃 ′⊕𝑅), then: ℱ𝐹 𝑃 (𝑃 ⊕𝑅) ≤ ℱ𝐹 𝑃 (𝑃 ′⊕𝑅)
which is a contradiction.

⇐= Suppose that 𝑃 ℱ𝐹 𝑃 -dominates 𝑃 ′ since 𝑃 and 𝑃 ′ are swappable, there exists
𝑤 ∈ 𝑉 ∖ {𝑣} and at least a path 𝑅 ∈ 𝒫𝑢𝑤 such that ℱ𝐹 𝑃 (𝑃 ⊕𝑅) ≤ ℱ𝐹 𝑃 (𝑃 ′ ⊕𝑅).
As 𝒜(𝑃 ⊕ 𝑅) = 𝒜(𝑃 ′ ⊕ 𝑅) we must have 𝒮(𝑃) ≥ 𝒮(𝑃 ′) which implies 𝒬𝐹 𝑃 (𝑃) ≤
𝒬𝐹 𝑃 (𝑃 ′).

Lemma 5.2.2. (Shortest Path) A domination function for the shortest path prob-
lem is 𝒬𝑆𝑃 = 𝒟.

Proof. =⇒ Suppose that 𝑃 and 𝑃 ′ ∈ 𝒫𝑢𝑣 are swappable, that 𝒬𝑆𝑃 (𝑃) ≤ 𝒬𝑆𝑃 (𝑃 ′)
and that there exists 𝑤 ∈ 𝑉 ∖ {𝑣} and 𝑅 ∈ 𝒫𝑣𝑤 such that:

ℱ𝑆𝑃 (𝑃 ⊕𝑅) > ℱ𝑆𝑃 (𝑃 ′ ⊕𝑅)

𝒟(𝑃 ⊕𝑅) > 𝒟(𝑃 ′ ⊕𝑅)

As 𝒟(𝑃) ≤ 𝒟(𝑃 ′), we have 𝒟(𝑃⊕𝑅) ≤ 𝒟(𝑃 ′⊕𝑅), then: ℱ𝑆𝑃 (𝑃⊕𝑅) ≤ ℱ𝑆𝑃 (𝑃 ′⊕𝑅)
which is a contradiction.

⇐= Suppose that 𝑃 ℱ𝑆𝑃 -dominates 𝑃 ′ since 𝑃 and 𝑃 ′ are swappable, there exists
𝑤 ∈ 𝑉 ∖ {𝑣} and at least a path 𝑅 ∈ 𝒫𝑢𝑤 such that ℱ𝑆𝑃 (𝑃 ⊕ 𝑅) ≤ ℱ𝑆𝑃 (𝑃 ′ ⊕ 𝑅),
i.e. 𝒟(𝑃 ⊕𝑅) ≤ 𝒟(𝑃 ′ ⊕𝑅). Therefore we must have 𝒟(𝑃) ≤ 𝒟(𝑃 ′), i.e. 𝒬𝑆𝑃 (𝑃) ≤
𝒬𝑆𝑃 (𝑃 ′).

88

Lemma 5.2.3. (Shortest Foremost Path) 𝒬𝑆𝐹 𝑜𝑃 = 𝒟 is a domination function
for the shortest foremost path problem.

Proof. =⇒ Suppose that 𝑃 and 𝑃 ′ ∈ 𝒫𝑢𝑣 are swappable, that 𝒬𝑆𝐹 𝑜𝑃 (𝑃) ≤
𝒬𝑆𝐹 𝑜𝑃 (𝑃 ′) and that there exists 𝑤 ∈ 𝑉 ∖ {𝑣} and 𝑅 ∈ 𝒫𝑣𝑤 such that:

ℱ𝑆𝐹 𝑜𝑃 (𝑃 ⊕𝑅) > ℱ𝑆𝐹 𝑜𝑃 (𝑃 ′ ⊕𝑅)

We have 𝒜(𝑃 ⊕ 𝑅) = 𝒜(𝑃 ′ ⊕ 𝑅) and 𝒟(𝑃 ⊕ 𝑅) ≤ 𝒟(𝑃 ′ ⊕ 𝑅) as 𝒟(𝑃) ≤ 𝒟(𝑃 ′) ,
then: ℱ𝑆𝐹 𝑜𝑃 (𝑃 ⊕𝑅) ≤ ℱ𝑆𝐹 𝑜𝑃 (𝑃 ′ ⊕𝑅) which is a contradiction.

⇐= Suppose that 𝑃 ℱ𝑆𝐹 𝑜𝑃 -dominates 𝑃 ′ since 𝑃 and 𝑃 ′ are swappable, there exists
𝑤 ∈ 𝑉 ∖ {𝑣} and at least a path 𝑅 ∈ 𝒫𝑢𝑤 such that ℱ𝑆𝐹 𝑜𝑃 (𝑃 ⊕𝑅) ≤ ℱ𝑆𝐹 𝑜𝑃 (𝑃 ′⊕𝑅).
As 𝒜(𝑃 ⊕𝑅) = 𝒜(𝑃 ′⊕𝑅) and 𝒟(𝑃 ⊕𝑅) ≤ 𝒟(𝑃 ′⊕𝑅) we must have 𝒟(𝑃) ≤ 𝒟(𝑃 ′)
which implies 𝒬𝑆𝐹 𝑜𝑃 (𝑃) ≤ 𝒬𝑆𝐹 𝑜𝑃 (𝑃 ′).

Lemma 5.2.4. (Fastest Shortest Path) 𝒬𝐹 𝑆𝑃 (·) = (𝒟(·),−𝒮(·)) is a domination
function for the fastest shortest path problem.

Proof. =⇒ Suppose that 𝑃 and 𝑃 ′ ∈ 𝒫𝑢𝑣 are swappable, that 𝒬𝐹 𝑆𝑃 (𝑃) ≤ 𝒬𝐹 𝑆𝑃 (𝑃 ′)
and that there exists 𝑤 ∈ 𝑉 ∖ {𝑣} and 𝑅 ∈ 𝒫𝑣𝑤 such that:

ℱ𝐹 𝑆𝑃 (𝑃 ⊕𝑅) > ℱ𝐹 𝑆𝑃 (𝑃 ′ ⊕𝑅)

If𝒟(𝑃) < 𝒟(𝑃 ′), we have𝒟(𝑃⊕𝑅) < 𝒟(𝑃 ′⊕𝑅), then: ℱ𝐹 𝑆𝑃 (𝑃⊕𝑅) < ℱ𝐹 𝑆𝑃 (𝑃 ′⊕𝑅).
If 𝒟(𝑃) = 𝒟(𝑃 ′) and 𝒮(𝑃) ≥ 𝒮(𝑃 ′), we have 𝒟(𝑃 ⊕𝑅) = 𝒟(𝑃 ′⊕𝑅) and 𝒮(𝑃 ⊕𝑅) ≥
𝒮(𝑃 ′⊕𝑅), then: ℱ𝐹 𝑆𝑃 (𝑃⊕𝑅) ≤ ℱ𝐹 𝑆𝑃 (𝑃 ′⊕𝑅). In both cases we have a contradiction.

⇐= Suppose that 𝑃 ℱ𝐹 𝑆𝑃 -dominates 𝑃 ′ since 𝑃 and 𝑃 ′ are swappable, there exists
𝑤 ∈ 𝑉 ∖ {𝑣} and at least a path 𝑅 ∈ 𝒫𝑣𝑤 such that ℱ𝐹 𝑆𝑃 (𝑃 ⊕𝑅) ≤ ℱ𝐹 𝑆𝑃 (𝑃 ′ ⊕𝑅).
If 𝒟(𝑃 ⊕𝑅) < 𝒟(𝑃 ′⊕𝑅) then we have 𝒟(𝑃) < 𝒟(𝑃 ′). If 𝒟(𝑃 ⊕𝑅) = 𝒟(𝑃 ′⊕𝑅) and
𝒮(𝑃 ⊕𝑅) ≥ 𝒮(𝑃 ′ ⊕𝑅) then we have 𝒮(𝑃) ≥ 𝒮(𝑃 ′). Both cases implies 𝒬𝐹 𝑆𝑃 (𝑃) ≤
𝒬𝐹 𝑆𝑃 (𝑃 ′).

Lemma 5.2.5. (Shortest Fastest Path) 𝒬𝑆𝐹 𝑃 (·) = (−𝒮(·),𝒟(·)) is a domination
function for the shortest fastest path problem.

Proof. =⇒ Suppose that 𝑃 and 𝑃 ′ ∈ 𝒫𝑢𝑣 are swappable, that 𝒬𝑆𝐹 𝑃 (𝑃) ≤ 𝒬𝑆𝐹 𝑃 (𝑃 ′)
and that there exists 𝑤 ∈ 𝑉 ∖ {𝑣} and 𝑅 ∈ 𝒫𝑣𝑤 such that:

ℱ𝑆𝐹 𝑃 (𝑃 ⊕𝑅) > ℱ𝑆𝐹 𝑃 (𝑃 ′ ⊕𝑅)

If 𝒮(𝑃) > 𝒮(𝑃 ′), we have 𝒮(𝑃⊕𝑅) > 𝒮(𝑃 ′⊕𝑅), then: ℱ𝑆𝐹 𝑃 (𝑃⊕𝑅) < ℱ𝑆𝐹 𝑃 (𝑃 ′⊕𝑅).
If 𝒮(𝑃) = 𝒮(𝑃 ′) and 𝒟(𝑃) ≤ 𝒟(𝑃 ′) we have 𝒮(𝑃 ⊕𝑅) = 𝒮(𝑃 ′⊕𝑅) and 𝒟(𝑃 ⊕𝑅) ≤
𝒮(𝑃 ′⊕𝑅) then: ℱ𝑆𝐹 𝑃 (𝑃⊕𝑅) < ℱ𝑆𝐹 𝑃 (𝑃 ′⊕𝑅). In both cases we have a contradiction.

89

⇐= Suppose that 𝑃 ℱ𝑆𝐹 𝑃 -dominates 𝑃 ′, since 𝑃 and 𝑃 ′ are swappable, there exists
𝑤 ∈ 𝑉 ∖ {𝑣} and at least a path 𝑅 ∈ 𝒫𝑢𝑤 such that ℱ𝑆𝐹 𝑃 (𝑃 ⊕𝑅) ≤ ℱ𝑆𝐹 𝑃 (𝑃 ′ ⊕𝑅).
If 𝒮(𝑃 ⊕ 𝑅) > 𝒮(𝑃 ′ ⊕ 𝑅) then we have 𝒮(𝑃) > 𝒮(𝑃 ′). If 𝒮(𝑃 ⊕ 𝑅) = 𝒮(𝑃 ′ ⊕ 𝑅)
and 𝒟(𝑃 ⊕ 𝑅) ≤ 𝒟(𝑃 ′ ⊕ 𝑅) then we have 𝒟(𝑃) ≤ 𝒟(𝑃 ′). Both cases implies
𝒬𝑆𝐹 𝑃 (𝑃) ≤ 𝒬𝑆𝐹 𝑃 (𝑃 ′).

Remark 5.2.3. A domination function for the foremost path problem assigns the
same value (priority) to all paths. Suppose that 𝑃 and 𝑃 ′ ∈ 𝒫𝑢𝑣 are swappable and
that there exists 𝑤 ∈ 𝑉 ∖{𝑣} and 𝑅 ∈ 𝒫𝑣𝑤 then, as 𝒜(𝑃 ⊕𝑅) = 𝒜(𝑃 ′⊕𝑅) we always
have ℱ𝐹 𝑜𝑃 (𝑃 ⊕ 𝑅) = ℱ𝐹 𝑜𝑃 (𝑃 ′ ⊕ 𝑅). As long as two paths are swappable, one can be
replaced by the other without impacting the value of the objective function, ℱ𝐹 𝑜𝑃 , for
any extended path. Thus, 𝒬𝐹 𝑜𝑝(·) = 0 is a valid domination function for the foremost
path problem.

Remark 5.2.4. In definition 5.2.5 it is necessary to have ℱ(𝑃 ⊕ 𝑅) ≤ ℱ(𝑃 ′ ⊕ 𝑅).
Indeed, if we had ℱ(𝑃 ⊕ 𝑅) < ℱ(𝑃 ′ ⊕ 𝑅), considering ℱ𝐹 𝑜𝑃 = 𝒜, as ∀𝑅 ∈ 𝒫𝑣𝑤,
𝒜(𝑃 ⊕𝑅) = 𝒜(𝑃 ′ ⊕𝑅), no path would dominates another.

Consequently, in definition 5.2.6, it is necessary to have 𝒬(𝑃) ≤ 𝒬(𝑃 ′). Indeed,
considering 𝒬𝐹 𝑜𝑃 = 0 and two paths 𝑃 and 𝑃 ′ such that 𝒜(𝑃) = 𝒜(𝑃 ′), we have:
𝑃ℱ𝐹 𝑜𝑃 -dominates 𝑃 ′ ⇐⇒ 𝒬𝐹 𝑜𝑃 (𝑃) = 𝒬𝐹 𝑜𝑝(𝑃 ′).

5.3 L-Algorithm

In the following we propose a new algorithm, the L-Algorithm, inspired by the algo-
rithms introduced in [109], covering continuous interactions as well as nodes dynamics,
in order to solve stream graph optimum temporal path problems.

As mentioned, the number of optimal temporal paths from a node (or a temporal
node) to a node (or a temporal node) can be infinite: we solely focus on their proper-
ties. A path 𝑃 from 𝑢 (or (𝑡, 𝑢)) to 𝑣 (or (𝑡, 𝑣)) can be represented by a triplet (𝑠, 𝑎, 𝑑)
where 𝑠 = 𝒮(𝑃) is the starting time from 𝑢 (or (𝑡, 𝑢)), 𝑎 = 𝒜(𝑃) is the arrival time
in 𝑣 (or (𝑡, 𝑣)) and 𝑑 = 𝒟(𝑃) the corresponding length. Path objective functions,
ℱ , and domination functions, 𝒬 are functions of 𝒮, 𝒜 and 𝒟: we can apply them,
without a loss of generality, on triplets (𝑠, 𝑎, 𝑑).

Given a set of temporal links (𝑏0, 𝑒0, 𝑢0, 𝑣0), . . . , (𝑏𝑛, 𝑒𝑛, 𝑢𝑛, 𝑣𝑛), we represent the
temporal paths {(𝑡0, 𝑢0, 𝑣0), . . . , (𝑡𝑛, 𝑢𝑛, 𝑣𝑛)} with 𝑡0 ∈ [𝑏0, 𝑒0], . . . , 𝑡𝑛 ∈ [𝑏𝑛, 𝑒𝑛] that
go through these links by a canonical triplet: the one with the maximal starting time
and minimal arrival time:

(𝑚𝑖𝑛
0≤𝑗≤𝑛

𝑒𝑗, 𝑚𝑎𝑥
0≤𝑗≤𝑛

𝑏𝑗, 𝑛 + 1)

For instance, in the stream graph of Figure 5-1, the set of temporal paths going
through the temporal links (0, 4, 𝐴, 𝐵), (6, 8, 𝐵, 𝐶), (9, 10, 𝐶, 𝐷) corresponds to the
canonical triplet (4, 9, 3). Such a triplet may correspond to an absurd path 𝑃 , with
𝒮(𝑃) > 𝒜(𝑃), but only triplets corresponding to existing paths will be outputted, as

90

we will show in the following. Notice, moreover, that all paths that optimize one of
our domination functions correspond to such a triplet.

Our L-Algorithm computes the path optimal with regard to a given objective function
- and a corresponding domination function - from a single source (𝑡, 𝑥). For all 𝑢 ∈ 𝑉 ,
the following data structures are maintained:

• 𝐿𝑢: a triplet (𝑠𝑢, 𝑎𝑢, 𝑑𝑢) representing a temporal path, that may be extended
to form an optimal temporal path, from the source to 𝑢. 𝑠𝑢 correspond to
the starting time from the source, 𝑎𝑢 to the arrival time in 𝑢 and 𝑑𝑢 to the
distance from the source to 𝑢; this is the path that minimizes the domination
function among all paths arriving at 𝑢 no later than the current event time, on
𝑢’s current node segment.

• 𝐴𝑢: a temporal adjacency list, containing the current neighbors of 𝑢 as well as
the end time of their interactions; 𝐴 is updated as links appear and disappear.

• 𝑅𝑢: a triplet (𝑠𝑢, 𝑎𝑢, 𝑑𝑢), currently minimizing ℱ , the path objective function.

For each event time 𝑐, better paths than those previously observed may be caused
either by the appearance of a new link, or by the fact that they start from 𝑥 at time
𝑐. Therefore, we use a procedure inspired by Dijkstra’s algorithm. This algorithm
maintains a set of links (𝑒, 𝑤, 𝑦) such that: 𝑤 is an observed node, 𝑦 is one of its
neighbours at the current event time, and 𝑒 is the latest possible starting time for a
path from (𝑡, 𝑥) to (𝑐, 𝑤). Each path is associated with a priority which is the value
of the domination function for the path built by adding the link (𝑐, 𝑤, 𝑦) to the best
observed path from (𝑡, 𝑥) to (𝑐, 𝑤). When the algorithm terminates we return 𝑅𝑢 for
all 𝑢 ∈ 𝑉 .

Example

As an example we apply the L-Algorithm to the shortest path problem, with the
objective function ℱ𝑆𝑃 = 𝒟 and the domination function 𝒬𝑆𝑃 = 𝒟. We compute the
distances from the temporal source (0, 𝐴) to every other node in the stream graph
of Figure 5-1. We will denote by (+, 𝑡0, 𝑡1, 𝑋, 𝑌) the arrival of a link from 𝑡0 to 𝑡1
between nodes 𝑋 and 𝑌 . The values stored in 𝐴, 𝐼, 𝐿 and 𝑅 at each event time are
detailed in Table 5.1. We do not show the steps regarding nodes and links departures
(lines 24-27) as they do not raise any particular difficulties.

• 𝐿𝐴 is initialised with the canonical triplet (5, 0, 0) and 𝑅𝐴 with the triplet
(0, 0, 0) (lines 5 and 8).

• (+, 0, 1, 𝐶, 𝐷), (+, 0, 3, 𝐸, 𝐹), (+, 0, 4, 𝐴, 𝐵): the temporal adjacency list is up-
dated, (1, 𝐶) is added to 𝐴𝐷, (1, 𝐷) to 𝐴𝐶 , (3, 𝐸) to 𝐴𝐹 , (3, 𝐹) to 𝐴𝐸 and (4, 𝐵)
is added to 𝐴𝐴 and (4, 𝐴) to 𝐴𝐵 (line 13). As 𝐶, 𝐷, 𝐸 and 𝐹 aren’t connected
with 𝐴 at time 0: 𝐿𝐶 , 𝐿𝐷, 𝐿𝐸 and 𝐿𝐹 remain empty (lines 14, 17).
𝐿𝐴 is not empty: (4, 𝐴, 𝐵) is added to 𝐼 with priority 1 (𝒬𝑆𝑃 (𝐿𝐴)+1 = (𝑑𝐴+1 =
1) (lines 14-19). During Algorithm 3 the node 𝐴 is marked as visited (line 6).

91

Algorithm 2 Given a stream graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸), return features (length, start-
ing and arrival times) of optimal temporal paths, according to a path objective func-
tion ℱ and a domination function 𝒬, from a temporal source node (𝑡, 𝑥) ∈ 𝑊 to all
nodes in 𝑉 .

1: Def: 𝐿_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝑆, (𝑡, 𝑥),ℱ ,𝒬)
2: Input: (𝑡, 𝑥) ∈ 𝑊 a temporal source, 𝐸* the ordered set of event times, ℱ an

objective function and 𝒬 a domination function, both corresponding to the type
of optimal temporal path.

3: Output: Features (starting time, arrival time, length) of optimal temporal paths
from (𝑡, 𝑥) to all nodes in 𝑉 .

4: if ∃[𝛽𝑥, 𝜃𝑥] ∈ 𝑇𝑥 s.t. 𝑡 ∈ [𝛽𝑥, 𝜃𝑥] then
5: 𝐿𝑥 = [(𝜃𝑥, 𝑡, 0)]
6: else return ◁ No path can start at (𝑡, 𝑥)
7: 𝐿𝑣 ← ∅ for all 𝑣 ∈ 𝑉 ∖ {𝑥}
8: 𝑅𝑥 = (𝑡, 𝑡, 0) and 𝑅𝑣 ← (𝑖𝑛𝑓, 𝑖𝑛𝑓, 𝑖𝑛𝑓) for all 𝑣 ∈ 𝑉 ∖ {𝑥}
9: Initialize 𝐴𝑣 to ∅ for all 𝑣 ∈ 𝑉

10: for 𝑐 in Π do
11: 𝐼 ← ∅ ◁ Priority Queue
12: for all link arrivals (𝑐, 𝑒, 𝑢, 𝑣) do
13: Insert (𝑒, 𝑣) in 𝐴𝑢 and (𝑒, 𝑢) in 𝐴𝑣

14: if 𝐿𝑢 ̸= ∅ then ◁ 𝑢 connected with the source
15: (𝑠𝑢, 𝑎𝑢, 𝑑𝑢) = 𝐿𝑢

16: Add (𝑒, 𝑢, 𝑣) to 𝐼 with priority 𝒬((𝑚𝑖𝑛(𝑠𝑢, 𝑐), 𝑐, 𝑑𝑢 + 1)).
17: if 𝐿𝑣 ̸= ∅ then ◁ 𝑣 connected with the source
18: (𝑠𝑣, 𝑎𝑣, 𝑑𝑣) = 𝐿𝑣

19: Add (𝑒, 𝑣, 𝑢) to 𝐼 with priority 𝒬((𝑚𝑖𝑛(𝑠𝑣, 𝑐), 𝑐, 𝑑𝑣 + 1)).
20: if 𝐴𝑥 ̸= ∅ then
21: For all (𝜏, 𝑤) in 𝐴𝑥 add (𝜏, 𝑥, 𝑤) to 𝐼 with priority 𝒬((𝑚𝑖𝑛(𝑠𝑥, 𝑒), 𝑐, 𝑑𝑥 +1))
22: if 𝐼 ̸= ∅ then
23: 𝐿 = 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝑈𝑝𝑑𝑎𝑡𝑒(𝑐, 𝐿, 𝐼, 𝐴,ℱ ,𝒬)
24: for all link departures (𝑐, 𝑢, 𝑣) do
25: Remove (𝑒, 𝑣) from 𝐴𝑢 and (𝑒, 𝑢) from 𝐴𝑣

26: for all node departures (𝑏, 𝑐, 𝑢) do
27: 𝐿𝑢 ← ∅

return 𝑅𝑣 for all 𝑣 ∈ 𝑉

92

Events A I L R
Initialisation 𝐿𝐴 = (5, 0, 0) 𝑅𝐴 = (0, 0, 0)
(+, 0, 1, 𝐶, 𝐷)
(+, 0, 3, 𝐸, 𝐹)
(+, 0, 4, 𝐴, 𝐵)

𝐴𝐷 = [(1, 𝐶)]
𝐴𝐶 = [(1, 𝐷)]
𝐴𝐹 = [(3, 𝐸)]
𝐴𝐸 = [(3, 𝐹)]
𝐴𝐴 = [(4, 𝐵)]
𝐴𝐵 = [(4, 𝐴)]

[(1, (4, 𝐴, 𝐵))] 𝐿𝐵 = (4, 0, 1) 𝑅𝐵 = (0, 0, 1)

(+, 2, 3, 𝐷, 𝐸) 𝐴𝐷 = [(3, 𝐸)]
𝐴𝐸 = [(3, 𝐹),
(3, 𝐷)]

(+, 4, 4, 𝐵, 𝐸) 𝐴𝐵 = [(4, 𝐴),
(4, 𝐸)] 𝐴𝐸 =
[(4, 𝐵)]

[(2, (4, 𝐵, 𝐸))] 𝐿𝐸 = (4, 4, 2) 𝑅𝐸 = (4, 4, 2)

(+, 6, 8, 𝐵, 𝐶) 𝐴𝐵 = [(8, 𝐶)]
𝐴𝐶 = [(8, 𝐵)]

[(2, (8, 𝐵, 𝐶))] 𝐿𝐶 = (4, 6, 2) 𝑅𝐶 = (4, 6, 2)

(+, 7, 10, 𝐸, 𝐹)
(+, 7, 10, 𝐷, 𝐸)
(+, 7, 8, 𝐴, 𝐵)

𝐴𝐸 =
[(10, 𝐷),
(10, 𝐹)]
𝐴𝐹 = [(10, 𝐸)]
𝐴𝐷 =
[(10, 𝐸)]
𝐴𝐴 = [(8, 𝐵)]
𝐴𝐵 = [(8, 𝐴),
(8, 𝐶)]

[(2, (8, 𝐵, 𝐴)),
(3, (10, 𝐸, 𝐹)),
(3, (10, 𝐸, 𝐷))]

𝐿𝐴 = (4, 7, 2)
𝐿𝐹 = (4, 7, 3)
𝐿𝐷 = (4, 7, 3)

𝑅𝐹 = (4, 7, 3)
𝑅𝐷 = (4, 7, 3)

(+, 8, 10, 𝐷, 𝐹) 𝐴𝐷 =
[(10, 𝐸),
(10, 𝐹)]
𝐴𝐹 = [(10, 𝐸),
(10, 𝐷)]

[(2, (10, 𝐸, 𝐷)),
(2, (10, 𝐸, 𝐹))]

Termination Return 𝑅

Table 5.1: Example of L-Algorithm for shortest paths (ℱ𝑆𝑃 and 𝒬𝑆𝑃).

93

Algorithm 3 Update 𝐿 for all nodes in 𝐴

1: Def: 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎_𝑈𝑝𝑑𝑎𝑡𝑒(𝑐, 𝐿, 𝐼, 𝐴,ℱ ,𝒬)
2: Input: 𝑐 is the current event time, 𝑡 is the starting time from the source, 𝐿 the

structure containing current paths, 𝐴 the temporal adjacency list of the stream
graph, 𝐼 a priority queue, ℱ a path objective function and 𝒬 a domination func-
tion.

3: while 𝐼 is not empty do
4: (𝑒, 𝑤, 𝑦) = 𝐼.𝑝𝑜𝑝()
5: (𝑠𝑤, 𝑎𝑤, 𝑑𝑤) = 𝐿𝑤

6: Mark 𝑤 as visited
7: 𝑠𝑦, 𝑎𝑦, 𝑑𝑦 = 𝑚𝑖𝑛(𝑒, 𝑠𝑤), 𝑐, 𝑑𝑤 + 1
8: if ℱ((𝑚𝑖𝑛(𝑠𝑦, 𝑎𝑦), 𝑎𝑦, 𝑑𝑦)) < ℱ(𝑅𝑦) then
9: 𝑅𝑦 = (𝑚𝑖𝑛(𝑠𝑦, 𝑎𝑦), 𝑎𝑦, 𝑑𝑦)

10: if 𝐿𝑦 ̸= ∅ then
11: (𝑠′

𝑦, 𝑎′
𝑦, 𝑑′

𝑦) = 𝐿𝑦

12: if 𝐿𝑦 = ∅ or 𝒬((𝑚𝑖𝑛(𝑠𝑦, 𝑐), 𝑎𝑦, 𝑑𝑦)) < 𝒬((𝑚𝑖𝑛(𝑠′
𝑦, 𝑐), 𝑎′

𝑦, 𝑑′
𝑦)) then

13: 𝐿𝑦 = (𝑠𝑦, 𝑎𝑦, 𝑑𝑦)
14: for (𝑒, ℎ) in 𝐴𝑦 do
15: if ℎ is not marked as visited then
16: Add (𝑒, 𝑦, ℎ) to 𝐼 with priority 𝒬((𝑚𝑖𝑛(𝑠𝑦, 𝑐), 𝑐, 𝑑𝑦 + 1))

return 𝐿

𝐿𝐵 is updated with 𝑠𝐵 = 𝑚𝑖𝑛(4, 𝑠𝐴) = 4, 𝑎𝐵 = 𝑚𝑖𝑛(0, 0) = 0, 𝑑𝐵 = 𝑑𝐴 + 1 = 1
(line 7 and 12-13). (𝑚𝑖𝑛(𝑠𝐵, 𝑎𝐵), 𝑎𝐵, 𝑑𝐵) = (0, 0, 1) is added to 𝑅𝐵 (line 8-9).
As 𝐴 is already marked as visited, (4, 𝐵, 𝐴) is not added to 𝐼 (lines 14-15). 𝐼
is empty, proceed to the next link.

• (+, 2, 3, 𝐷, 𝐸): 𝐴𝐷 and 𝐴𝐸 are updated. 𝐿𝐷 and 𝐿𝐸 are empty, proceed to the
next link.

• (+, 4, 4, 𝐵, 𝐸): 𝐴𝐵 and 𝐴𝐸 are updated. 𝐿𝐵 is not empty, (4, 𝐵, 𝐸) is added
to 𝐼 with priority 2 (𝒬𝑆𝑃 (𝐿𝐵) + 1 = (𝑑𝑏 + 1 = 2). 𝐿𝐸 is updated with 𝑠𝐸 =
𝑚𝑖𝑛(4, 𝑠𝐵) = 4, 𝑎𝐸 = 4, 𝑑𝐸 = 2 and 𝑅𝐸 = (4, 4, 2). (4, 𝐵, 𝐴) is added to 𝐼. 𝐿𝐴

and 𝑅𝐴 are not updated, as 𝒬𝑆𝑃 ((4, 0, 0)) < 𝒬𝑆𝑃 ((4, 4, 3)) and ℱ𝑆𝑃 ((4, 0, 0)) <
ℱ𝑆𝑃 ((4, 4, 3)).

• (+, 6, 8, 𝐵, 𝐶): 𝐴𝐵 and 𝐴𝐶 are updated. 𝐿𝐵 ̸= ∅, (8, 𝐵, 𝐶) is added to 𝐼 and 𝐵
is marked as visited. 𝐿𝐶 is updated with 𝑠𝐶 = 𝑚𝑖𝑛(8, 𝑠𝐵) = 4, 𝑎𝐶 = 6, 𝑑𝐶 = 2
and 𝑅𝐶 = (4, 6, 2). 𝐵 is already marked as visited, 𝐼 is empty.

• (+, 7, 10, 𝐸, 𝐹), (7, 10, 𝐷, 𝐸), (7, 8, 𝐴, 𝐵): 𝐴𝐸 and 𝐴𝐹 are updated. 𝐿𝐸 ̸= ∅:
(10, 𝐸, 𝐹) and (10, 𝐸, 𝐷) are added to 𝐼 with priority 3. 𝐿𝐵 ̸= ∅: (8, 𝐵, 𝐴) is
added to 𝐼 with priority 2. 𝐿𝐷, 𝐿𝐹 , 𝐿𝐴 are updated accordingly. 𝑅𝐹 and 𝑅𝐷

are also updated whereas 𝑅𝐴 is not (ℱ𝑆𝑃 ((4, 0, 0)) < ℱ𝑆𝑃 ((4, 7, 8))).

• (+, 8, 10, 𝐷, 𝐹): 𝐴𝐷 and 𝐴𝐸 are updated. (10, 𝐷, 𝐹) and (10, 𝐹, 𝐷) are added

94

to 𝐼 with priority 4. 𝐿𝐷,𝐿𝐹 , 𝑅𝐷 and 𝑅𝐹 are not updated (𝒬𝑆𝑃 ((4, 4, 2)) <
𝒬𝑆𝑃 ((4, 8, 3)) and ℱ𝑆𝑃 ((4, 4, 2)) < ℱ𝑆𝑃 ((4, 8, 3))).

• The Algorithm return the distances from the source 𝐴: 𝑑𝐴 = 0, 𝑑𝐵 = 1, 𝑑𝐶 = 2,
𝑑𝐷 = 3, 𝑑𝐸 = 2 and 𝑑𝐹 = 3.

In Straph, the default implementation of optimal temporal paths is the single source
L-Algorithm. Below we provide a snippet of code computing optimal temporal paths:

1 S = stream_graph ()
2 source = ’A’ # or (5,’A ’) for a temporal source node
3 S. distances (source) # Shortest Paths
4 S. latencies () # Fastest Paths
5 S. times_to_reach () # Foremost Paths
6 S. times_to_reach_and_lengths (source) # Shortest Foremost Paths
7 S. distances_and_durations (source) # Fastest Shortest Paths
8 S. latencies_and_lengths (source) # Shortest Fastest Paths
9

10 # A given path can be specified by inputting a destination
11 destination = ’B’ # or (10,’B ’) for a temporal destination node
12 S. distances (source , destination)

Proofs and Complexities

Theorem 5.3.1. Given a stream graph 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸), a path objective function ℱ
and an associated domination function 𝒬, the L-Algorithm computes optimal temporal
paths properties, according to ℱ , from a temporal source node (𝑡, 𝑥) ∈ 𝑊 to every
other nodes 𝑣 ∈ 𝑉 in 𝑂(Ω ·𝑚𝑙𝑜𝑔(𝑚) + 𝑀 + 𝑁) time and 𝑂(𝑛 + 𝑚) space.

Proof. Correctness The loop invariant for Algorithm 2 is the following: at the end
of one loop iteration, for time 𝑐 and for each vertex 𝑣 we have computed:

• the triplet corresponding to the optimal path from (𝑡, 𝑥) to (𝑐, 𝑣), stored in 𝑅𝑣;

• the triplet corresponding to the path that minimizes 𝑄 among all paths from
(𝑡, 𝑥) to 𝑣’s current node segment, stored in 𝐿𝑣.

For a given time 𝑐, one iteration of the loop of Algorithm 2 adds to the current graph
all the links that start at 𝑐. As all links that disappear are removed at the end of
the loop, this means that the current graph 𝐴 contains exactly the links that exist at
time 𝑐.

We will now show that Algorithm 3 currently computes the values of 𝐿 and 𝑅 for time
𝑐, which will show that the loop invariant for Algorithm 2 holds. Notice that values
of 𝐿𝑣 and/or 𝑅𝑣 can change for node 𝑣 only if a better path than those observed
before for 𝑣’s current node segment arrives at time 𝑐 on node 𝑣 (or if a path arrives
at 𝑣 and no path was observed before). This can happen for one of two reasons:

• either the path starts from 𝑥 at time 𝑐, or

95

• the path arrives to some node 𝑤 before time 𝑐, then goes from 𝑤 to 𝑣 by going
through one or several links at time 𝑐.

Algorithm 3 will then explore all paths involving one of these links and possibly
several other links at time 𝑡. It starts with 𝐼 containing the links starting at time 𝑐
(in both directions), and the links from 𝑥 existing at time 𝑐. Therefore, for any vertex
𝑣, the first link occurring at time 𝑐 on the path from (𝑡, 𝑥) to (𝑐, 𝑣) is in 𝐼 .

Let 𝐶 be the set of nodes 𝑣 such that either 𝑣 is the origin of a link placed in 𝐼
in Algorithm 2, or such that the value of 𝐿𝑣 must be updated, i.e. there is a path
from (𝑡, 𝑥) to (𝑐, 𝑣) that has a better value of the domination function, 𝒬, than any
path from (𝑡, 𝑥) to (𝑐′, 𝑣), where 𝑐′ is the event time before 𝑐. We will show that the
following loop invariant holds: (1) at the beginning iteration, 𝐼 contains all starting
links, together with links of which one extremity is in 𝐶 and has been observed, minus
the links that have already been dealt with; (2) the priority associated to each link
(𝑒, 𝑤, 𝑦) corresponds to the quality of the path going from (𝑡, 𝑥) to (𝑐, 𝑤) currently
stored in 𝐿𝑤, to which the link (𝑐, 𝑤, 𝑦) has been added.

This is true at the beginning of the first iteration. In each iteration, one link (𝑒, 𝑤, 𝑦)
is removed from 𝐼 and considered. This is the link with minimum priority, i.e. it
corresponds to the path (triplet) with minimum 𝑄 value among all paths that are
yet to explore. We compare the domination function of the corresponding path to 𝑦
to the triplet stored in 𝐿𝑦. If this path is better than one of them, we upgrade the
corresponding values. Moreover, if the domination function value for 𝑦 is updated this
may correspond to better paths to neighbours ℎ of 𝑦, therefore we add links (𝑒, 𝑦, ℎ)
to 𝐼. It is easy to see that this preserves the loop invariant.

This, together with the observation that all nodes in 𝐶 have necessarily a neighbour
that is in 𝐶 or that corresponds to a link initially in 𝐼, shows that values of 𝐿 are
correctly computed for each event time.

Finally, by definition of a domination function, we know that it is only necessary
to store the path that minimizes the domination function in order to obtain the
longer paths that will be optimal for the objective function. This, together with the
observation that 𝑅 is correctly updated each time a path is explored, completes the
proof of correctness.

(Complexity) Algorithm 3 is in 𝑂(𝑚𝑙𝑜𝑔(𝑚)). There can be up to 𝑂(𝑚) elements
in 𝐼 as each link is visited only once. Inserting (or popping) an element in (of) 𝐼, a
priority queue, is in 𝑂(𝑙𝑜𝑔(𝑚)) (lines 4 and 16). All executions of line 14 take a total
time in 𝑂(𝑚) as there can be up to 𝑚 ongoing temporal links at a given time.
The initialisation of algorithm 2 takes 𝑂(𝑛) (line 4-9) then the algorithm proceeds
to scan every link arrivals and departures as well as node departures in 𝑆: 𝑀 + 𝑁
elements (lines 12,24 and 26). Inserting or removing an element in 𝐴 is in 𝑂(𝑛) (lines
13 and 25). Inserting links in 𝐼 is in 𝑂(𝑚𝑙𝑜𝑔(𝑚)) (lines 16,19,21). The "Dijkstra’s
procedure", algorithm 3 (line 23), will be called at most Ω times (lines 10 and 23).
Other steps are in 𝑂(1). Thus a total time complexity in 𝑂(Ω ·𝑚𝑙𝑜𝑔(𝑚) + 𝑀 + 𝑁).

96

The space complexity resides in the size of 𝐴, 𝐼, 𝐿 and 𝑅. The size of 𝐴 and 𝐼 are in
𝑂(𝑚) and those of 𝐿 and 𝑅 in 𝑂(𝑛). Thus a space complexity in 𝑂(𝑛 + 𝑚).

Observations and Remarks

Observation 5.3.1. The L-Algorithm can be adapted to compute optimal temporal
paths from a source node 𝑥 ∈ 𝑉 (rather than a temporal node (𝑡, 𝑥)) to all the other
nodes in 𝑉 . We only need to modify the initialisation of 𝐿𝑥 (lines 4 and 5): ∀[𝛽𝑥, 𝜃𝑥] ∈
𝑇𝑥 we add (𝛽𝑥, 𝜃𝑥, 0) to 𝐿𝑥 and insert any of these elements in 𝑅𝑥. This modification
of the initialisation is in 𝑂(𝑁) and does not impact the time and space complexities
of L-Algorithm.

Observation 5.3.2. Let us consider a stream graph, 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸), equivalent to
a static graph, i.e. where 𝑇 = {𝑡}. Then the L-Algorithm can be assimilated to a
version of Dijkstra’s algorithm where elements of the priority queue are links instead
of nodes. Indeed, the only parameter subject to change, in the triplets of 𝐿, would be
the distance 𝑑 (as 𝑎 = 𝑠 = 𝑡). Only shortest paths are considered and the complexity
is reduced to 𝑂(𝑚𝑙𝑜𝑔(𝑚) + 𝑛) as Ω = 1, 𝑛 = 𝑁 and 𝑚 = 𝑀 .

Observation 5.3.3. Let us consider temporal nodes continuously present, 𝑛 = 𝑁 ,
and temporal links without duration, as in the case studied by Wu et al. [109]: ∀𝑙 ∈
𝐸*, 𝑙 = (𝑏, 𝑏, 𝑢, 𝑣). Let us apply the L-Algorithm on such a stream graph. We can
distinguish two cases:
Link arrivals are distinct, 𝑀 ≤ Ω, and at any instant 𝑡 ∈ 𝑇 the induced static
graph 𝐺𝑡 contains at most two nodes and one link. Each temporal link is processed
independently, we do not need 𝐼 to be a priority queue as 𝐼 contains at most one
element. The time complexity is reduced to 𝑂(𝑀 + 𝑛). Otherwise, the algorithm of
Wu et al. [109] cannot be applied on a stream graph with simultaneous link arrivals.
Indeed, Wu et al. make the assumption that the traversal time of each temporal link
is strictly positive: if there exists simultaneous temporal links only one of them will
be present in a temporal path as such links cannot be concatenated to one another.

Remark 5.3.1. The following example shows why it is necessary to add ongoing links
containing the source (lines 20-21, algorithm 2). Let us consider the stream graph in
Figure 5-3, and apply the L-Algorithm for the shortest fastest path problem, ℱ𝑆𝐹 𝑃 =
(𝒜(·)−𝒮(·),𝒟(·)), 𝒬𝑆𝐹 𝑃 = (−𝒮(·),𝒟(·)), on the source node 𝑋. The shortest fastest
paths from 𝑋 to 𝐸, 𝐹 and 𝐺 are, respectively, 𝑃𝐸 = (4, 𝑋, 𝐷), (4, 𝐷, 𝐸), 𝑃𝐹 =
(6, 𝑋, 𝐶), (6, 𝐶, 𝐷), (6, 𝐷, 𝐹) and 𝑃𝐺 = (8, 𝑋, 𝐵), (8, 𝐵, 𝐴), (8, 𝐴, 𝐷), (8, 𝐷, 𝐺).

At instant 𝑡 = 3 the algorithm has already browsed (0, 4, 𝑋, 𝐷), (0, 8, 𝑋, 𝐵), (1, 6, 𝑋, 𝐶),
(0, 8, 𝐵, 𝐴), (2, 6, 𝐷, 𝐶) and (3, 8, , 𝐴, 𝐷). 𝐿𝐷 contains the canonical triplet (4, 0, 1)
corresponding to the path from 𝑋 to 𝐷 taking the link (0, 4, 𝑋, 𝐷). This triplet will be
used at time 4 to obtain the shortest fastest path to 𝐸 - more precisely the canonical
triplet corresponding to this path: (𝒜(𝑃𝐸), 𝒮(𝑃𝐸), 𝒟(𝑃𝐸)) = (4, 4, 2).

However, if triplets are only updated upon link arrivals without adding ongoing links

97

0 1 2 3 4 5 6 7 8 9 10
t

A

B

C

X

D

E

F

G

N
o

d
es

Figure 5-3: Illustration of shortest fastest paths complexity

containing the source, 𝑋, then the shortest fastest paths from 𝑋 to nodes 𝐹 and 𝐺 will
use the link (0, 4, 𝑋, 𝐷) as 𝐿𝐷 = (4, 0, 1). The obtained triplets will be 𝑅𝐹 = (4, 6, 2)
and 𝑅𝐺 = (4, 8, 2) and the corresponding paths will have a duration of 2 and 4. As 𝑃𝐹

and 𝑃𝐺 both have a null duration, these triplets do not correspond to shortest fastest
paths. Therefore the need to consider ongoing links containing the source at times 6
and 8 to correctly maintain the canonical triplet in 𝐿𝐷 (respectively 𝐿𝐷 = (6, 6, 2) at
time 6 and 𝐿𝐷 = (8, 8, 3) at time 8).

5.4 Condensation Based Algorithms

In this section, we show that we can use connectivity properties of the condensa-
tion representation of a stream graph, introduced in chapter 4, to design efficient
algorithms for the foremost and fastest path problems.

5.4.1 Time to reach and foremost paths

In the following we introduce condensation based algorithms to compute time to reach
and foremost path. These algorithms exploit the particular structure and properties
of the condensation of a stream graph, a directed acyclic graph. They derive from
classical algorithms such as breadth first search (BFS). Nevertheless their implemen-

98

tations can be difficult and have their subtleties. Hence, in the following, we will
detail several steps relating to pitfalls or technical improvements.

In Chapter 4 we have shown that paths in a stream graph can be represented by
paths in its condensation, 𝐺C . Instead of returning a foremost path in 𝑆 between
(𝑡, 𝑢) and 𝑣 (or (𝑡′, 𝑣)) our algorithm will return a corresponding path in 𝐺C between
𝐶(𝑡, 𝑢) and 𝐶(𝑣) (or 𝐶(𝑡′, 𝑣)).

Time to Reach and Arbitrary Foremost Path:

Algorithm 4 computes the time to reach a node 𝑣 from a temporal node (𝑡, 𝑢) as
well as the corresponding condensation path in 𝐺C . The algorithm explores 𝐺C in a
BFS manner. It starts at the component containing the temporal source node. Then,
whenever the BFS reaches a component containing the destination node, (𝐼, 𝑋) ∈
C such that 𝑣 ∈ 𝑋, the current path is stored as well as the potential time to
reach 𝑚𝑖𝑛(𝐼)− 𝑡 as a possible solution. When the algorithm cannot explore further,
having visited all the components containing the destination node, we output the
condensation path, a foremost path, as well as the time to reach.

This algorithm can easily be improved: the current time to reach can be used as a
threshold. Indeed if the (potential) time to reach corresponding to a condensation
path exceeds a previous solution, this path cannot be a foremost path. This threshold
will discard any longer path and prevents the unnecessary exploration of several parts
of 𝐺C . We present a detailed pseudo-code, including this improvement, in algorithm 4.

Remark 5.4.1. A depth first search (DFS) could have been used rather than a BFS
without altering the algorithm’s complexity. However, as a stream graph can span
a long time period, we do not want to explore the condensation in its temporal di-
mension, its "length" in the graphical representation (as with a DFS) but rather in
its topological dimension, its "height" in the graphical representation (as in a BFS).
A BFS will, in priority, explore nodes with an earlier begin time, which a DFS will
not. In doing so, we can set a tight threshold in a quicker way, resulting in a tangible
amelioration in practice.

Remark 5.4.2. If we want to adapt Algorithm 4 to compute 𝑇𝑡(𝑢, (𝑡′, 𝑣)) and a fore-
most path from 𝐶(𝑡, 𝑢) to 𝐶(𝑡′, 𝑣) instead of 𝑇𝑡(𝑢, 𝑣) and a foremost path from 𝐶(𝑡, 𝑢)
to 𝐶(𝑣); we have to add the following condition in the test line 12: we need to assert
that [𝑏, 𝑡′] ∈ 𝑇𝑣.

Theorem 5.4.1. Algorithm 4 computes the time to reach 𝑣 ∈ 𝑉 from a given
𝐶(𝑡, 𝑢) ∈ C and a corresponding foremost path in 𝐺C in 𝑂(𝑚𝑐 + 𝑛𝑐). Its space
complexity is 𝑂(𝑛𝑐 · 𝑛 + 𝑚𝑐).

Proof. The algorithm browses 𝐺C starting from 𝐶(𝑡, 𝑢). We suppose that there exists
a solution. The test line 12 ensures the algorithm to find 𝐶(𝑡′, 𝑣) ∈ 𝐶(𝑣), such that
𝑡′ − 𝑡 is the time to reach 𝑇𝑡(𝑢, 𝑣). If there is no solution the algorithm will visit all
components (line 9 and 20) and output an empty path (line 5) and a time to reach

99

Algorithm 4 Time to Reach 𝑇𝑡(𝑢, 𝑣) and a Foremost Path from 𝐶(𝑡, 𝑢) to 𝐶(𝑣) in
𝐺C .

1: Def: 𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ(𝐺C , 𝑡, 𝐶(𝑡, 𝑢), 𝑣)
2: Input: The condensation 𝐺C of a stream 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸), 𝑡 ∈ 𝑇 , 𝐶(𝑡, 𝑢) ∈ C

and 𝑣 ∈ 𝑉 .
3: Output: A foremost path from 𝐶(𝑡, 𝑢) to 𝐶(𝑣) in 𝐺C (empty if unreachable)

and 𝑇𝑡(𝑢, 𝑣) (infinite if unreachable).
4: Mark all components in C as unseen
5: 𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ← ∅
6: 𝑡𝑡𝑟 =∞ ◁ Initial time to reach
7: 𝐶𝑢 = 𝐶(𝑡, 𝑢) ◁ The component containing the source (𝑡, 𝑢)
8: 𝑝𝑎𝑡ℎ_𝑞𝑢𝑒𝑢𝑒 = [[𝐶𝑢]] ◁ Queue containing current paths
9: while 𝑝𝑎𝑡ℎ_𝑞𝑢𝑒𝑢𝑒 is not empty do

10: 𝑃 = 𝑝𝑎𝑡ℎ_𝑞𝑢𝑒𝑢𝑒.pop()
11: Let 𝐶 = ([𝑏, 𝑒], 𝑋) be the last element of 𝑃
12: if 𝑣 ∈ 𝑋and 𝑏 < 𝑡𝑡𝑟 + 𝑡 then
13: 𝑡𝑡𝑟 = 𝑚𝑎𝑥(𝑏, 𝑡)− 𝑡
14: 𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ = 𝑃

15: for all 𝐶 ′ following 𝐶 in 𝐺C do
16: ([𝑏′, 𝑒′], 𝑋 ′) = 𝐶 ′

17: if 𝐶 ′ is not seen and 𝑏′ < 𝑡𝑡𝑟 + 𝑡 then
18: Add 𝐶 ′ to the current path 𝑃 to form 𝑃 ′

19: Mark 𝐶 ′ as seen.
20: Add 𝑃 ′ to 𝑝𝑎𝑡ℎ_𝑞𝑢𝑒𝑢𝑒.

return 𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ, 𝑡𝑡𝑟

100

equal to infinity (line 6).
The time complexity of this algorithm is one of a BFS: 𝑂(𝑚𝑐+𝑛𝑐) with 𝑛𝑐 the number
of nodes of 𝐺C and 𝑚𝑐 its number of links. The space complexity is in 𝑂(𝑛𝑐 ·𝑛 + 𝑚𝑐)
as each condensation node, a strongly connected component, can contain up to 𝑛
nodes and the maximal length of a path in 𝐺C is bounded by 𝑚𝑐.

We present a second algorithm to compute the time to reach 𝒯𝑡(𝑢, 𝑣). It consists
in a traversal of the condensation of 𝑆 in a "Dijkstra" manner. The main difference
with Algorithm 4 is that we keep a time ordering on the nodes of 𝐺C , in order, when
we choose a neighbour, to pick 𝐶 = (𝐼, 𝑋) ∈ C such that 𝑚𝑖𝑛(𝐼) is as small as
possible. The motivation, to choose a time ordering, can be seen as a way to set a
tight threshold the fastest as possible. Indeed, if the algorithm explores in priority
components that ends the earliest, it will probably find a foremost path whenever it
reaches a component containing the destination node.

Algorithm 5 Time to reach 𝑣 from a given temporal node (𝑡, 𝑢).
1: Def: 𝑡𝑖𝑚𝑒_𝑡𝑜_𝑟𝑒𝑎𝑐ℎ(𝐺C , 𝑡, 𝐶(𝑡, 𝑢), 𝑣)
2: Input: The condensation 𝐺C of a stream 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸), 𝑡 ∈ 𝑇 (𝑡, 𝑢) ∈ 𝑊 and

𝑣 ∈ 𝑉 .
3: Output: The time to reach 𝑇𝑡(𝑢, 𝑣) (infinity if unreachable).
4: Set 𝑄 to empty priority queue
5: Mark all components as unseen
6: ([𝑏, 𝑒], 𝑋) = 𝐶(𝑡, 𝑢) ◁ The component containing the source
7: 𝑄.add(([𝑏, 𝑒], 𝑋)) with key 𝑡
8: while Q is not empty do
9: Pop 𝐶, the element with the smallest key, from 𝑄

10: ([𝑏, 𝑒], 𝑋) = 𝐶
11: if 𝑣 ∈ 𝑋 then return 𝑚𝑎𝑥(𝑏, 𝑡)− 𝑡

12: for all 𝐶 ′ following 𝐶 do
13: if 𝐶 ′ is not seen then
14: ([𝑏′, 𝑒′], 𝑋 ′) = 𝐶 ′

15: Mark 𝐶 ′ as seen
16: Q.add(𝐶 ′) with key 𝑏′

return 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦

Theorem 5.4.2. Algorithm 5 computes the time needed to reach a given node 𝑣 from
a given 𝐶(𝑡, 𝑢) ∈ C in time 𝑂(𝑚𝑐𝑙𝑜𝑔(𝑚𝑐)+𝑛𝑐). Its space complexity is 𝑂(𝑛𝑐 ·𝑛+𝑚𝑐).

Proof. The proof is the similar of the one of Algorithm 4. The time complexity is
a bit different: the log factor comes from the use of a priority queue. The space
complexity is identical.

Remark 5.4.3. In order to support path queries directly from stream nodes we need
to build the following index: the index associating a stream node to the connected

101

components containing it in 𝐺C , ℐ : 𝑢 → 𝐶(𝑢). The initialisations of algorithms 4
and 5 only necessitate to browse every component in 𝐶(𝑢) - in order to find 𝐶(𝑡, 𝑢)
- which can be done in 𝑂(𝑛𝑐). The space complexity of such an index is in 𝑂(𝑛𝑐 ·
𝑛). Hence, we can support queries with stream nodes as inputs without altering the
complexities of the considered algorithms.

Count and enumerate all Foremost Paths:

Computing all foremost paths in the condensation graph is a reduction of a classical
problem, which is the enumeration of all possible paths between a source - component
containing the temporal source node - and a destination - component containing the
destination node - in a graph. This problem is NP-Hard [81].

In a directed acyclic graph this problem becomes simpler. We can count the number
of foremost paths using dynamic programming in 𝑂(𝑛𝑐 +𝑚𝑐). However as the number
of paths can be exponential we cannot hope for a polynomial algorithm to enumerate
them, as each output will cost at least 𝑂(1).

We propose an algorithm to enumerate all foremost paths from a temporal node
(𝑡, 𝑢) ∈ 𝑊 to a node 𝑣 ∈ 𝑉 : Algorithm 6. It proceeds as follows: given a starting
time and a source the algorithm proceeds to explore each node of the condensation
graph in the manner of a breadth first search (BFS), except that we do not keep
a register of ’seen’ components. Once it has found a component that contains the
destination, the algorithm uses the current time to reach as a threshold in order for
the algorithm to discard any longer path, meanwhile all possible paths corresponding
to this time to reach are registered. After completion the algorithm outputs all
condensation foremost paths from 𝐶(𝑡, 𝑢) to 𝐶(𝑣) as well as the time to reach 𝑣 from
(𝑡, 𝑢).

If we only desire the number of foremost paths, a simpler version can be done by
replacing 𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ𝑠 with a counter. This counter would be initialised to 0 line
4, reseted to 1 lines 12− 14 and incremented line 16.

In Chapter 4 we have shown that a condensation path can encode an infinite number
of stream paths. The number of distinct foremost paths in 𝐺C is finite. Therefore, we
argue that algorithm 6, by returning all foremost paths from a source to a destination
in 𝐺C , can quantify the amount of foremost paths in a stream graph. Whether by
counting the number of distinct paths in 𝐺C or by computing the total volume of
the components involved in these paths (we refer to [59] for detailed explanations
regarding the volume of temporal paths in stream graphs). This quantification can
be really helpful to compute particular centrality measures.

The worst-case complexity of algorithm 6 is exponential as we may have to explore
every possible path in 𝐺C . However, in real-world datasets, stream graph condensa-
tions have a particular property (cf section 4.1.5, Table 4.1): their mean out-degree,
𝑑𝑐, is really low, typically inferior to 1. Hence, the exponential growth of the number
of paths in the condensation is limited, allowing the algorithm to scale. The employed

102

Algorithm 6 All Foremost Paths from 𝐶(𝑡, 𝑢) to 𝐶(𝑣).
1: Def: 𝑎𝑙𝑙_𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ𝑠(𝐺C , 𝑡, 𝐶(𝑡, 𝑢), 𝑣)
2: Input: The condensation 𝐺C of a stream 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸), 𝑡 ∈ 𝑇 , 𝐶(𝑡, 𝑢) ∈ C

and destination node 𝑣 ∈ 𝑉 .
3: Output: All Foremost path from 𝐶(𝑡, 𝑢) to 𝐶(𝑣) in 𝐺C (empty if unreachable)

and 𝑇𝑡(𝑢, 𝑣) (infinity if unreachable).
4: 𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ𝑠 is an empty list
5: 𝑡𝑡𝑟 = 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 is the time to reach
6: ([𝑏, 𝑒], 𝑋) = 𝐶(𝑡, 𝑢) ◁ Component containing the source
7: 𝑝𝑎𝑡ℎ_𝑞𝑢𝑒𝑢𝑒 = [[([𝑏, 𝑒], 𝑋)]] ◁ Queue containing current paths
8: while 𝑝𝑎𝑡ℎ_𝑞𝑢𝑒𝑢𝑒 is not empty do
9: 𝑃 = 𝑝𝑎𝑡ℎ_𝑞𝑢𝑒𝑢𝑒.pop()

10: ([𝑏, 𝑒], 𝑋) = 𝐶
11: if 𝑣 ∈ 𝑋 and 𝑏 < 𝑡𝑡𝑟 + 𝑡 then
12: 𝑡𝑡𝑟 = 𝑚𝑎𝑥(𝑏, 𝑡)− 𝑡
13: Set 𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ𝑠 to empty
14: Add 𝑃 to 𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ𝑠
15: else if 𝑣 ∈ 𝑋 and 𝑚𝑎𝑥(𝑏, 𝑡) == 𝑡𝑡𝑟 + 𝑡 then
16: Add 𝑃 to 𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ𝑠

17: for all 𝐶 ′ following 𝐶 in 𝐺C do
18: ([𝑏′, 𝑒′], 𝑋 ′) = 𝐶 ′

19: if 𝑏′ ≤ 𝑡𝑡𝑟 then
20: Add 𝐶 ′ to 𝑃 to form 𝑃 ′

21: Add 𝑃 ′ to 𝑝𝑎𝑡ℎ_𝑞𝑢𝑒𝑢𝑒
return 𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ𝑠, 𝑡𝑡𝑟

103

strategy takes advantage of the structure and properties of 𝐺C resulting in an efficient
algorithm to tackle real world datasets.

Below we provide a snippet of code, using Straph, to compute a time to reach using
the condensation graph:

1 S = stream_graph ()
2 cdag = S. condensation_dag ()
3 source = ’A’ # or (5,’A ’) for a temporal source node
4 destination = ’B’
5 cdag. time_to_reach (source , destination)

5.4.2 Latency and fastest paths

Similarly as in the previous section, we design algorithms for the computation of
latency and fastest path using 𝐺C .

Latency and Arbitrary Fastest Path:

Algorithm 7 computes a fastest path in 𝐺C from 𝐶(𝑢) to 𝐶(𝑣). The main steps are:

1. All components containing the source are stored in a set: 𝐿. The algorithm
starts from 𝐶0 = (𝐼0, 𝑋0) ∈ 𝐶(𝑢) with 𝑚𝑖𝑛(𝐼0) as low as possible (the first
component where 𝑢 appears). Then it performs a foremost path (Algorithm 4)
procedure with parameters (𝐺C , 𝑚𝑎𝑥(𝐼0), 𝐶0, 𝑣) to reach 𝐶𝑘 ∈ 𝐶(𝑣), obtaining
𝑃 = (𝐶0, . . . ,𝐶𝑘).

2. All components 𝐶𝑖 ∈ 𝑃 containing 𝑢 are removed from 𝐿, and consider as
seen. We denote by 𝐶𝑢 the latest one in 𝑃 . The associated duration between
𝐶𝑢 = (𝐼𝑢, 𝑋𝑢) and 𝐶𝑘 = (𝐼𝑘, 𝑋𝑘), 𝑚𝑖𝑛(𝐼𝑘) − 𝑚𝑎𝑥(𝐼𝑢) is kept as the current
latency, if it is lower than previously defined.

3. For each unseen 𝐶 ∈ 𝐶(𝑢) from 𝐿 we perform steps (1) and (2).

Proposition 5.4.1. Algorithm 7 computes the latency and a corresponding fastest
path in 𝐺C from 𝐶(𝑢) to 𝐶(𝑣) in time 𝑂(𝑛𝑐 + 𝑚𝑐). Its space complexity is in 𝑂(𝑛𝑐 ·
𝑛 + 𝑚𝑐).

Proof. The proof of Algorithm 7 is similar to the one of Algorithm 4. The procedure
browses every components containing the source 𝑢. We consider every foremost paths
from 𝐶(𝑢) to 𝐶(𝑣) and only keep the one with the latest departure time. As we
maximize the departure time from 𝑢 over the set of paths arriving the earliest in 𝑣,
the resulting duration is the latency and the corresponding path is a fastest path in
𝐺C .

The time complexity of all foremost_path procedures (line 9) is in 𝑂(𝑛𝑐 + 𝑚𝑐). In-
deed, if a foremost_path procedure reaches worst case complexity, 𝐺C is browsed
entirely, consequently every component in 𝐶(𝑢) has been considered. Otherwise

104

Algorithm 7 Latency ℓ(𝑢, 𝑣) and an arbitrary fastest path from 𝐶(𝑢) to 𝐶(𝑣) in
𝐺C .

1: Def:𝑓𝑎𝑠𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ(𝐺C , 𝐶(𝑢), 𝑣)
2: Input: The condensation graph 𝐺C of a stream 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸), 𝐶(𝑢) ⊆ C and

a destination node 𝑣 in 𝑉 .
3: Output: A fastest path from 𝐶(𝑢) to 𝐶(𝑣) in 𝐺C and the latency ℓ(𝑢, 𝑣).
4: Add all elements (𝐼, 𝑋) ∈ 𝐶(𝑢) to 𝐿. 𝐿 is ordered temporally in increasing order

by 𝑚𝑎𝑥(𝐼).
5: 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =∞
6: 𝑓𝑎𝑠𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ← ∅
7: while 𝐿 is not empty do
8: Pop the first element of 𝐿: 𝐶 = (𝐼, 𝑋)
9: 𝑃, 𝑡𝑡𝑟 = 𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ(𝐺C , 𝑚𝑎𝑥(𝐼), 𝐶, 𝑣)

10: if 𝑡𝑡𝑟 ̸=∞ then
11: for 𝐶𝑖 in 𝑃 do
12: (𝐼𝑖, 𝑋𝑖) = 𝐶𝑖

13: if 𝑢 in 𝑋 then
14: 𝐶𝑢 = 𝐶𝑖

15: Remove 𝐶𝑖 from 𝐿

16: (𝐼𝑢, 𝑋𝑢) = 𝐶𝑢

17: Get 𝐶𝑘 = (𝐼𝑘, 𝑋𝑘) the latest component in 𝑃
18: 𝑡𝑡𝑟 = 𝑚𝑖𝑛(𝐼𝑘)−𝑚𝑎𝑥(𝐼𝑢)
19: if 𝑡𝑡𝑟 < 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 then
20: 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡𝑡𝑟
21: (𝐶0,. . . ,𝐶𝑘) = 𝑃
22: 𝑓𝑎𝑠𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ = (𝐶𝑢,. . . ,𝐶𝑘)

return 𝑓𝑎𝑠𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦

105

each foremost_path procedure has browsed a part of the graph that will never be
browsed again: all components containing 𝑢 are removed from 𝐿, line 15, hence no
foremost_path procedure will be run from these components. All node and link of
𝐺C have been visited only once during all foremost path procedures, amounting to
𝑂(𝑛𝑐 + 𝑚𝑐).
The space complexity is the same as in Algorithm 4.

Observation 5.4.1. Algorithm 7 can be employed to efficiently answer reachability
queries between nodes in a stream graph. As shown in chapter 4, if a node 𝑣 is
reachable from a node 𝑢 then there exists a path from 𝐶(𝑢) to 𝐶(𝑣) in 𝐺C . Algorithm 7
tackles this problem, if it outputs a condensation path (or a finite latency) the query
is answered positively otherwise an empty path (or an infinite latency) means that 𝑣
is not reachable from 𝑢. This can be done by defining an index as in remark 5.4.3.

As in the previous section one may want to count or enumerate all fastest paths.
Algorithm 8 tackle this problem.

Remark 5.4.4. A hybrid algorithm computing Shortest Fastest Paths can be built
combining Algorithm 7 with the L-Algorithm (Algorithm 2). Indeed if the L-Algorithm
is applied on the results of Algorithm 7 - which can be represented as substreams of
the initial stream graph - it’s easy to obtain an algorithm to compute shortest fastest
paths.
However, in practice, such an algorithm is far slower than the L-Algorithm for SFP.

Below we provide a snippet of code computing latencies using the condensation graph

1 S = stream_graph ()
2 cdag = S. condensation_dag ()
3 source = ’A’
4 destination = ’B’
5 cdag. latency (source , destination) # Duration of Foremost Paths

5.5 Experiments

We have evaluated the performances of the L-Algorithm and condensation based
algorithms on 14 real world stream graphs (see Chapter 1.3). As our datasets are too
important to compute every optimal temporal path between every node pairwise, we
choose to follow the evaluation protocol described in [109]. Firstly, the algorithms
are evaluated for 100 nodes randomly picked and secondly on the 10 nodes with the
highest instant degree.

As shown in Figure 5-4, we can differentiate three types of path problems. Foremost
path and shortest foremost path problems are quicker to compute, as expected. In-
deed, as the starting time is fixed, we only consider the node segment containing the
starting time as a potential source and most of the time we do not have to browse
every temporal link in the stream graph. The second type of temporal path problems

106

Algorithm 8 Compute all fastest paths from 𝐶(𝑢) to 𝐶(𝑣) in 𝐺C

1: Def: 𝑎𝑙𝑙_𝑓𝑎𝑠𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠(𝐺C , 𝐶(𝑢), 𝑣)
2: Input: The condensation graph 𝐺C of a stream 𝑆 = (𝑇, 𝑉, 𝑊, 𝐸), 𝐶(𝑢) ⊆ C and

a destination node 𝑣 in 𝑉 .
3: Output: All fastest paths from 𝐶(𝑢) to 𝐶(𝑣) in 𝐺C (empty if unreachable) and

ℓ(𝑢, 𝑣) (infinity is unreachable).
4: Add all elements (𝐼, 𝑋) ∈ 𝐶(𝑢) to 𝐿. 𝐿 is ordered temporally in increasing order

by 𝑚𝑎𝑥(𝐼).
5: 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦
6: 𝑓𝑎𝑠𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠 is empty
7: while 𝐿 is not empty do
8: Pop the first element of 𝐿: 𝐶 = (𝐼, 𝑋).
9: 𝑄, 𝑡𝑡𝑟 = 𝑎𝑙𝑙_𝑓𝑜𝑟𝑒𝑚𝑜𝑠𝑡_𝑝𝑎𝑡ℎ𝑠(𝐺C , 𝑚𝑎𝑥(𝐼), 𝐶, 𝑣)

10: if 𝑡𝑡𝑟 ̸= 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 then
11: for 𝑃 in 𝑄 do
12: for 𝐶𝑖 in 𝑃 do
13: (𝐼, 𝑋) = 𝐶𝑖

14: if 𝑢 in 𝑋 then
15: 𝐶𝑢 = 𝐶𝑖

16: Remove 𝐶𝑖 from 𝐿.
17: (𝐼𝑢, 𝑋𝑢) = 𝐶𝑢

18: (𝐶0,. . . ,𝐶𝑘) = 𝑃
19: (𝐼𝑘, 𝑋𝑘) = 𝐶𝑘

20: 𝑡𝑡𝑟 = 𝑚𝑖𝑛(𝐼𝑘)−𝑚𝑎𝑥(𝐼𝑢)
21: if 𝑡𝑡𝑟 < 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 then
22: 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡𝑡𝑟
23: 𝑓𝑎𝑠𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠 = [(𝐶𝑢,. . . ,𝐶𝑘)]
24: else if 𝑡𝑡𝑟 −𝑚𝑎𝑥(𝐼𝑢) == 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 then
25: 𝑓𝑎𝑠𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠.𝑎𝑝𝑝𝑒𝑛𝑑((𝐶𝑢,. . . ,𝐶𝑘))

return 𝑓𝑎𝑠𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦

107

FoP SP FP SFoP SFP FSP
UC 9.3e-5 1.4e-4 1.1e-4 9.3e-5 - 1.4e-4

HS 2012 7.14e-4 1.1e-3 1.1e-3 7.2e-4 1.6e-3 1.14e-3
Digg 1.9e-5 2.3e-5 2.4e-5 1.9e-5 2.8e-5 2.3e-5

Infectious 4.6e-5 5.4e-5 5.3e-5 4.6e-5 5.6e-5 5.4e-5
Twitter 1.2e-5 1.3e-5 1.4e-5 1.3e-5 1.5e-5 1.5e-5
Linux 1.3e-4 1.5e-4 1.5e-4 1.4e-4 1.8e-4 1.6e-4

Facebook 1.3e-4 1.5e-4 1.5e-4 1.3e-4 1.6e-4 1.5e-1
Epinions 4.8e-5 5.2e-5 6.2e-5 5.2e-5 9.4e-4 5.8e-5
Amazon 2.2e-5 2.6e-5 2.6e-5 2.2e-5 2.7e-5 2.6e-5
Youtube 1.9e-5 2.7e-5 2.8e-5 2.1e-5 - 2.9e-5

Movielens 9.8e-4 1.3e-3 1.3e-3 9.7e-4 1.7e-2 1.3e-3
Wiki 6.2e-5 7.5e-5 7.7e-5 6.3e-5 9.2e-5 7.7e-5

Mawilab 3.2e-4 3.4e-4 3.2e-4 2.9e-4 - 3.2e-4
Stackoverflow 1.6e-4 1.9e-4 1.9e-4 1.6e-4 1.5e-3 1.9e-4

Table 5.2: L-Algorithm running times in seconds (random sources) (missing values
correspond to the timeout of a procedure, set to 15000𝑠)

contains the SP, FP and FSP problems, which have similar running times. Finally,
the SFP problem stands out as its computation time can be larger than for the other
path problems. This can be explained by the fact that many paths can improve its
domination function during the browsing of temporal links, indeed there can be many
instantaneous paths (fastest paths) between two nodes resulting in many more calls
to the 𝐷𝑖𝑗𝑘𝑡𝑟𝑎_𝑈𝑝𝑑𝑎𝑡𝑒 procedure (see Algorithm 3).

In Figure 5-5 we present performances of the L-Algorithm (Algorithm 2) and conden-
sation based algorithms (Algorithms 4 7) for the foremost and fastest path problem.
In most of the datasets condensation based algorithms are quicker. This observa-
tion is coherent with the algorithms theoretical complexities. However, we point out
that the preprocessing time needed to compute the considered condensations can be
important (see Chapter 4).

For the sake of completeness, we present in Table 5.2 running times of the L-algorithm,
in seconds, computing an optimal temporal path for the foremost path, shortest path,
fastest path, shortest foremost path, shortest fastest path and fastest shortest path
problems in the considered datasets. In Table 5.3 we present the same results from
high degree source nodes. In Tables 5.4 (random sources) and Tables 5.5 (high degree
sources) we present the running times of the condensation algorithms for the foremost
and fastest path problems and we compare them to the running times of L-Algorithm.

108

UC

HS
 2

01
2

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

i

M
aw

ila
b

St
ac

ko
ve

rfl
ow

10 5

10 4

10 3

10 2
Ti

m
e

(s
)

FoP
SP
FP
SFoP
FSP
SFP

UC

HS
 2

01
2

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

i

M
aw

ila
b

St
ac

ko
ve

rfl
ow

10 5

10 4

10 3

10 2

Ti
m

e
(s

)

FoP
SP
FP
SFoP
FSP
SFP

Figure 5-4: Running Times (s) of the L-Algorithm for the foremost, shortest fastest,
shortest foremost, fastest shortest and shortest fastest path problems (top: random
sources, bottom: high degree sources).

109

UC

HS
 2

01
2

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

i

M
aw

ila
b

St
ac

ko
ve

rfl
ow

10 6

10 5

10 4

10 3

Ti
m

e
(s

)

FoP L-Algo
FoP CDAG
FP L-Algo
FP CDAG

UC

HS
 2

01
2

Di
gg

In
fe

ct
io

us

Tw
itt

er

Lin
ux

Fa
ce

bo
ok

Ep
in

io
ns

Am
az

on

Yo
ut

ub
e

M
ov

ie
le

ns

W
ik

i

M
aw

ila
b

St
ac

ko
ve

rfl
ow

10 6

10 5

10 4

10 3

Ti
m

e
(s

)

FoP L-Algo
FoP CDAG
FP L-Algo
FP CDAG

Figure 5-5: Running Times (s) of the L-Algorithm and of condensation algorithms for
the foremost and fastest path problems (top: random sources, bottom: high degree
sources).

110

FoP SP FP SFoP SFP FSP
UC 9.1e-5 0.000138 0.000141 9.2e-5 - 0.000141

HS 2012 0.000715 0.001132 0.001178 0.000659 0.00164 0.001201
Digg 1.8e-5 2.9e-5 3e-5 1.8e-5 6.6e-5 2.9e-5

Infectious 4.5e-5 5.6e-5 5.6e-5 4.5e-5 6.3e-5 5.6e-5
Twitter 1.3e-5 2e-5 2.7e-5 1.3e-5 0.001616 2.3e-5
Linux 0.000119 0.000219 0.000272 0.000129 0.002405 0.000261

Facebook 0.00012 0.000162 0.000159 0.000115 0.000184 0.000156
Epinions 4.9e-5 5.9e-5 6.7e-5 5.5e-5 0.00855 6.9e-5
Amazon 2.1e-5 3.1e-5 3.1e-5 2.1e-5 3.2e-5 3.1e-5
Youtube 2.1e-5 3.7e-5 4.7e-5 2.3e-5 - 4.5e-5

Movielens 0.001099 0.00124 0.001204 0.001067 0.001495 0.001213
Wiki 6.3e-5 7.5e-5 7.6e-5 6.3e-5 0.000229 7.5e-5

Stackoverflow 0.000204 0.000247 0.000319 0.000221 - -
Mawilab 0.000357 0.000379 0.001334 0.000374 - 0.000622

Table 5.3: L-Algorithm running times in seconds (high degree sources) (missing values
correspond to the timeout of a procedure, set to 15000𝑠)

FoP L-Algo FoP CDAG FP L-Algo FP CDAG
UC 9.3e-5 1.4e-5 0.000139 1.7e-5

HS 2012 0.000714 3.1e-5 0.001122 6.9e-5
Digg 1.9e-5 3e-6 2.4e-5 3e-6

Infectious 4.6e-5 3e-6 5.3e-5 2e-6
Twitter 1.2e-5 3e-5 1.4e-5 2.8e-5
Linux 0.000132 3.3e-5 0.000153 3.2e-5

Facebook 0.000125 8e-6 0.000151 6e-6
Epinions 4.8e-5 1e-6 6.2e-5 1e-6
Amazon 2.2e-5 1e-6 2.6e-5 1e-6
Youtube 1.9e-5 1e-6 2.8e-5 1e-6

Movielens 0.000996 0.001334 0.001266 0.001609

Table 5.4: L-Algorithm and condensation algorithms running times in seconds (ran-
dom sources) (missing values correspond to the timeout of a procedure, set to 15000𝑠)

111

FoP L-Algo FoP CDAG FP L-Algo FP CDAG
UC 9.1e-5 1.4e-5 0.000141 2.4e-5

HS 2012 0.000715 2.9e-5 0.001178 7.7e-5
Digg 1.8e-5 3e-6 3e-5 6e-6

Infectious 4.5e-5 2e-6 5.6e-5 2e-6
Twitter 1.3e-5 2.5e-5 2.7e-5 5e-5
Linux 0.000119 3.3e-5 0.000272 0.000119

Facebook 0.00012 6e-6 0.000159 7e-6
Epinions 4.9e-5 1e-6 6.7e-5 1e-6
Amazon 2.1e-5 1e-6 3.1e-5 1e-6
Youtube 2.1e-5 1e-6 4.7e-5 2e-6

Movielens 0.001099 0.001235 0.001204 0.001405

Table 5.5: L-Algorithm and condensation algorithms running times in seconds (high
degree sources) (missing values correspond to the timeout of a procedure, set to
15000𝑠

5.6 Conclusion

In this chapter we proposed a generic polynomial algorithm - which can be seen as a
generalisation of the famous Dijkstra’s algorithm - and theoretical concepts allowing
this single source algorithm, the L-Algorithm, to compute many paths problems in
stream graphs. We have shown that a path problem can be seen as an optimisation
problem based on two functions, the objective and domination functions. We provide
these functions for the foremost, fastest, shortest path problems as well as for multi-
criteria path problems (shortest foremost paths, shortest fastest paths, fastest shortest
paths). The corresponding algorithms were evaluated on 14 real-world datasets of
various sizes, asserting their practical efficiency on stream graphs with tens of millions
of temporal links.

In a second time, we have designed linear paths algorithms using previously defined
concept: the condensation of a stream graph. In practice we have shown that these
algorithms are faster or equivalent than our L-Algorithms for the foremost and fastest
paths problems at the expense of a polynomial preprocessing. However, as the pro-
cessing time can be important, these condensation algorithms should only be used
if the objective is to compute a great number of paths. Given these encouraging
results we aim to provide others stream graph representation tailored to facilitate the
computation of other path problems.

The L-Algorithm calls for many extensions. Indeed, it can easily be adapted for
weighted stream graphs links but we wonder if it would be the case for a modelisation
where links have delays (where taking a link would take us further in time). Supposing
that the corresponding objective and domination functions exist, the L-Algorithm
could be used for much more complex path problems.

112

In the future, we hope to provide indicators in order to decide in what circumstances
would it be preferable to use a condensation algorithm over the L-Algorithm. These
indicators could be based on connectivity properties or on the trade-off between the
time taken to compute the condensation and the amount of time saved by using a
condensation algorithm rather than the L-Algorithm.

113

114

Conclusion

Stream graphs accurately model many real-world data; they are adapted for large-
scale datasets through streaming possibilities as well as compact data structures al-
lowing the manipulation of large-scale datasets in main memory. They are particularly
well suited to model data stemming from network traffic [107], mobility traces [101]
and online social interactions [35]. Such data benefit from our approach, as (directed,
weighted) stream graphs capture most of their features without resorting to any form
of (aggregated or discretised) approximation.

However, while theoretical concepts are numerous, the work needed to achieve effi-
cient algorithm designs and associated challenge remains important. Moreover, in
order to conduct such real-world applications, it is crucial to design and implement
a convenient software to efficiently compute the properties of large stream graphs.
Work in this direction has been partially achieved in this thesis through the design
of connectivity and paths algorithms as well as their implementations in Straph.

In the following sections, we provide an overview of the contributions and we discuss
future research directions.

Summary of Contributions

Our research focused on what we consider building blocks necessary for further ap-
plications and discoveries. This objective, requiring a good understanding of graph
data structures and algorithms, is twofold:.

• Designing linear and polynomial algorithms for basic stream graphs computa-
tions, integrating and taking advantage of existing graph algorithms.

• Providing data structure to manipulate large-scale real-world data and evaluate
stream graph algorithms in practice.

Our contributions fall within this framework: they either establish algorithmic results,
or provide better data structures for handling stream graphs. Below we recall the main
contributions obtained during this thesis:

• The most advanced open source python library for the manipulation, modeling,

115

analysis and visualisation of stream graphs: Straph (chapter 2)

• Efficient data structures to handle stream graphs (chapter 2)

• Two random stream graph generators based on the Erdős-Rényi and Barabási-
Albert models (chapter 2)

• Algorithms to compute connectivity notions in stream graphs (chapter 3)

• Connectivity analysis of large scale real-world stream graphs (chapter 3)

• A connectivity based data representation of a stream graph which greatly re-
duces the complexity of computing reachability queries: the condensation of a
stream graph (chapter 4)

• An alternative data representation paving the way to an efficient parallel frame-
work for the computation of numerous properties on stream graphs: the stable
directed acyclic graph of a stream graph (chapter 4)

• An approximation method speeding up numerous methods in practice while
preserving the connectivity properties of a stream graph: the Δ-approximation
(chapter 4)

• The first single source one-pass polynomial time algorithm computing all kinds
of optimal temporal paths in stream graphs: the L-algorithm (chapter 5)

• Condensation based linear time algorithms for the computation of foremost and
fastest paths (chapter 5)

Algorithmic contributions provide state-of-the-art algorithms for stream graphs and
practical contributions demonstrate the effectiveness of this modeling. Whether these
contributions stem from graph literature or are completely new, they scale to stream
graphs with tens of millions of nodes and links.

Future Directions of Research

In the following we present future research directions stemming from our work. This
presentation is ordered hierarchically by our own interpretation of their potential
scientific and practical impact.

Global directions

We hope that the data structures presented in this dissertation could lead or inspire
other data representations of stream graphs, the most promising one being the DAG
ones in our opinion.

A major contribution would be the design of a global online framework allowing a
real-time processing of stream graphs. As many practical cases would benefit from
such a framework, for instance in a cyber-security context, detecting an abnormal

116

behaviour of a node or of a set of nodes should be instantaneous regarding the po-
tentially catastrophic consequences of a cyber-attack. Likewise, detecting an infected
person in a human contact network should be done as quickly as possible for obvious
reasons. We hope to quantify how much these lossless stream graph properties bring
to the table compared to graph properties on aggregated graphs or on a sequence
of snapshots. The consequences from a machine learning perspective are promising.
Statistically, a richer and unaltered information generally results in a better modeling.

As mentioned in chapter 4, many stream graphs concepts do not only provide "verti-
cal" or "horizontal" slices but cover both dimensions at the same time. This approach
should lead to better understanding of many phenomena in temporal data, especially
in anomaly detection. Indeed an anomaly should not be restrained to a given set
of nodes (vertical dimension) or a time window (horizontal dimension). A temporal
anomaly may be composed of different nodes (and links) through time and for each
node at a different time window.

Last but not least, one may notice that stream graphs are not only generalizations
of graphs. They actually lie at the crossroad of two very rich and powerful scientific
areas: graph theory and time series analysis. Integrating time series concepts to
stream graphs has been left aside in our work but we hope to consider these aspects
in the future.

Δ analysis

In chapter 4, we have presented an approximation scheme. We have evaluated and
asserted its benefits on connectivity notions. However, this scheme needs to be eval-
uated in different contexts. We think that, as this scheme does greatly reduce the
number of SCC in a stream graph, it would also reduce the number of stable con-
nected components. The resulting stable DAG would also contain fewer nodes and
the stable DAG framework should perform much faster. Likewise, the L-Algorithm
proceeds to less costly procedures - Dijkstra_Update (see Chapter 5) - when the tem-
poral links have the same arrival time, thus a shorter running time. However this
calls for extended and thorough experimentations.

DAG extension

Our first exploration direction is a direct consequence of our work: try to investigate
and quantify what stream graph metrics, computed using our algorithms - or with
existing algorithms through the DAG framework - bring to the table in terms of
understanding and modeling. Precisely, many properties could provide meaningful,
in-depth information facilitating interpretations and analysis of such data.

It will be interesting to evaluate how our framework and its multiple variations
through many graph algorithms would fare against other existing procedures. Under
the assumption of an identical output, for instance an algorithm computing the nodes

117

core number over time should output a set of temporal nodes and their correspond-
ing value; such a procedure would measure the practical interest of our framework
without invalidating its overall possibilities.

Likewise, we have mentioned the possibility to design a streaming framework sim-
ilar to the DAG parallel framework. An additional step consists in encoding the
DAG differently: each stable connected component would be encoded accordingly
to its direct predecessors in the DAG, meaning that only arrivals and departures of
nodes/links would be encoded in each component. Such a framework would proceed
in a streaming fashion on the stable DAG. It would start by computing properties
on a component and then properties on its successors in the DAG, with a graph
streaming algorithm, while taking into account the properties already computed on
its direct predecessors. The obtained procedure should behave competitively against
state-of-the-art. We can notice that this procedure leaves room for parallelization on
each distinct weakly connected components - a connected stable DAG of its own - or
on the stable DAG roots - stable connected components with a null in-degree in the
stable DAG.

Then we should compare these two frameworks and consider when it is useful to
resort to the streaming one. Indeed as many components (nodes of the condensation
directed acyclic graph) possess only few nodes (see chapter 4) and as parallelization
possibilities in the streaming framework are limited, it is unsure which framework
will be most efficient in practice. Furthermore, this will allow us to decide for which
properties it would be preferable to resort to a streaming procedure.

Different kind of DAG could be defined from different notions of connected compo-
nents. A DAG could be designed for the computation of particular stream graph
properties. Indeed as strongly connected components are, most of the time, stable
connected components in practice (see chapter 4), for some properties it may be faster
to run streaming algorithms in parallel on each SCC rather than classical algorithms
on each stable connected component.

Another open question with countless applications consists in detecting communi-
ties efficiently. We hope to adapt, in the future, our DAG framework to provide
community detection algorithms for stream graphs.

Path Algorithms

We are confident that our L-Algorithm (Chapter 5) could easily be adapted for di-
rected and weighted stream graphs. However, the case of delayed links, where taking
a link takes strictly positive time, remains an open question.
Another interesting track to explore would be the adaption of condensation algo-
rithms provided in this dissertation to compute metrics specific to directed and/or
weighted stream graphs. However, it would necessitate a notion of strongly connected
components for directed stream graphs which does not exist at the time being.

Another track of improvement consists in exploring parallel implementations of the

118

L-Algorithm. It could be parallelized by running it independently on each weakly
connected components. As computing WCC can be done linearly, the additional cost
of computing WCC should be inferior to the gain of a parallel implementation.

The theoretical concepts of objective and domination functions generalize the one
provided by Wu et al. [109] and in a particular way the one of Dijkstra - "a subpath
of a shortest path being a shortest path" is a domination concept. We are considering
which are the limits of this approach. Is there a path optimisation problem where
no domination function could be provided? Are weighted stream graphs compatible
with our procedure?
The improvement tracks are numerous as well as their potential applications.

Data Structures and Straph Extensions

The developed python library, Straph, contains implementations of all the algorithms,
data structures and frameworks presented through this thesis. These implementations
helped us to validate many results as well as analysing many real world datasets
efficiently at scale. However, we are wondering as if our paradigms of developments
and the corresponding implementations are well suited for an open source software.
In the future, we aim to add many features and functionalities, specifically regarding
the visualisation of stream graphs.

Random Stream Graph Generators

The random stream graph generators provided in chapter 2 must be compared to
the state of the art and their practical behaviours need to be subject to a more
extended evaluation. In particular, an important approach in graph studies consists
in generating random graphs that have a prescribed set of properties. For instance,
the Erdős-Rényi model generates graphs with prescribed size and density. Hence, in
the future, we hope to provide theoretical proofs regarding their properties, such as
the degree distribution, size and density of the generated stream graphs.

Final Statement

Whereas we have provided many elements towards a practical use of stream graphs,
much remains to be done in the design of efficient algorithms, as well as the under-
standing of their complexity, for numerous theoretical concepts. We focused on basic
graph theory concepts while more complex ones, such as betweenness centrality, re-
main to explore.
As mentioned, stream graph theory lies at the intersection of two scientific fields:
graphs and time series. Within the frame of this thesis, we have not explored time
series concepts. However, we consider this aspect to be important and we hope
to provide advances in this direction, notably through our framework allowing the

119

computation of node and link time series corresponding to different kinds of time
dependant properties (see chapter 4).

In this thesis, many problems have caught up our interest, particularly designing
and implementing specific algorithms, data structures and representations for stream
graphs. This has proven to be a very interesting and challenging research domain.
Working throughout this dissertation was an exciting experience. The achieved work
paves the way for numerous extensions towards the computation of more complex,
finer grain concepts which will, without a doubt, bring a deeper understanding of
these complex temporal structures.

120

Bibliography

[1] Amazon ratings network dataset – KONECT, April 2017.

[2] Digg network dataset – KONECT, April 2017.

[3] Epinions trust network dataset – KONECT, April 2017.

[4] Linux kernel mailing list replies network dataset – KONECT, April 2017.

[5] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transi-
tive relationships in large data and knowledge bases. ACM SIGMOD Record,
18(2):253–262, June 1989.

[6] Eleni C. Akrida and Paul G. Spirakis. On Verifying and Maintaining Connec-
tivity of Interval Temporal Networks. Parallel Processing Letters, 29(02), June
2019.

[7] Réka Albert and Albert-László Barabási. Statistical mechanics of complex net-
works. Reviews of modern physics, 74, 2002.

[8] David Alberts, Giuseppe Cattaneo, and Giuseppe F. Italiano. An Empirical
Study of Dynamic Graph Algorithms. J. Exp. Algorithmics, 2, January 1997.

[9] Albert-László Barabási et al. Network science. Cambridge university press,
2016.

[10] Alain Barrat and Ciro Cattuto. Temporal networks of face-to-face human in-
teractions. In Temporal Networks, pages 191–216. Springer, 2013.

[11] V. Batagelj and M. Zaversnik. An O(m) Algorithm for Cores Decomposition of
Networks. arXiv:cs/0310049, October 2003. arXiv: cs/0310049.

[12] Vladimir Batagelj and Selena Praprotnik. An algebraic approach to temporal
network analysis based on temporal quantities. Social Network Analysis and
Mining, 6(1):28, May 2016.

[13] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics,
16:87–90, 1958.

[14] Claude Berge. The Theory of Graphs and Its Applications. 1962.

121

[15] Jonathan Berry, Matthew Oster, Cynthia A. Phillips, Steven Plimpton, and
Timothy M. Shead. Maintaining connected components for infinite graph
streams. In Proceedings of the 2nd International Workshop on Big Data, Streams
and Heterogeneous Source Mining: Algorithms, Systems, Programming Models
and Applications, BigMine ’13, pages 95–102, Chicago, Illinois, August 2013.
Association for Computing Machinery.

[16] S. Bhadra and A. Ferreira. Complexity of Connected Components in Evolving
Graphs and the Computation of Multicast Trees in Dynamic Networks. In
Samuel Pierre, Michel Barbeau, and Evangelos Kranakis, editors, Proceedings
of ADHOC-NOW, number 3 in Lecture Notes in Computer Science, pages 259–
270, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[17] Vincent D Blondel, Adeline Decuyper, and Gautier Krings. A survey of results
on mobile phone datasets analysis. EPJ data science, 4(1):10, 2015.

[18] Benjamin Blonder, Tina W Wey, Anna Dornhaus, Richard James, and An-
drew Sih. Temporal dynamics and network analysis. Methods in Ecology and
Evolution, 3(6):958–972, 2012.

[19] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. Graph theory
with applications, volume 290. Macmillan London, 1976.

[20] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar
Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph struc-
ture in the Web. Computer Networks, 33(1):309–320, June 2000.

[21] Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro. Short-
est, Fastest, and Foremost Broadcast in Dynamic Networks. International Jour-
nal of Foundations of Computer Science, 26(04):499–522, June 2015. Publisher:
World Scientific Publishing Co.

[22] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro.
Time-varying graphs and dynamic networks. International Journal of Parallel,
Emergent and Distributed Systems, 27(5):387–408, 2012.

[23] Arnaud Casteigts, Ralf Klasing, Yessin M. Neggaz, and Joseph G. Peters. Ef-
ficiently testing 𝑡-interval connectivity in dynamic graphs. In International
Conference on Algorithms and Complexity, page 89–100, 2015.

[24] Munmun De Choudhury, Hari Sundaram, Ajita John, and Dorée Duncan Selig-
mann. Social synchrony: Predicting mimicry of user actions in online social
media. In Proc. Int. Conf. on Computational Science and Engineering, pages
151–158, 2009.

[25] Marco Corneli, Pierre Latouche, and Fabrice Rossi. Block modelling in dynamic
networks with non-homogeneous poisson processes and exact icl. Social Network
Analysis and Mining, 6(1):55, 2016.

122

[26] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, December 1959.

[27] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. The Anatomy of
a Scientific Rumor. Scientific Reports, 3(1):1–9, October 2013. Number: 1
Publisher: Nature Publishing Group.

[28] Patrick Doreian and Frans N Stokman. Evolution of social networks, volume 1.
Psychology Press, 1997.

[29] Stuart E. Dreyfus. An Appraisal of Some Shortest-Path Algorithms. Operations
Research, 17(3):395–412, June 1969.

[30] P. Erdős and A. Rényi. On the Evolution of Random Graphs. In PUBLI-
CATION OF THE MATHEMATICAL INSTITUTE OF THE HUNGARIAN
ACADEMY OF SCIENCES, pages 17–61, 1960.

[31] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM,
5(6):345, June 1962.

[32] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. MAW-
ILab: Combining Diverse Anomaly Detectors for Automated Anomaly Labeling
and Performance Benchmarking. In ACM CoNEXT ’10, Philadelphia, PA, De-
cember 2010.

[33] Julie Fournet and Alain Barrat. Contact patterns among high school students.
PLoS ONE, 9(9):e107878, 09 2014.

[34] Zvi Galil and Giuseppe F. Italiano. Data structures and algorithms for disjoint
set union problems. ACM Computing Surveys, 23(3):319–344, September 1991.

[35] Noé Gaumont, Tiphaine Viard, Raphaël Fournier-S’Niehotta, Qinna Wang, and
Matthieu Latapy. Analysis of the temporal and structural features of threads
in a mailing-list. In Complex Networks VII, pages 107–118. Springer, 2016.

[36] Laetitia Gauvin, Mathieu Génois, Márton Karsai, Mikko Kivelä, Taro Tak-
aguchi, Eugenio Valdano, and Christian L. Vestergaard. Randomized reference
models for temporal networks. 2020.

[37] Laetitia Gauvin, André Panisson, and Ciro Cattuto. Detecting the community
structure and activity patterns of temporal networks: a non-negative tensor
factorization approach. PloS one, 9(1):e86028, 2014.

[38] Betsy George. Spatio-temporal networks: modeling and algorithms. University
of Minnesota, 2008.

[39] Luiz H Gomes, Virgilio AF Almeida, Jussara M Almeida, Fernando DO Castro,
and Luís MA Bettencourt. Quantifying social and opportunistic behavior in
email networks. Advances in Complex Systems, 12(01):99–112, 2009.

[40] GroupLens Research. MovieLens data sets. http://www.grouplens.org/
node/73, October 2006.

123

http://www.grouplens.org/node/73
http://www.grouplens.org/node/73

[41] László Gulyás, George Kampis, and Richard O Legendi. Elementary models of
dynamic networks. The european physical journal special topics, 222(6):1311–
1333, 2013.

[42] Carlos Gómez-Calzado, Arnaud Casteigts, Alberto Lafuente, and Mikel Larrea.
A Connectivity Model for Agreement in Dynamic Systems. In Jesper Larsson
Träff, Sascha Hunold, and Francesco Versaci, editors, Euro-Par 2015: Parallel
Processing, Lecture Notes in Computer Science, pages 333–345, Berlin, Heidel-
berg, 2015. Springer.

[43] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,
dynamics, and function using networkx. Technical Report LA-UR-08-05495;
LA-UR-08-5495, Los Alamos National Lab. (LANL), Los Alamos, NM (United
States), January 2008.

[44] Ronan Hamon, Pierre Borgnat, Patrick Flandrin, and Céline Robardet. Duality
between temporal networks and signals: Extraction of the temporal network
structures. arXiv preprint arXiv:1505.03044, 2015.

[45] Christopher R Harshaw, Robert A Bridges, Michael D Iannacone, Joel W Reed,
and John R Goodall. Graphprints: Towards a graph analytic method for net-
work anomaly detection. In Proceedings of the 11th Annual Cyber and Infor-
mation Security Research Conference, pages 1–4, 2016.

[46] Monika R. Henzinger and Valerie King. Randomized Fully Dynamic Graph
Algorithms with Polylogarithmic Time Per Operation. J. ACM, 46(4):502–516,
July 1999.

[47] Petter Holme and Jari Saramäki. Temporal networks. Physics Reports,
519(3):97–125, October 2012.

[48] Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dy-
namic connectivity in 𝑂(𝑙𝑜𝑔𝑛(𝑙𝑜𝑔𝑙𝑜𝑔𝑛)2) amortized expected time. In Proceed-
ings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’17, pages 510–520, Barcelona, Spain, January 2017. Society for
Industrial and Applied Mathematics.

[49] Charles Huyghues-Despointes, Binh-Minh Bui-Xuan, and Clémence Magnien.
Forte delta-connexité dans les flots de liens. In ALGOTEL 2016 - 18èmes Ren-
contres Francophones sur les Aspects Algorithmiques des Télécommunications,
Bayonne, France, May 2016.

[50] Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pin-
ton, and Wouter Van den Broeck. What’s in a crowd? analysis of face-to-face
behavioral networks. J. of Theoretical Biology, 271(1):166–180, 2011.

[51] Raj Iyer, David Karger, Hariharan Rahul, and Mikkel Thorup. An Experimental
Study of Polylogarithmic, Fully Dynamic, Connectivity Algorithms. J. Exp.
Algorithmics, 6, December 2001.

124

[52] Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic Graph Connec-
tivity in Polylogarithmic Worst Case Time. In Proceedings of the Twenty-
fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13,
pages 1131–1142, Philadelphia, PA, USA, 2013. Society for Industrial and Ap-
plied Mathematics.

[53] Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup.
Faster Worst Case Deterministic Dynamic Connectivity. In Piotr Sankowski
and Christos Zaroliagis, editors, 24th Annual European Symposium on Algo-
rithms (ESA 2016), volume 57 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 53:1–53:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[54] David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and Inference
Problems for Temporal Networks. Journal of Computer and System Sciences,
64(4):820–842, June 2002.

[55] Vassilis Kostakos. Temporal graphs. Physica A: Statistical Mechanics and its
Applications, 388(6):1007–1023, 2009.

[56] Lauri Kovanen, Kimmo Kaski, János Kertész, and Jari Saramäki. Temporal mo-
tifs reveal homophily, gender-specific patterns, and group talk in call sequences.
Proceedings of the National Academy of Sciences, 110(45):18070–18075, 2013.

[57] Gautier Krings, Márton Karsai, Sebastian Bernhardsson, Vincent D Blondel,
and Jari Saramäki. Effects of time window size and placement on the structure
of an aggregated communication network. EPJ Data Science, 1(1):4, 2012.

[58] Renaud Lambiotte and Naoki Masuda. A guide to temporal networks, volume 4.
World Scientific, 2016.

[59] Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and
link streams for the modeling of interactions over time. Social Network Analysis
and Mining, 8(1):61, October 2018.

[60] Luigi Laura and Federico Santaroni. Computing Strongly Connected Compo-
nents in the Streaming Model. In Alberto Marchetti-Spaccamela and Michael
Segal, editors, Theory and Practice of Algorithms in (Computer) Systems, Lec-
ture Notes in Computer Science, pages 193–205. Springer Berlin Heidelberg,
2011.

[61] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Den-
sification and shrinking diameters. ACM transactions on Knowledge Discovery
from Data (TKDD), 1(1):2–es, 2007.

[62] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

125

http://snap.stanford.edu/data

[63] Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu, and Hady Wirawan
Lauw. Detecting product review spammers using rating behaviors. In Proc.
Int. Conf. on Information and Knowledge Management, pages 939–948, 2010.

[64] Yannick Léo, Christophe Crespelle, and Eric Fleury. Non-Altering Time Scales
for Aggregation of Dynamic Networks into Series of Graphs. arXiv:1805.06188
[cs], May 2018. arXiv: 1805.06188.

[65] Lucie Martinet, Christophe Crespelle, and Eric Fleury. Dynamic contact net-
work analysis in hospital wards. In Complex Networks V, pages 241–249.
Springer, 2014.

[66] Paolo Massa and Paolo Avesani. Controversial users demand local trust met-
rics: an experimental study on epinions.com community. In Proc. American
Association for Artificial Intelligence Conf., pages 121–126, 2005.

[67] Catherine Matias and Vincent Miele. Statistical clustering of temporal networks
through a dynamic stochastic block model. arXiv preprint arXiv:1506.07464,
2015.

[68] Othon Michail. An introduction to temporal graphs: An algorithmic perspec-
tive. Internet Mathematics, 12(4):239–280, 2016.

[69] Alan Mislove. Online Social Networks: Measurement, Analysis, and Applica-
tions to Distributed Information Systems. PhD thesis, Rice University, 2009.

[70] Paola Modesti and Anna Sciomachen. A utility measure for finding multi-
objective shortest paths in urban multimodal transportation networks1This
work has been partially supported by the Italian National Research Coun-
cil (CNR) Project on Transportation “PFT2”, subproject 4.2.1, Contract N.
96.00112.PF74.1. European Journal of Operational Research, 111(3):495–508,
December 1998.

[71] M. E. J. Newman. The Structure and Function of Complex Networks. SIAM
Review, 45(2):167, 2003.

[72] Mark Newman. Networks. Oxford university press, 2018.

[73] V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, and V. Latora. Compo-
nents in time-varying graphs. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 22(2):023101, June 2012. arXiv: 1106.2134.

[74] Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni Russo,
and Vito Latora. Graph metrics for temporal networks. In Temporal networks,
pages 15–40. Springer, 2013.

[75] Tore Opsahl and Pietro Panzarasa. Clustering in weighted networks. Social
Networks, 31(2):155–163, 2009.

126

[76] Raj Kumar Pan and Jari Saramäki. Path lengths, correlations, and centrality
in temporal networks. Physical Review E, 84(1):016105, July 2011. Publisher:
American Physical Society.

[77] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. Motifs in Tempo-
ral Networks. In Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, WSDM ’17, pages 601–610, Cambridge, United
Kingdom, February 2017. Association for Computing Machinery.

[78] Fabiola S.F. Pereira, Sandra de Amo, and João Gama. Evolving Centralities in
Temporal Graphs: A Twitter Network Analysis. In 2016 17th IEEE Interna-
tional Conference on Mobile Data Management (MDM), volume 2, pages 43–48,
June 2016. ISSN: 2375-0324.

[79] Léo Rannou. Straph – Python Library for the modelisation and analysis of
Stream Graphs, 2020.

[80] Bruno Ribeiro, Nicola Perra, and Andrea Baronchelli. Quantifying the effect of
temporal resolution on time-varying networks. Scientific reports, 3:3006, 2013.

[81] Ben Roberts and Dirk P. Kroese. Estimating the Number of s-t Paths in a
Graph. Journal of Graph Algorithms and Applications, 11(1):195–214, 2007.

[82] Giulio Rossetti, Letizia Milli, Salvatore Rinzivillo, Alina Sîrbu, Dino Pedreschi,
and Fosca Giannotti. NDlib : a python library to model and analyze diffusion
processes over complex networks. International Journal of Data Science and
Analytics, 5(1):61–79, February 2018.

[83] Nicola Santoro, Walter Quattrociocchi, Paola Flocchini, Arnaud Casteigts, and
Frederic Amblard. Time-varying graphs and social network analysis: Temporal
indicators and metrics. arXiv preprint arXiv:1102.0629, 2011.

[84] Ingo Scholtes, Nicolas Wider, and Antonios Garas. Higher-Order Aggregate
Networks in the Analysis of Temporal Networks: Path structures and centrali-
ties. The European Physical Journal B, 89(3), March 2016. arXiv: 1508.06467.

[85] Konstantinos Semertzidis, Evaggelia Pitoura, and Kostas Lillis. TimeReach:
Historical Reachability Queries on Evolving Graphs, 2015. type: dataset.

[86] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. CoreScope: Graph
Mining Using k-Core Analysis — Patterns, Anomalies and Algorithms. In 2016
IEEE 16th International Conference on Data Mining (ICDM), pages 469–478,
December 2016. ISSN: 2374-8486.

[87] Yiannis Siglidis [LIP6. stream-graph: A library for Stream Graphs.

[88] Sandipan Sikdar, Niloy Ganguly, and Animesh Mukherjee. Time series analysis
of temporal networks. The European Physical Journal B, 89(1):1–11, 2016.

127

[89] Frédéric Simard. On computing distances and latencies in Link Streams. In 2019
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM), pages 394–397, August 2019. ISSN: 2473-991X.

[90] Ann E Sizemore and Danielle S Bassett. Dynamic graph metrics: Tutorial,
toolbox, and tale. Neuroimage, 180:417–427, 2018.

[91] Tom AB Snijders, Gerhard G Van de Bunt, and Christian EG Steglich. Intro-
duction to stochastic actor-based models for network dynamics. Social networks,
32(1):44–60, 2010.

[92] Christoph Stadtfeld and Per Block. Interactions, actors, and time: Dynamic
network actor models for relational events. Sociological Science, 4:318–352,
2017.

[93] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. NetworKit:
A tool suite for large-scale complex network analysis, December 2016. DOI:
10.1017/nws.2016.20.

[94] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs:
dynamic tensor analysis. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 374–383, 2006.

[95] Jun Sun, Jérôme Kunegis, and Steffen Staab. Predicting user roles in social
networks using transfer learning with feature transformation. In Proc. ICDM
Workshop on Data Mining in Networks, 2016.

[96] John Tang, Mirco Musolesi, Cecilia Mascolo, and Vito Latora. Temporal dis-
tance metrics for social network analysis. In Proceedings of the 2nd ACM work-
shop on Online social networks, WOSN ’09, pages 31–36, Barcelona, Spain,
August 2009. Association for Computing Machinery.

[97] William Hedley Thompson, Per Brantefors, and Peter Fransson. From static to
temporal network theory: Applications to functional brain connectivity. Net-
work Neuroscience, 1(2):69–99, 2017.

[98] William Hedley Thompson, Per Brantefors, and Peter Fransson. From static to
temporal network theory: Applications to functional brain connectivity. Net-
work Neuroscience, 1(2):69–99, April 2017.

[99] Shahadat Uddin, Mahendra Piraveenan, Kon Shing Kenneth Chung, and Li-
aquat Hossain. Topological analysis of longitudinal networks. In 2013 46th
Hawaii International Conference on System Sciences, pages 3931–3940. IEEE,
2013.

[100] Mathilde Vernet, Yoann Pigne, and Eric Sanlaville. A Study of Connectivity
on Dynamic Graphs: Computing Persistent Connected Components. February
2020.

[101] Jordan Viard, Matthieu Latapy, and Clémence Magnien. Revealing contact
patterns among high-school students using maximal cliques in link streams.

128

In 2015 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), pages 1517–1522. IEEE, 2015.

[102] Tiphaine Viard and Matthieu Latapy. Identifying roles in an ip network with
temporal and structural density. In 2014 IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS), pages 801–806. IEEE, 2014.

[103] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi. On
the evolution of user interaction in facebook. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Social Networks (WOSN’09), August 2009.

[104] Stanley Wasserman, Katherine Faust, et al. Social network analysis: Methods
and applications, volume 8. Cambridge university press, 1994.

[105] Klaus Wehmuth, Artur Ziviani, and Eric Fleury. A unifying model for repre-
senting time-varying graphs. In 2015 IEEE International Conference on Data
Science and Advanced Analytics (DSAA), pages 1–10. IEEE, 2015.

[106] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall
Upper Saddle River, NJ, 1996.

[107] Audrey Wilmet, Tiphaine Viard, Matthieu Latapy, and Robin Lamarche-Perrin.
Degree-based outliers detection within ip traffic modelled as a link stream. In
2018 Network Traffic Measurement and Analysis Conference (TMA), pages 1–8.
IEEE, 2018.

[108] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke. Reachability and time-based
path queries in temporal graphs. In 2016 IEEE 32nd International Conference
on Data Engineering (ICDE), pages 145–156, May 2016.

[109] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu.
Path Problems in Temporal Graphs. Proc. VLDB Endow., 7(9):721–732, May
2014.

[110] Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity.
In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’13, page 1757–1769, USA, 2013. Society for Industrial
and Applied Mathematics.

[111] Kevin S Xu and Alfred O Hero. Dynamic stochastic blockmodels: Statistical
models for time-evolving networks. In International conference on social com-
puting, behavioral-cultural modeling, and prediction, pages 201–210. Springer,
2013.

[112] B. Bui Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and
foremost journeys in dynamic networks. International Journal of Foundations
of Computer Science, 14(02):267–285, April 2003. Publisher: World Scientific
Publishing Co.

129

[113] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. DAGGER: A Scalable
Index for Reachability Queries in Large Dynamic Graphs. arXiv:1301.0977 [cs],
January 2013. arXiv: 1301.0977.

[114] Jeffrey Xu Yu and Jiefeng Cheng. Graph Reachability Queries: A Survey. In
Charu C. Aggarwal and Haixun Wang, editors, Managing and Mining Graph
Data, Advances in Database Systems, pages 181–215. Springer US, Boston, MA,
2010.

[115] Hilmi Yıldırım, Vineet Chaoji, and Mohammed J. Zaki. GRAIL: a scalable index
for reachability queries in very large graphs. The VLDB Journal, 21(4):509–534,
August 2012.

[116] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao. Reachability
queries on large dynamic graphs: a total order approach. In Proceedings of
the 2014 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’14, pages 1323–1334, Snowbird, Utah, USA, June 2014. Association
for Computing Machinery.

130

131

	Remerciements
	Abstract
	Résumé
	List of Figures
	List of Tables
	Introduction
	Modeling of Temporal Networks: the Stream Graph Approach
	Graph Theory
	Stream Graphs
	Definitions and Notations
	Related Works

	Real-World Stream Graphs

	Straph: A Python Library for Stream Graphs
	Development Paradigms
	Data Structures
	In-Memory Structures
	Streaming Formats
	File Formats

	Functionalities
	Installation and Dependencies
	Visualisation
	Straph Generators

	Real-World Use Case: High School Friends
	Discussion: development choices and future features

	Connectivity
	Weak Connectivity
	Strong Connectivity
	Direct Approach
	Fully Dynamic Approach
	Union-Find Approach

	Experiments and Applications
	Algorithm performances
	Connectedness analysis of IP traffic

	Related Work
	Conclusion

	Alternative Stream Graph Representations
	Condensation
	Definitions
	Algorithm
	Connectivity Properties
	Reachability Queries
	Experiments

	Stable Directed Acyclic Graph
	Definitions
	Algorithm
	Experiments
	DAG Parallel Framework

	-Approximation
	Approximate Strongly Connected Components
	Experiments
	Application to Latency Approximation

	Discussion

	Temporal Paths
	Definitions
	Optimal Temporal Paths Problems
	Multi-criteria optimal temporal paths
	Dominated Paths

	L-Algorithm
	Condensation Based Algorithms
	Time to reach and foremost paths
	Latency and fastest paths

	Experiments
	Conclusion

	Conclusion
	Bibliography

